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The Number of Rational Points on Elliptic Curves
and Circles over Finite Fields

Betül Gezer, Ahmet Tekcan, and Osman Bizim

Abstract—In elliptic curve theory, number of rational points on
elliptic curves and determination of these points is a fairly important
problem. Let p be a prime and Fp be a finite field and k ∈ Fp. It
is well known that which points the curve y2 = x3 + kx has and
the number of rational points of on Fp. Consider the circle family
x2 + y2 = r2. It can be interesting to determine common points of
these two curve families and to find the number of these common
points. In this work we study this problem.

Keywords—Elliptic curves over finite fields, rational points on
elliptic curves and circles.

I. INTRODUCTION

Mordell began his famous paper [4] with the words “Math-
ematicians have been familiar with very few questions for so
long a period with so little accomplished in the way of general
results, as that of finding the rational points on elliptic curves”.
The mathematical theory of elliptic curves was also crucial in
the proof of Fermat’s Last Theorem in [16].

Let p be a positive integer, Fp be a finite field, F∗
p =

Fp\{0} and Fp denote the algebraic closure of Fp with
char(Fp) �= 2, 3. An elliptic curve E over Fp is defined by an
equation in the Weierstrass form

E : y2 = x3 + ax + b, (1)

where a, b ∈ Fp and 4a3 + 27b2 �= 0. The discriminant and
j−invariant of E are defined by

Δ = −16(4a3 + 27b2)

and

j =
−1728(4a)3

Δ
,

respectively. We can view an elliptic curve E as a curve in
projective plane P2, with a homogeneous equation y2z = x3+
axz2 + bz3, together with a point at infinity. This point ∞ is
the point where all vertical lines meet. We denote this point
by O. The set of rational points (x, y) on E together with the
point O

E(Fp) = {(x, y) ∈ Fp ×Fp : y2 = x3 + ax + b} ∪ {O} (2)

is a subgroup of E (for the arithmetic of elliptic curves and
rational points on them see [5], [6], [7]). The order of E(Fp),
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denoted by #E(Fp), is defined as the number of points on
E, and is given by

#E(Fp) = 1 +
∑

x∈Fp

((
x3 + ax + b

Fp

)
+ 1

)

= p + 1 +
∑

x∈Fp

(
x3 + ax + b

Fp

)
, (3)

where ( .
Fp

) denotes the Legendre symbol.

Let p > 3 be a prime and let k ∈ F∗
p be a fixed number.

In this case, in [6] and [15], the number of rational points on
elliptic curves

Ek : y2 = x3 + kx (4)

over Fp is given by the following:

1. If p ≡ 3(mod 4), then #E(Fp) = p + 1.

2. If p ≡ 1(mod 4), write p = a2+b2, where a, b are integers
with b is even and a+b ≡ 1(mod 4), then #E(Fp) = p+1−2a
if k is a 4-th power mod p, #E(Fp) = p + 1 + 2a if k is
a square mod p but not a 4-th power mod p and #E(Fp) =
p + 1 ± 2b if k is not a square mod p.

In [3] and [13], we consider the number of rational points
on elliptic curves y2 = x3 + b2 and y2 = x3 − t2x over Fp,
respectively. In this paper, we consider the intersection points
of the elliptic curves

Ek : y2 = x3 + kx

and the circles

Cr2 : x2 + y2 = r2

over Fp. It is not difficult to guess that each elliptic curve may
not intersect with every circle in the set of rational points. So,
we will take k = p − r2 and in this case, we will determine
which elliptic curves and circles have common rational points
and what these points are, the number of them and the number
of curves and circles which have common rational points. By
equating elliptic curve equation y2 = x3 + kx with the circle
equation x2 + y2 = r2, we have the cubic equation

x3 + x2 + kx − r2 = 0.

Solving this cubic equation over Fp is the basis of this work.
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II. THE NUMBER OF RATIONAL POINTS ON ELLIPTIC

CURVES y2 = x3 + kx AND CIRCLES x2 + y2 = r2 OVER

Fp.

Let p > 3 be a prime number and let

f(x) = x3 + a1x
2 + a2x + a3,

where a1, a2, a3 ∈ Fp. Denote the number of solutions of the
congruence

f(x) ≡ 0(mod p)

by Np(f(x)). Let

P = −2a3
1 + 9a1a2 − 27a3

Q = (a2
1 − 3a2)3

D = −P 2 − 4Q

27
,

where D denotes the discriminant of the cubic polynomial
x3+a1x

2+a2x+a3. According to Tignol [14], [10], Sun [11],
[12], Dickson [2] and Skolem [8], [9], we have the following
theorem.

Theorem 2.1: If p > 3 is a prime, a1, a2, a3 ∈ Fp and p is
not divide D, then

Np(f(x)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 or 3 if (D
p ) = 1

1 if (D
p ) = −1

0 if (D
p ) = 0.

For the cubic congruence,

x3 + x2 + kx − r2 ≡ 0(mod p) (5)

we have

D = −4k3 + k2 − 18kr2 − 27r4 + 4r2.

If we take k and r such that k = p−r2, then the discriminant
of the cubic congruence becomes

D = −4k(k + 1)2 − p(36k + 27p + 4).

In this case we have,

D ≡ −4k(k + 1)2(mod p).

Now we will consider two cases, either p ≡ 1(mod 4) or
p ≡ 3(mod 4). Let Qp denote the set of quadratic residues
modulo p.

Case 1. Let p ≡ 1(mod 4). Since −1 ∈ Qp and k ≡
−r2(mod p), we have k ∈ Qp. Therefore −4k ∈ Qp and
hence (D

p ) = 1. By Theorem 2.1, we know that the cubic
congruence (5) has no solution or three solutions.

Case 2. Let p ≡ 3(mod 4). Since −1 /∈ Qp, k ∈ F∗
p\Qp

and k ≡ −r2(mod p), we have −4k ∈ Qp. Therefore D ≡
−4k(k + 1)2 ∈ Qp, that is, (D

p ) = 1. So also in this case,
the cubic congruence (5) has no solutions or three solutions.
Hence we have the following corollary:

Corollary 2.2: For p > 3 is a prime, the cubic congruence

x3 + x2 + kx − r2 ≡ 0(mod p)

has no solution or three solutions.

Now we will show that this cubic congruence has three
solutions.

Lemma 2.1: Let k+r2 = p. Then the solutions of the cubic
congruence

x3 + x2 + kx − r2 ≡ 0(mod p)

are r, −r and p − 1.

Proof: If we take k = p − r2, then by (5) we have

x3 + x2 − r2x − r2 = (x + 1)(x + r)(x − r)
≡ 0(mod p).

This shows that only solutions of this congruence are r, −r
and p − 1.

Consequently, the cubic congruence x3 + x2 + kx − r2 ≡
0(mod p) has three solutions for k + r2 = p. But the points
from this cubic congruence can not be the expected ones,
that is, the points can not be on both elliptic curve and the
circle family. Solutions of this congruence also verify the circle
equation x2+y2 = r2. In this way, for each x, r2−x2 must be
a square in Fp. In other words, only the solutions which make
r2 − x2 a square will give us what we require. For x = ±r,
r2−x2 equals to zero, so it is clear that both (r, 0) and (−r, 0)
points must be on the two curve families.

If r2 − (p − 1)2 is not a square in Fp, then x = p − 1 can
not be a point on both curve families. Now, we will determine
that when this point is a common point of two curve families.
To do this we have to consider two cases:

Case 1. Let p ≡ 1(mod 4). If we write x = p − 1 in
y2 = x3 + kx, then we have

y2 = (p − 1)3 + k(p − 1) ≡ −(k + 1)(mod p).

Since

−(k + 1) ∈ Qp ⇔ (k + 1) ∈ Qp

this implies that, (p − 1,±√
r2 − 1) are desired points if and

only if k, k + 1 ∈ Qp. We know that k ∈ Qp. Hence

i) If k + 1 /∈ Qp, then common points of elliptic curve and
circle family are (r, 0), (−r, 0).

ii) If k +1 ∈ Qp, then common points of elliptic curve and
circle family are (r, 0),(−r, 0), (p − 1,±√

r2 − 1).

Case 2. Let p ≡ 3(mod 4). In this case we know that
k ∈ F∗

p\Qp. Therefore

−(k + 1) ∈ Qp ⇔ (k + 1) ∈ F∗
p\Qp.
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This implies that, (p− 1,±√
r2 − 1) are desired points if and

only if k, k + 1 ∈ F∗
p\Qp. We know that k ∈ F∗

p\Qp. Hence

i) If k + 1 /∈ F∗
p\Qp, then common points of elliptic curve

and circle family are (r, 0) and (−r, 0).

ii) If k + 1 ∈ F∗
p\Qp, then common points of elliptic curve

and circle family are (r, 0), (−r, 0), (p − 1,±√
r2 − 1).

So we proved the following theorem.

Theorem 2.3: Let p > 3 be a prime and let k + r2 = p.
Then for elliptic curve family

Ek : y2 = x3 + kx

and circle family

Cr2 : x2 + y2 = r2

with each x is a solution of the equation (5), and

|Ek ∩ Cr2 | =

⎧⎪⎪⎨
⎪⎪⎩

2 if
(

r2−x2

Fp

)
= 0

4 if
(

r2−x2

Fp

)
= 1,

where |Ek ∩ Cr2 | denotes the number of the common points.

By generalizing the Legendre symbol to any field,
(

r2−x2

Fp

)
means that,

(
r2−x2

Fp

)
= 1 if t2 = r2−x2 has a solution t ∈ F∗

p;(
r2−x2

Fp

)
= −1 if t2 = r2 − x2 has no solution t ∈ F∗

p and(
r2−x2

Fp

)
= 0 if r2 = x2. Thus, common points of elliptic

curve and circle family are (r, 0), (−r, 0) and in addition to

this points, we have (p − 1,±√
r2 − 1) if

(
r2−(p−1)2

Fp

)
= 1.

In Fp, elliptic curve family y2 = x3 + kx and circle family
x2 + y2 = r2 may not have common points. Let’s see the
following example.

Example 2.1: 1) Let E2 be the elliptic curve y2 = x3 + 2x
and C1 be the circle x2 + y2 = 1 over F7. Then the cubic
congruence

x3 + x2 + 2x − 1 ≡ 0(mod 7)

has no solution. Therefore E2 and C1 have no common points
in F7.

2) Let E4 be the elliptic curve y2 = x3 +4x and C2 be the
circle x2 + y2 = 2 over F7. Then the cubic congruence

x3 + x2 + 4x − 2 ≡ 0(mod 7)

has only one solution x ≡ 5(mod 7). Then from the circle
equation we yield, 4 + y2 ≡ 2(mod 7) or y2 ≡ 5(mod 7),
but 5 /∈ Q7. So there is no y value, satisfying this equation.
Therefore E4 and C2 have no common points in F7.

Now we will determine how many circles and elliptic curves
have intersection for a prime p. We have to consider following
two cases.

Case 1. Let p ≡ 1(mod 4). Then k ∈ Qp and k + r2 = p.
So elliptic curve and circle family have intersection. Thus, the
number of intersection of these two curve families is |Qp|,
namely there are

p − 1
2

circles and elliptic curves families which have intersection.

Case 2. Let p ≡ 3(mod 4). Then k ∈ F∗
p\Qp. So there are

p − 1 − p − 1
2

=
p − 1

2
circles and elliptic curves families which have intersection,
that is, in this case the number of intersection of these two
curve families is p−1

2 , too.

Corollary 2.4: For a prime p > 3, the number of intersec-
tion of the elliptic curve family y2 = x3 + kx and the circle
family x2 + y2 = r2 in Fp is

p − 1
2

.

Example 2.2: Let Ek : y2 = x3 + kx and Cr2 : x2 + y2 =
r2.

1) If p = 13, then we have the following table:

k r2 points

1 12 (5, 0), (8, 0)

3 10 (6, 0), (7, 0), (12, 3), (12, 10)

4 9 (3, 0), (10, 0)

9 4 (2, 0), (11, 0), (12, 4), (12, 9)

10 3 (4, 0), (9, 0)

12 1 (1, 0), (12, 0)

2) If p = 19, then we have the following table:

k r2 points

2 17 (6, 0), (13, 0), (18, 4), (18, 15)

3 16 (4, 0), (15, 0)

8 11 (7, 0), (12, 0)

10 9 (3, 0), (16, 0)

12 7 (11, 0), (8, 0), (18, 5), (18, 14)

13 6 (5, 0), (14, 0), (18, 9), (18, 10)

14 5 (9, 0), (10, 0), (18, 2), (18, 17)

15 4 (2, 0), (17, 0)

18 1 (1, 0), (18, 0)
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Now we will determine the number of intersection of elliptic
curve and circle families which has the points (r, 0), (−r, 0)
and (r, 0), (−r, 0), (p − 1,±√

r2 − 1). We have to consider
two cases as we did before. But we need to know the following
theorem. In [1] it is given that,

Theorem 2.5: Let N(p) denote the number of pairs of
consecutive quadratic residues modulo p in Fp. Then

N(p) =
(p − 4 − (−1)

p−1
2 )

4
.

Let N(p)∗ denote the number of pairs of consecutive integers
in Fp, where the first is a quadratic nonresidue and the second
is a quadratic nonresidue modulo p and

N(p)∗ =
(p − 2 + (−1)

p−1
2 )

4
.

Then we have two cases:

Case 1. Let p ≡ 1(mod 4). Then (p − 1,±√
r2 − 1) are

desired points if and only if k, k + 1 ∈ Qp by the proof of
Theorem 2.3. Hence, by Theorem 2.5, the number of cases
where the intersection of elliptic curve and circle has four
points which are (p − 1,±√

r2 − 1) and (±r, 0) is

N(p) =
(p − 4 − (−1)

p−1
2 )

4
and the number of cases where the intersection of elliptic curve
and circle has two points which are (±r, 0) is

p − 1
2

− N(p) =
p − (−1)

p−1
2

4
=

p + 2 + (−1)
p−1
2

4
.

Example 2.3: Let p = 13. Then the number of cases where
the intersection of elliptic curve and circle has four points
which are (p − 1,±√

r2 − 1) and (±r, 0) is

N(13) =
(13 − 4 − (−1)

13−1
2 )

4
= 2

and the number of cases where the intersection of elliptic curve
and circle has two points which are (±r, 0) is

13 − 1
2

− N(13) = 6 − 2 = 4.

These curves can be seen in Example 2.2.

Case 2. Let p ≡ 3(mod 4). Then (p − 1,±√
r2 − 1) are

desired points if and only if k, k + 1 ∈ F∗
p\Qp by the proof

of Theorem 2.3. Hence by Theorem 2.5, the number of cases
where the intersection of elliptic curve and circle has four
points which are (p − 1,±√

r2 − 1) and (±r, 0) is

N(p)∗ =
(p − 2 + (−1)

p−1
2 )

4
and the number of cases where the intersection of elliptic curve
and circle has two points which are (±r, 0) is

p − 1
2

− N(p)∗ =
p − 1

2
− (p − 2 + (−1)

p−1
2 )

4

=
p − (−1)

p−1
2

4
.

Example 2.4: Let p = 19. Then the number of cases where
the intersection of elliptic curve and circle has four points
which are (p − 1,±√

r2 − 1) and (±r, 0) is

N(19)∗ =
(19 − 2 + (−1)

19−1
2 )

4
= 4

and the number of cases where the intersection of elliptic curve
and circle has two points which are (±r, 0) is

19 − 1
2

− N(19)∗ = 9 − 4 = 5.

These curves can be seen in Example 2.2.

Therefore we have the following result.

Theorem 2.6: The number of cases where the intersection
of elliptic curve and circle has four points which are (p −
1,±√

r2 − 1) and (±r, 0) is⎧⎪⎪⎨
⎪⎪⎩

N(p) = (p−4−(−1)
p−1
2 )

4 if p ≡ 1(mod 4)

N(p)∗ = (p−2+(−1)
p−1
2 )

4 if p ≡ 3(mod 4)

and the number of cases where the intersection of elliptic curve
and circle has two points which are (±r, 0) is⎧⎪⎪⎨
⎪⎪⎩

p−1
2 − N(p) = p+2+(−1)

p−1
2

4 if p ≡ 1(mod 4)

p−1
2 − N(p)∗ = p−(−1)

p−1
2

4 if p ≡ 3(mod 4).

We can also determine how many points are there in the
intersection of the elliptic curve y2 = x3 + kx and circle
x2 + y2 = r2. We know that there are the points (±r, 0),
and we know that there are p−1

2 elliptic curve families. So the
number of these points is

2
(

p − 1
2

)
= p − 1.

In addition to these points, there are the points (p − 1,
±√

r2 − 1). So if p ≡ 1(mod 4), then the number of these
points is

2N(p)

and if p ≡ 3(mod 4) then the number of these points is

2N(p)∗.

Therefore we have the following corollary.

Corollary 2.7: The number of the common points of the
elliptic curve family y2 = x3 + kx together with the circle
family x2 + y2 = r2 is⎧⎪⎪⎨
⎪⎪⎩

p − 1 + 2N(p) = 3p−6−(−1)
p−1
2

2 if p ≡ 1(mod 4)

p − 1 + 2N(p)∗ = 3p−4+(−1)
p−1
2

2 if p ≡ 3(mod 4).
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Example 2.5: 1) Let p = 13. Then the number of the
common points of the elliptic curve family together with the
circle family is

13 − 1 + 2N(13) = 16.

2) Let p = 19. Then the number of the common points of
the elliptic curve family together with the circle family is

19 − 1 + 2N(19)∗ = 26.

For any numbers k and r if (D
p ) = 1, then the cubic

congruence (5) has either no solution or three solutions. If
the cubic congruence (5) has no solution, then elliptic curve
family and circle family have any common points. Let the
cubic congruence (5) has three solutions. In this case, if for
each three solution x, and r2 − x2 is a square in Fp, then
elliptic curve and circle have six common points. If for two
solutions r2 − x2 is a square in Fp, then they have four
common points and if for one solution r2 − x2 is a square
in Fp, then they have two common points. Furthermore, if(

r2−x2

Fp

)
= 0 namely, r2 −x2 = 0, then there are two or four

common points, as we seen before in our case. Therefore, in
the general case they may have zero, two, four or six common
points.

Example 2.6: 1) Let E1 : y2 = x3+x and C4 : x2+y2 = 4
over F13. Then the cubic congruence

x3 + x2 + x − 4 ≡ 0(mod 13)

has no solution. Therefore E1 and C4 have no common points.

2) Let E6 : y2 = x3 + 6x and C9 : x2 + y2 = 9 over F19.
Then the cubic congruence

x3 + x2 + 6x − 9 ≡ 0(mod 19)

has three solutions which are x1 = 4, x2 = 5 and x3 = 9. It
can be seen that only one solution makes r2 − x2 a square in
F19. In fact, for x1 = 4 we get that 16 + y2 ≡ 9(mod 19)
or y2 ≡ 12(mod 19), but 12 /∈ Q19. So there is no y value
satisfying this equation and we have no points. For x2 = 5
we get that 6 + y2 ≡ 9(mod 19) or y2 ≡ 3(mod 19), but
3 /∈ Q19. So there is no y value satisfying this equation and
we have no points and for x3 = 9 from the circle equation
we get that 5 + y2 ≡ 9(mod 19) or y2 ≡ 4(mod 19). So we
have the points (9, 2), (9, 17). Therefore elliptic curve E6 and
circle C9 have two common points.

3) Let E1 : y2 = x3 + x and C1 : x2 + y2 = 1 over F11.
Then the cubic congruence

x3 + x2 + x − 1 ≡ 0(mod 11)

has three solutions which are x1 = 5, x2,3 = 8. It also can
be easily seen that these solutions make r2 − x2 a square in
F11. In fact, for x1 = 5 from the circle equation we get that
3+y2 ≡ 1(mod 11) or y2 ≡ 9(mod 11). So we have the points
(5, 5), (5, 12) and for x2,3 = 8 we get that 9+y2 ≡ 1(mod 11)
or y2 ≡ 3(mod 11). So we have the points (8, 5), (8, 6).

Therefore elliptic curve E1 and circle C1 have four common
points.

4) Let E14 : y2 = x3 + 14x and C16 : x2 + y2 = 16 over
F17. Then the cubic congruence

x3 + x2 + 14x − 16 ≡ 0(mod 17)

has three solutions which are x1 = 1, x2 = 5 and x3 = 10. It
can be easily seen that these solutions make r2 − x2 a square
in F17. In fact, for x1 = 1 from the circle equation we get
that 1 + y2 ≡ 16(mod 17) or y2 ≡ 15(mod 17). So we have
the points (1, 7), (1, 10) and for x2 = 5 we get that 8 + y2 ≡
16(mod 17) or y2 ≡ 8(mod 17). So we have the points (5, 5),
(5, 12) and for x3 = 10 we get that 15+y2 ≡ 16(mod 17) or
y2 ≡ 1(mod 17). So we have the points (10, 1) and (10, 16).
Therefore elliptic curve E14 and circle C16 have six common
points.

In second case, for any numbers k and r if (D
p ) = −1, then

the cubic congruence (5) has only one solution x and if for
this solution, r2 −x2 is a square in Fp, then the elliptic curve
and circle have two common points over Fp. Therefore in this
case, they may have zero or two common points.

Let’s see these situations in the following example.

Example 2.7: 1) If E1 : y2 = x3 + x and C1 : x2 + y2 = 1
over F7. Then the cubic congruence

x3 + x2 + x − 1 ≡ 0(mod 7)

has only one solution which is x = 5. We can easily see
that this solution makes r2 − x2 a square in F7. In fact, for
x = 5 from the circle equation we get that 4+y2 ≡ 1(mod 7)
or y2 ≡ 4(mod 7). So we have the points (5, 2) and (5, 5).
Therefore E1 and C1 have two common points.

2) If E3 : y2 = x3 + 3x and C1 : x2 + y2 = 1 over F7.
Then the cubic congruence

x3 + x2 + 3x − 1 ≡ 0(mod 7)

has only one solution which is x = 4. We can easily see that
this solution does not make r2 − x2 a square in F7. In fact,
for x = 4 from the circle equation we get that 2 + y2 ≡
1(mod 7) or y2 ≡ 6(mod 7), but 6 /∈ Q7. So there is no
y value satisfying this equation and so we have no points.
Therefore elliptic curve E3 and circle C1 have no common
points.
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