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Analysis of a Singular Perturbed Synchronous
Generator with a Bond Graph Approach
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Abstract—An analysis of a synchronous generator in a bond
graph approach is proposed. This bond graph allows to determine the
simplified models of the system by using singular perturbations.
Firstly, the nonlinear bond graph of the generator is linearized. Then,
the slow and fast state equations by applying singular perturbations
are obtained. Also, a bond graph to get the quasi-steady state of the
slow dynamic is proposed. In order to verify the effectiveness of the
singularly perturbed models, simulation results of the complete
system and reduced models are shown.
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[. INTRODUCTION

HE synchronous machine has long been the most

important of the electromechanical power conversion
devices, playing a key role both in the production of electricity
and in certain special drive applications. Thus, an
understanding of their characteristics and accurate modelling
of their dynamic performance are of fundamental importance
to the study of power system stability.

The modelling and analysis of the synchronous machine has
always been a challenge. The problem was worked on
intensely in the 1920s and 1930s, and has been the subject of
several more recent investigations..

Many books and papers have used the traditional
mathematical model of a synchronous machine [1], [2], [3].
Nevertheless in [4] a synchronous machine model considering
a class of equivalent circuits with sufficient flexibility to
permit the introduction of an arbitrary number of damper
windings. Also, the singular perturbations method is applied to
synchronous machine without damping windings in [5]. The
transfer function block diagram model of a generator has been
employed to analyze generator dynamic characteristics in [6].

Hence, it is useful to develop mathematical models of a
synchronous machine to explain their electric, magnetic and
mechanical behavior. However, these phenomenons using a
bond graph model of the system can be analyzed in a direct
and graphical way.

In other wise, bond graph was established by [7]. The
idea was developed by [8] and [9] how a powerful tool of
modelling. The main key points of the bond graph
methodology are: a model containing the energetic junction
structure, i.e., the system architecture; different energy
domains are covered and the coupling of subsystems are
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allowed; the cause to effect relations of each element are
obtained graphically; and the state variables have a physical
meaning.

A bond graph is a model of a dynamic system where a
collection of components interact with each other through
energy ports. These components are placed in the system
which exchanges energy. A bond graph consists of subsystems
linked by lines to show the energetic connections. A bond
graph can represent a variety of energy types and describes
how the power flows through the system [7], [8].

A fundamental problem in the theory of systems and
control is the mathematical modeling of a physical system. The
realistic representation of many systems calls for high-order
dynamic equations. The presence of some parasitic parameters,
such as small time constants, resistances, inductances,
capacitances, moments of inertia, and Reynolds number, is
often the source for the increased order and stiffness of these
systems. The stiffness, attributed to the simultaneous
occurrence of slow and fast phenomena, gives rise to time
scales. The systems in which the suppression of a small
parameter is responsible for the degeneration (or reduction) of
dimension (or order) of the system are labeled as singularly
perturbed systems, which are a special representation of the
general class of time scale systems [13].

The purpose of this work is to apply the bond graph
methodology to a synchronous machine on the two-axis
theory, in order to obtain the simplified models of this
electromechanical machine using singularly perturbations
theory in a direct and easy way. The main contribution of this
paper is to obtain the fast and slow bond graphs of the
synchronous generator from a linearized bond graph and to
verify the models through of simulation results.

Section II gives the bond graph model of a physical
system using the junction structure. A nonlinear bond graph
model of a synchronous machine is described in section ITI. A
subsection presenting a linearized bond graph of the machine
is proposed in section III. The simplified models of the
machine applying singular perturbations theory are presented
in section IV; where a bond graph of the fast state variables of
the machine is obtained. Also, a quasi-steady state bond graph
for the slow state variables is presented. Simulation results are
shown in section IV. Finally, conclusions are given in section
V.

11.BOND GRAPH MODEL

Consider the following scheme of a multiport LTI system
which includes the key vectors of fig. 1 [9], [10].
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Fig. 1 Key vectors of a bond graph

In fig. 1, (MS,, MS,), (I,C) and (R) denote the source, the
energy storage and the energy dissipation fields, (D) the
detector and (0, 1,TF,GY) the junction structure with
transformers, TF, and gyrators, GY.

The state x © R n is composed of energy variables p and
q associated with I and C elements in integral causality, u €
R p denotes the plant input, y € ® q the plant output, z €
R » the co-energy vector, and Din € ® rand Dout € ® r
are a mixture of e and f showing the energy exchanges
between the dissipation field and the junction structure [9],
[10]. The relations of the storage and dissipation fields are,

z=Fx 1
Doul = LDin (2)
The relations of the junction structure are,
1 1S, S, S, -
X B 12 13
= D()ll[ (3)

D

in

S 21 S22 S23

The entries of S take values inside the set {0, £1, £kt, kg}
where kt and kg are transformer and gyrator modules; S:
and S: » are square skew-symmetric matrices and S: »: and

S: 1 are matrices each other negative transpose. The state
equation is [9], [10]:
x=Ax+Bu @)
were,
A4,=(S,+S,MS,)F %)
B, =S, +5,MS, ©)
being

M=(-LS,)"'L
Next section gives a bond graph model of a synchronous
generator.

III. A BOND GRAPH MODEL OF A SYNCHRONOUS GENERATOR

Synchronous generators form the principal source of
electric energy in power systems, many large loads are driven
by synchronous motors and synchronous condensers are
sometimes used as a means of providing reactive power
compensation and controlling voltage. These devices operate
on the same principle and are collectively referred to as
synchronous machines [1].

It is useful to develop mathematical models of a
synchronous machine to explain their electric, magnetic and
mechanical behavior. However, a graphical model of a

synchronous machine is described in this section, this new
model is based on bond graph model.

In this paper, the following assumptions are made for the
development of a mathematical and graphical model for a
synchronous
sinusoidally distributed along the air-gap; S: : the stator slots
cause no appreciable variation of the rotor inductances with
rotor position; Ss : magnetic hysteresis is negligible; S: :
magnetic saturation effects are negligible.

Consider the representation of a synchronous generator of
fig. 2 [1], [2].

machine: S: : the stator windings are

g N .
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Fig. 2 Schematic diagram of a synchronous generator

In fig. 2, we can identify the following elements:

e a, b, c: stator phase windings. So, i,, i, i. denote the
stator phase currents; v,, v, v. denote the stator phase
voltages, r,, r;, r. denote the stator phase resistances and
Loa, Ly, L. denote the stator phase self inductances.

e F: field winding with ir and v denote the field current
and voltage, respectively; rr denotes the field
resistance and L denotes the field self inductance.

e D: d-axis amortisseur circuit with i, and vp denote the
amortisseur current and voltage on the d-axis,
respectively; rp denotes the amortisseur resistance on the
d-axis and Lj denotes the amortisseur self inductance on
the d-axis.

e (: g-axis amortisseur circuit with iy and v, denote the
amortisseur current and voltage on the g-axis,
respectively; ro denotes the amortisseur resistance on the
g-axis and Ly denotes the amortisseur self inductance on
the g-axis.

The synchronous generator of fig. 2, is represented by six
windings are magnetically coupled. The magnetic coupling
between the windings is a function of the rotor position. The
instantaneous terminal voltage v of any winding is in the form,

v=t)rit i 7

where 4 is the flux linkage, » is the winding resistance and i

is the current with positive directions of stator currents flowing
out of the generator terminals.

A great simplification in the mathematical description of the

synchronous machine is obtained from the Park's

transformation. The effect of Park's transformation is simply to
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transform all stator quantities from phases a, b and ¢ into new
variables the frame of reference of which moves with the rotor.
Thus by definition [1].

iodq = Piabc (8)
where the current vectors are defined as,
. . . . T

ingg =1y iy, | ©)
. . . .17

labv = [la lb lc] (10)

and the Park’s transformation is,
Yo Ve Ja
PZ\/% cosd cos(@—z%) cos(9+2%) (11)
sin @ sin(é’—z%) sin(6+2%)

The angle between the d axis and the rotor is given by,
9=w,g+5+% (12)

Where @, is the rated angular frequency in rad/s and § is
the synchronous torque angle in electrical radians.
Similarly, to transform the voltages and flux linkages,
Vodg = Pv,. (13)
/7'04(, =Pi,, (14)
In according with fig. 2, we described the bond graph model of
the synchronous machine on d-g axis, in fig. 3 that satisfies the
conditions S, —S§, of this section. This bond graph is
different respect to [11] on the directions of the bonds 14, 15,
17 and 19, and we use a voltage source on the exciting

winding.
R:Rd

2[
19

MSe:Vd ——11—— MGY—11— MGY—M1 2 MSe:Vq

"
7]

Mse:vi-2—11—8 2 —1+-2—R:RD
MdDF

MSe:Tm R:Rqg

Lw Fw
17 15 14

!

10 =
1

MgQ
Fig. 3. Bond graph model of a synchronous generator.

In fig. 3, T,, is the mechanical torque, 7; is the moment of
inertia, D is the damper coefficient, /:M,pr and I:My, are the
magnetic coupling between self and mutual inductances of the
windings on d-axis and on g-axis, respectively.

The key vectors of the bond graph of fig. 3 for the storage

field are,
T
x=[p3 Py Ps Puo Pu pls]

T
€ 6 €, € 618]

fi o fo fu Sl

)'c=[e3

z=[f3

(15)

and for the dissipation field,

D,=[fi £, £ fi S ful

T

(16)

D,, = [ez € & & € ezo]
The constitutive relations of the bond graph model of fig. 3
are,

L:diag{rd,rF,rD,rQ,rq,D} (17
F™ =diag{M,,.M,,.T,} (18)
were
Ly My My
Mypr =\ My Ly My, (19)
MdF MDF LF
L, M
M, :{ . "Q} (20)
MqQ Lq

A. A Linear Bond Graph of a Synchronous Generator

By neglecting the amortisseur circuits D and Q, i.e.
removing the bonds 4, 8, 9 and 10 and applying the procedure
to linearize the nonlinear bond graph of the synchronous
machine [14] of fig. 3, a linearized bond graph of the
synchronous machine is shownrin fig. 4.
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Fig. 4. Linearized bond graph.
The state equation of the linearized system is given by,
X; = A;x5+ Bsug
were,
X 0 1
A; = (S, + 8, +S,MS, ) F+S,;
X
B; =85+ 5,MS,,

with the junction structure of the linearized bond graph,

Zs
{x HS:“I +85) S, Sh S| D
D, S Sy, S5 0 Us
u

and
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0~_ ¢l
S13” = S13x5

The junction structure of the linearized bond graph is.

SO — 03x3 _h1T .50 — 03x3 _hzT
11 > 13
B0 h, 0

h=4, 0 =, 0|adh=[4, 0 -4, 0]

The state equation of the linearized synchronous generator is
given by,

-r, My Lo, -LA4,
4 — 7% 0 0
T o, 0 -7, L2,
-T.a, Mpea, Ly -D

By;=1,a=i, _/140 and a, =i,y —A,,.

A bond graph allows to reduce a model by removing some
of their bonds of the system. In the next section, some
simplified models of a synchronous machine using singularly
perturbations theory are obtained.

IV. A SINGULARLY PERTURBED SYNCHRONOUS GENERATOR

In previous section a mathematical model with six
nonlinear differential equations of the bond graph of a
synchronous machine can be found. Thus, the complete
mathematical description of a large power system is
exceedingly complex, and simplifications are often used in
modeling the system. By using a bond graph the reduced
models can be directly obtained. Because it is necessary to
eliminate the respective bonds to neglect some part of the
model.

The singular perturbation model of finite dimensional
dynamic systems, extensively studied in the mathematical
literature by Tikhonov (1948,1952), Levinson (1950),
Vasil'eva (1963), Wasow (1965), O'Malley (1971), etc. was
also the first model to used in control and systems.

Linear time invariant models are of interest in local or small
signal approximations of more realistic nonlinear models of
dynamic systems [13], [14]. Consider a LTI system to study
two time scale properties of the following form,

x, =A,x, +A,x,+Bu, x, e R’ (1)
ex, = A, x, + A, x, + B,u , x, e R” (22)
The slow reduced model is obtained by setting £ =0 in
(22) then,
-1 -1
Xy, == Ay Apyxy, — Ay Byu, (23)
substituting (23) into (21) we have,
. -1 -1
X = (All - A12A22 A21 ) X+ (Bl - A12A22 Bz )”s (24)
The fast reduced model is obtained by introducing the fast

time scale n=(t-to )/e in (21) and (22). x1f, x2f, uf denote the
fast parts of variables x: , x. andu.

A. Decoupling Fast Dynamic Behavior

According to [14] there is a condition for decoupling fast
and slow behavior from a singularly perturbed system which is
the invertibility of A2 » associated with the fast part of the
system. For decoupling the fast behavior we can apply one of
the next two procedures proposed by [14] for the case when a
bond graph model has C or I elements of different order of
magnitude and R elements of the same order of magnitude
(Procedure 1) and when a bond graph model has R elements of
different order of magnitude and C or I elements of the same
order of magnitude (Procedure 2).

Procedure 1

The fast reduced bond graph is deduced from the global one
by suppressing:

o All the C or I elements with large modulus.

e All the R elements causally connected with these C or I
elements directly or indirectly through other R elements.

e All the input sources having no causal connection with the
remaining C, I and R elements.

Procedure 2
The fast reduced bond graph is deduced from the global one
by suppressing:

o All the C elements causally connected with large valued R
elements or large valued R elements in the case of an
algebraic loop.

e All the R elements without causal connection with the
remaining C, I or R directly or indirectly through other R
elements.

o All the input sources having no causal connection with the
remaining C or [ directly or indirectly through other R
elements.

In the case of linearized bond graph of synchronous
generator, we have I elements with the same order of
magnitude and R elements with different then it is possible to
apply Procedure 2 and the fast reduced part of the bond graph
is shown in Fig. 5.
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Fig. 5 Bond graph of fast reduced part
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Simulation results of the fast state variables using the bond
graph model of Fig. 5, and variables of the linearized bond
graph of Fig. 3 are obtained. The numerical parameters of the
synchronous generator are: M,=1.64H, L,=1.7H, Ly=1.65H,
MdF=1.55H, Rd=0.1Q, Rf=1Q, Rq=2Q, Jr=12.37N"- m" s,
D=IN- m- s, Vg=1.2246V, Vd=0, V{=30V  and
Tm=100N- m. Hence, electrical currents on d and g-axis are
shown in Fig. 6 and 7, where I, and I, are the electrical
current of the linearized bond graph on d and g-axis,
respectively, and /- and I, are the electrical currents of the
fast bond graph on d and g-axis, respectively.
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Fig. 6 Electrical current on d-axis
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Fig. 7 Electrical current on g-axis

Fig. 8 shows electrical current on the field winding.
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Fig. 8 Electrical current on the field winding

We can verify that the performance of the fast variables
using the linearized bond graph and the simplified fast bond
graph are similar having the same steady state response.

B. Quasi-Steady State

For the slow part and so called "quasi" steady state of the
system we apply a different procedure which proposes to
assign derivative causality to storage elements that represent
the fast states and the storage elements of slow states maintain
an integral causality assignment. Fig. 9 shows the bond graph
to determine the quasi-steady state.
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Fig. 9 Quasi-steady state bond graph

The junction structure of the quasi-steady state bond graph
is defined by,

Z
. 1 12 1 1 1 .
X H, H, H, H; H,| x
| g2 2 21 21 21 h

z, |=|\H, Hy H, H; H,|D,, |25

op| |my HE oH

where D:m = LhD:l . Thus, the quasi-steady state model is,

X = 4:x+Bu (26)

with
4;=(H)\ + H}0H}} ) F, @7)
B/ = Hy; + H),0H,, (28)
Q=L"(I-H,L")" (29)

In order to compare the simulation results of the angular
velocity of the quasi-steady state bond graph model (W_L_S)
with linearized bond graph (W_L), fig. 9 shows the
performance of the both variables indicating that are similar.

10 20 30 T 80 90 100

50
time (s}
Fig. 9 Angular velocity of the quasi-steady state and linearized state

Fig. 10 compares the behavior of the angular velocity of the
nonlinear bond graph respect to linearized bond graph models
showing that effectively the angular velocity is a slow state
variable.
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Fig. 10 Angular velocity of the nonlinear and linearized bond graphs

Note that the bond graph methodology with singular
perturbations theory allows to have a graphical tool decoupling
state variables with fast and slow dynamics in a direct manner.

V.CONCLUSIONS

This work describes a nonlinear bond graph model of a
synchronous machine. Also, the linearized bond graph of the
machine is proposed. In order to disconnect the state variables
of a LTI system with two time scale the singular perturbations
theory to bond graph methodology is applied. Hence, a bond
graph of fast state variables of the synchronous machine is
proposed. Also, a bond graph of the slow state variables of the
machine is presented. Simulation results of the synchronous
generator using nonlinear, linearized, fast and slow bond
graphs models are shown.
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