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Abstract—This paper presents performance analysis of the 

Evolutionary Programming-Artificial Neural Network (EPANN) 
based technique to optimize the architecture and training parameters 
of a one-hidden layer feedforward ANN model for the prediction of 
energy output from a grid connected photovoltaic system. The ANN 
utilizes solar radiation and ambient temperature as its inputs while the 
output is the total watt-hour energy produced from the grid-connected 
PV system. EP is used to optimize the regression performance of the 
ANN model by determining the optimum values for the number of 
nodes in the hidden layer as well as the optimal momentum rate and 
learning rate for the training. The EPANN model is tested using two 
types of transfer function for the hidden layer, namely the tangent 
sigmoid and logarithmic sigmoid. The best transfer function, neural 
topology and learning parameters were selected based on the highest 
regression performance obtained during the ANN training and testing 
process. It is observed that the best transfer function configuration for 
the prediction model is [logarithmic sigmoid, purely linear]. 
 

Keywords—Artificial neural network (ANN), Correlation 
coefficient (R), Evolutionary programming-ANN (EPANN), 
Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid. 

I. INTRODUCTION 
N the grid-connected photovoltaic (PV) system, a major 
question among a user  is how much energy output can be 

harvested from the grid-connected PV system throughout its 
operation. In many cases, the customer would want to know the 
performance of their installed grid-connected PV systems 
under different climatic conditions. Therefore, many studies 
have been conducted to predict the output of the systems. One 
of the popular techniques used for the prediction is the artificial 
neural network (ANN). A three-layer feedforward ANN was 
used to predict the energy output of a grid connected PV system 
by knowing the solar radiation, module temperature and 
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clearness index [1]. Similarly, the output of a PV module was 
also predicted using the same architecture but with different 
types of inputs and outputs [2]. The ANN utilizes solar 
radiation, ambient temperature and module temperature as its 
inputs whereas voltage and current are used as outputs. 
Although these studies have produced many important 
discoveries in the prediction of PV system outputs using ANN, 
the design of ANN models using specific sets of design 
constraints relies so much on past experience with same 
applications and is subjected to trial and error processes [3]. 
For example, in a grid connected PV system, a study has been 
conducted to predict the total AC power output of a 
grid-connected PV system using manually-designed ANN [4]. 
However, this manual design of ANN is time consuming and 
vulnerable to inaccuracy issues due to the tedious heuristic 
process experienced by the ANN designers. As a result, 
evolution process has been introduced to provide faster training 
of the ANN [5]. 

Evolution in multilayer feedforward ANN design can be 
performed by evolving the connection weights, architectures or 
learning rules of the ANN. The evolution of the connection 
weights is done by online training of the ANN connections 
using a predetermined architecture whereas the evolution of 
ANN architectures is achieved by adjusting the ANN 
topologies for different learning tasks. The evolution of 
connection weights requires modification of ANN weights to 
learn a particular function. On the other hand, the evolution of 
architectures demonstrates the evolution of topological 
parameters such as number of nodes and number of hidden 
layers. Apart from that, the evolution of learning rules is 
related to the adaptive process of finding the best learning 
rules. 

Despite having many types of evolution methods for 
evolving ANN, one of the most popular methods is the 
Evolutionary Programming (EP). This technique is an 
optimization tool based on natural evolution [6]. In this study, 
Evolutionary Programming (EP) is chosen to perform the 
evolution of ANN. It was initially introduced to simulate 
artificial intelligence through the evolution of finite state 
machines [7]. In addition, the usage of Gaussian mutation and 
self-adaptation has been proved to become a determining factor 
in improving the performance of EP [8].  
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A study to find the optimum ANN hidden layer size using EP 
has been successfully performed [9].  Similarly, an algorithm to 
determine the ANN hidden layer size and weight coefficients 
has been developed [10]. Therefore, besides predicting the 
watt-hour energy output from grid-connected PV system, this 
paper also demonstrates the design of a hybrid prediction 
model using Evolutionary Programming-Artificial Neural 
Network (EPANN). Two types of transfer function 
configuration are tested in the implementation of the EPANN 
model.  

II. THE SYSTEM AND ANN DATA COLLECTION 
The site under study is the Malaysia Energy Center (PTM), 

Bangi, Malaysia located at latitude approximately 2°53 N 
and longitude 101°40 E. The site contains 6 grid-connected 
PV systems with a total amount of 92kWp installed capacity. 
However, only one system is investigated in this study. The 
system under study comprises 1.92kWp polycrystalline PV 
array and one unit of grid-tied inverter. The PV array is tilted at 
7° with respect to the horizontal plane. The inverter is capable 
of recording the energy output from the inverter. In addition, 
two ambient temperature sensors and an irradiance sensor are 
strategically positioned near the PV array and connected to the 
inverter. Data logging was performed using a data logger 
connected to the inverter. In this study, data have been 
collected during the month of February 2008. The data 
comprises solar irradiance, SI (in kW/m2) falling on horizontal 
plane, ambient temperature at sensor 1, AT1 (in ºC), ambient 
temperature at sensor 1, AT2 (in ºC) and total energy output (in 
Wh). These data has been utilized to simulate the general ANN 
model illustrated in Fig. 1.  

 
Fig. 1. ANN model for the prediction of energy output from the grid connected PV 

System located at Malaysia Energy Centre (PTM), Bangi, Malaysia 
 

Since its introduction, ANN has been employed to solve 
various problems in power engineering and many other 
complex problems. In basic computational model of ANN, a 
node in an ANN collects input signals from other nodes and 
merges them. Relevant computation is performed before the 
result is mapped to an output node [11]. In this study, a 
three-layer feedforward neural network has been employed for 
investigation. In Fig. 1, a three-variate ANN model that uses 
SI, AT1 and AT2 as its input and total watt-hour energy as its 

output has been employed. This work is valid as the 
performance of PV modules is also influenced by ambient 
temperature besides the solar irradiance [12].  

III. GENERAL DESIGN OF ANN 
After selecting the type, inputs and output of the ANN, 

suitable ANN parameters for evolution process have to be 
identified as there are several methods available to evolve the 
ANN. The first method involves the evolution of connection 
weights during ANN training [13]-[14]. This method emulates 
the conventional technique of adjusting weights of ANN to 
learn an unknown function. The second method entails the 
evolution of ANN architecture [15]. Unlike the traditional 
method that requires the number of nodes of hidden layers to be 
determined heuristically by ANN designers, this more 
advanced method allows the size of nodes to expand or shrink 
automatically using simulated evolution. Besides that, the 
evolutionary training of ANN can also be achieved through the 
evolution of transfer functions [16]. Apart from that, the values 
of the ANN parameters to be fixed were also determined at this 
stage. 

Despite having an argument on the most suitable method of 
evolution, the type of method to be used in ANN evolution 
actually depends on the amount and quality of information 
obtained about the proposed ANN prediction model. Therefore, 
the ANN design could also be very subjective. For example, if 
more previous information on the learning algorithms is 
available compared to the previous information on the ANN 
architecture, the evolution of learning algorithms should be 
given the top priority before considering the evolution of ANN 
architecture. Therefore, not every ANN parameter is evolved. 
As the region of evolution is more restricted based on the prior 
information obtained, the convergence of the evolution process 
becomes faster. However, this informal guideline is invalid if 
there is a specific attention to the type of learning algorithm or 
the size of architecture to be investigated in a study. 

In this study, a few ANN characteristics and parameters have 
been fixed for the training process. Firstly, the performance of 
the prediction is quantified using the correlation coefficient, R. 
Secondly, the Levenberg-Marquardt algorithm has been 
chosen as the learning algorithm for the ANN as it has been 
proven useful in many prediction studies. Besides that, the 
evolution of weights was not conducted as the 
back-propagation method could satisfactorily perform the 
optimal computation of the set of weights in the ANN. Apart 
from that, the number of epochs is set to be very large (1000 
epochs) in order to allow accurate convergence of the ANN. 
The mean-square-error training goal is chosen to be 
sufficiently small (10-3) to ensure satisfactory prediction 
accuracy. As these settings have been fixed at the beginning of 
training process, the evolutionary process can be considered 
semi-automatic. On the other hand, the transfer function 
configuration is set to be either [logarithmic sigmoid, purely 
linear] or [tangent sigmoid, purely linear] after preliminary 
investigation. These transfer functions are selected due to their 
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proven capability in various prediction tasks [17]-[18]. Both 
configurations were tested one at a time to determine the best 
transfer function for the hidden layer. 

IV. DESIGN OF EPANN MODEL 
After the ANN parameters and characteristics have been 

identified, the evolution technique has been specified for the 
ANN model. In this study, the EP is chosen to perform the 
evolution process. EP is a heuristic technique used to conduct a 
semi-random search in optimizing an objective function. It 
consists of a few important processes namely generation of 
random population, fitness evaluation, mutation, combination, 
selection and convergence test.  It has been shown that EP 
perform better than Genetic Algorithm (GA) in optimization 
task [19]. In the proposed evolutionary ANN, the number of 
nodes in hidden layer, x1, learning rate, x2 and momentum rate, 
x3 of the ANN are allowed to evolve to reach their optimum 
values using EP. The best solution is achieved by maximizing 
the correlation coefficient, R of the prediction during ANN 
training. Higher R would imply a higher accuracy of the 
prediction model. The proposed evolutionary training 
algorithm is summarized in the following procedure. 
 
1) Generate random numbers to represent the evolving 

variables (x1, x2, and x3) as described previously. x1 is set to 
be random integers in the range from 1 to 100. In contrast, 
x2and x3 are random values from 0 to 1. 

2) Run preliminary fitness evaluation. At this stage the ANN 
model is trained using the generated random numbers to 
determine the R value. Constraints are set during this 
stage. The resulting R must be greater than or equal to 0.99 
and less than unity. 

3) Decision: If constraints are not violated, proceed to step 4. 
Otherwise, return to step 1.  

4) Load the set of random numbers into pool population 
known as parent. The maximum number of population 
allowed is 20. 

5) Decision: If pool population is full, proceed to the next 
step. Otherwise, return to step 1. 

6) Determine the maximum and minimum values for x1, x2 
and x3. These statistical values are required for mutation 
process in later stage. 

7) Train ANN to determine the values of fitness function. The 
fitness function represents the value of R for the prediction. 

8) Determine the maximum and minimum values for R. 
These statistical values are also required for mutation 
process. 

9) Mutate parents to produce offspring using Gaussian 
mutation operator. 

10) Train the ANN using the mutated set of random numbers 
(offspring). 

11) Combine parents and offspring. The total population now 
becomes 40. 

12) Perform priority selection strategy. The set of random 
numbers with highest R value will be of the top priority 

while the set of random numbers with lowest R value will 
be ranked as the lowest priority. 

13) Transcribe the 20 sets of random numbers with highest 
priority into a new generation for the next evolution. 

14) Test the new generation using stopping criteria. 
15) Decision: If fitness function converges, the program is 

stopped. Otherwise, step 6 is repeated. 
The program starts with the initialization of three random 

numbers that represent the number of nodes in the hidden layer 
(x1), learning rate (x2) and momentum rate (x3). These numbers 
are generated randomly based on normal distribution function. 
The search space of this program is restricted to the results 
from prior studies in predicting PV systems output using ANN. 
The randomly generated values for x1 are specified to be within 
a range from positive integer 1 to 100. The upper limit is set to 
be sufficiently large (100) such that the optimal number of 
neurons can be reached. Thus, problem of trapping at a local 
optima can be avoided. Nevertheless, x2 and x3 are selected to 
have random values between 0 and 1 as these numbers indicate 
the learning rate and momentum rate respectively. The 
maximum range possible is set for these numbers as inadequate 
previous information were obtained about the most suitable 
values for the learning rate and the momentum rate in 
predicting the output of a PV system. In fact, these numbers are 
usually unique according to the nature of a problem. The R 
values for the constraints are set to be from 0.99 to 1.00 so that 
only good prediction results are transcribed into the population. 
This constraint was tested by training the ANN using the set of 
random numbers generated previously. After the training 
process, if the set of random numbers generated produces R 
value outside the range defined by the predetermined 
constraints, the random number generation process is repeated. 
If not, the set of random numbers are loaded into the pool 
population. This set of random numbers, known as parent, will 
experience a mutation process to produce an offspring at a later 
stage. After a parent is successfully created, the random 
number generation is repeated until the pool population is 
completely filled. The maximum number of parents in the 
population is set to be 20 based on a previous study [20]-[21]. 
This value is repeatedly found to be sufficient for an EP to 
converge. After the pool population has been filled, the 
statistical parameters are identified by determining the 
minimum and maximum values for each variable of the sets of 
random numbers obtained in the pool population. These values 
will be also useful for the mutation process later. Next, the first 
fitness function calculation is conducted by training the ANN 
repeatedly using the 20 sets of random numbers obtained from 
the parent population. Thus, twenty R values are produced from 
the twenty sets of parents. Similarly, maximum and minimum 
values of R from these results are determined for mutation 
process. Later, the evolution process proceeds with the 
mutation of each parent using Gaussian mutation. This process 
generates 20 sets of random numbers and each set is called as 
an offspring. Using the sets of random numbers generated from 
each offspring, the second fitness function calculation is 
conducted by training the ANN. Consequently, both parents 
and offspring were combined to form a new population of 40 
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sets of random numbers with each of them having their own 
fitness value. Next, these parents and offspring undergo the 
selection process using priority selection strategy. In this 
strategy, the population is arranged in descending order 
according to the individual fitness value of each parent or 
offspring [22]. Thus, the set of random numbers with highest R 
value will be ranked on the top while the set of random 
numbers with lowest R value will be ranked at the bottom. The 
top 20 sets of random numbers are later transcribed as the new 
generation of sets of random numbers. Before the evolution 
process continues, convergence test is performed to decide 
whether the search for the best set of random numbers should 
be continued or stopped. In this study, the stopping criteria are 
defined by the following equations. 
 

    1.0minmax RR                                    (1) 
 

    0min,1max,1 xx                           (2) 

 
The first equation halts the program if the difference 

between the maximum fitness value and the minimum fitness 
value in the new generation is less than or equal 0.1. 
Nevertheless, the second equation should also be satisfied for 
the whole process to stop. The second equation is added to the 
set of constraint equations because the final number of nodes 
recommended by the search should be an integer value. If these 
stopping criteria are not satisfied, the search for optimum set of 
random numbers is continued. However, the new search is 
performed by repeating the mutation process based on the 
statistical values obtained from the new generation of random 
numbers. At the end, the actual prediction performance during 
training is quantified using the average R value. The average R 
value is a better indicator of the overall training performance 
since the EPANN would not show an absolute convergence 
(Rmax = Rmin). 

After the EPANN training has been completed, testing 
process is performed to validate the training process. The 
EPANN is implemented twice using logarithmic-sigmoid 
(logsig) and hyperbolic tangent-sigmoid (tansig) as the transfer 
function at the hidden layer. However, the transfer function at 
the output layer is fixed to purely linear. 

V. RESULTS AND DISCUSSION 
The EPANN model was trained using logsig and tansig 

transfer function at the hidden layer. The results for the 
prediction of total energy output of the grid-connected PV 
system using the EPANN model are illustrated in Table I.  

In Table I, the optimal number of nodes in the hidden layer of 
the EPANN model with the transfer function 
[logarithmic-sigmoid, purely linear] is 2 whereas the optimal 
number of nodes in the hidden layer of the EPANN model with 
the transfer function [hyperbolic tangent-sigmoid, purely 
linear] is only 1. Hence, the EPANN model can be realized 
using a smaller neural topology using the tansig transfer 

function. This feature is very important if the EPANN is going 
to be implemented in hardware. Besides that, the learning rate 
for the EPANN with logsig and the EPANN with tansig is 
0.05796 and 0.02831 respectively. On the other hand, the 
momentum rate for the EPANN with logsig and the EPANN 
with tansig is 0.06831 and 0.00799 respectively. Therefore, it 
can be observed that the EPANN with tansig transfer function 
requires lower learning rate and momentum rate compared to 
the EPANN with logsig transfer function. Apart from that, the 
average correlation coefficient, R during training for EPANN 
with tansig is found to be 0.99388. This value is slightly higher 
than 0.99319 achieved by EPANN with logsig. However, the 
testing process shows that the EPANN with logsig performs 
better than the EPANN with tansig. The EPANN with logsig 
has an R value of 0.99519 while the EPANN with tansig has an 
R value of 0.99360. The prediction performance of the EPANN 
with logsig during testing is better possibly due to higher 
number of nodes in the hidden layer which is found during the 
evolutionary training. The higher number of nodes might 
indicate a better generalization capability of the neural network 
model. As a result, higher R value during testing is obtained 
using the EPANN with logsig transfer function.  Nevertheless, 
both EPANN models consume almost equal computation time 
during the prediction task.  
 

 

TABLE I 
TRAINING PARAMETERS AND RESULTS FOR EPANN USING 

DIFFERENT TRANSFER FUNCTION CONFIGURATION. 

Parameters / Results EPANN with 
logsig 

EPANN with 
tansig 

Number of training patterns 300 300 

Number of testing patterns 200 200 

Number of nodes in hidden 
layer, x1 

2 1 

Learning rate, x2 0.05796 0.02831 

Momentum rate, x3 0.06831 0.00799 

Number of nodes in output 
layer 1 1 

Training algorithm trainlm trainlm 

Type of transfer function logsig- 
purelin 

tansig- 
purelin 

Average correlation 
coefficient, R during 
training 

0.99319 0.99388 

Correlation coefficient , R 
during testing 0.99519 0.99360 

Training duration (seconds) 225.35 233.53 
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The detailed prediction performance of the EPANN models 
during training is illustrated in Fig. 2 and Fig. 3. The fitness 
values of both models converge after the fifth evolution. In 
addition, the average fitness curve is consistently close to the 
maximum fitness curve in both cases. Therefore, it can be 
safely concluded that the EPANN models shows good 
performance in trying to maximize the R value during the 
training process. Nevertheless, the EPANN with tansig transfer 
function shows a slight inconsistency towards achieving the 
maximum fitness value during the evolution process. 
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Fig. 2: Plot of Different Types of Fitness Values at Different Evolution Number for 

EPANN with logsig transfer function 
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Fig. 3: Plot of Different Types of Fitness Values at Different Evolution Number for 

EPANN with tansig transfer function 
 

The search of the optimal number of nodes in both EPANN 
models is illustrated in Fig. 4 and Fig. 5. In general, both 
models show an approximately similar declining trend of 
number of nodes towards the final evolution number. The only 
difference is the final number of nodes in the hidden layer for 
each model. The EPANN with logsig yields 2 as the optimal 
number of nodes whereas the EPANN with tansig produces 1 
node as the optimal value. 

On the other hand, the search for the optimal training 
parameter values is illustrated in Fig. 6 and Fig. 7. In Fig. 6, the 

learning rate and momentum rate of the EPANN with logsig 
shows a different trend of convergence during the evolution. In 
contrast, the learning rate and momentum rate of the EPANN 
with tansig shows a similar trend towards convergence after the 
second evolution. 
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Fig. 4: Plot of Number of Nodes at Different Evolution Number for EPANN with 

logsig transfer function 
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Fig. 5: Plot of Number of Nodes at Different Evolution Number for EPANN with 

tansig transfer function 
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Fig. 6: Plot of Different Types of Training Parameter Values at Different 

Evolution Number for EPANN with logsig transfer function 
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Fig. 7: Plot of Different Types of Training Parameter Values at Different 

Evolution Number with tansig transfer function 

VI. CONCLUSION 
The EPANN has been successfully used to predict the 

watt-hour energy output from the grid-connected PV system. 
During the evolutionary training, the optimal number of nodes 
in the hidden layer, the learning rate and the momentum rate 
have been determined for each EPANN model. Nevertheless, 
due to the random nature of the ANN process, the fitness of the 
EPANN i.e. the correlation coefficient of the prediction may 
not show complete convergence. Therefore, average fitness has 
been introduced as a measure of the EPANN prediction 
performance. Apart from that, the EPANN with logsig as the 
transfer function at the hidden layer shows better overall 
prediction performance despite having slightly lower R value 
compared to R value of the EPANN model with tansig during 
training process. Since the R value of the EPANN model with 
logsig is higher than the R value of EPANN model with tansig, 
the EPANN model with logsig could be considered the better 
prediction model. Nevertheless, if the hardware 
implementation is considered, the EPANN model with tansig is 
more feasible as the optimal number of nodes in the hidden 
layer is found to be lower than the optimal number of nodes 
found for the EPANN model with logsig. In terms of overall 
computation time, both models could be implemented within 
approximately the same duration. 
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