
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

618

 

 

  
Abstract—Horizontal platform system (HPS) is popularly applied 

in offshore and earthquake technology, but it is difficult and 
time-consuming for regulation. In order to understand the nonlinear 
dynamic behavior of HPS and reduce the cost when using it, this paper 
employs differential transformation method to study the bifurcation 
behavior of HPS. The numerical results reveal a complex dynamic 
behavior comprising periodic, sub-harmonic, and chaotic responses. 
Furthermore, the results reveal the changes which take place in the 
dynamic behavior of the HPS as the external torque is increased. 
Therefore, the proposed method provides an effective means of 
gaining insights into the nonlinear dynamics of horizontal platform 
system. 
 

Keywords—horizontal platform system, differential 
transformation method, chaotic.  

I. INTRODUCTION 
N the past two decades, people are naturally interested in the 
dynamic is the basis of chaotic system, such as highly 
complex dynamics, broad-band Fourier power spectrums and 

strong attractors [1], [2]. We can know that by the references, 
the theoretical analysis and the experiment is the 
synchronization problems; they will be effectively solved and 
performed [3]-[5]. On the other hand, in the years the several 
mechanical systems of chaos phenomenon were to observe [6], 
[7]. In the mechanical systems the HPS behaves chaotic motion 
at specific conditions, and can be free to rotate round along 
horizontal axis, therefore HPS was used widely in offshore and 
earthquake technology research [8]. In the HPS systems the 
chaos synchronization problems was proposed and solved [9]. 
A novel feedback controller was designed for synchronization 
between master-slaves HPS [10]. Also, a robust 
synchronization of HPS with phase differences was presented 
[11]. 

The aim of this paper is to demonstrate the bifurcation of 
HPS under different external torques parameter and understand 
the dynamic behaviors of the HPS. In order to analyze the HPS, 
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the differential transformation method is used and compared 
with Runge-Kutta method. Furthermore, we confirm whether 
the HPS is periodic or chaos phenomenon applying phase 
portraits, power spectra, Bifurcation diagrams, Poincaré maps 
and Lyapunov exponents. 

The remainder of this study is organized as follows. Section 
2 is dynamics equation and differential transformation method. 
The simulation and experimental results are shown in Section3. 
Finally, Section 4 draws some brief conclusions. 

II. MATHEMATICAL MODELING 

A. Equation of Motion for HPS 
The HPS is shown in Fig.1. The horizontal platform rotates 

around the horizontal axis, which perforates into its mass center. 
There is an accelerometer located on the platform to measure 
the position. When the platform varies from horizon, the 
accelerometer will produce a signal to the actuator that provides 
a reverse torque to balance the rotation of HPS. The equation of 
the system is: 
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 where C1, C2 and C3 are the inertia moment of the platform for 
axis 1, 2 and 3, respectively. Cd is the damping coefficient, Re is 
the radius of the earth, Ca is the proportional constant of the 
accelerometer, the g is the constant of gravity, and x is the 
rotation of the platform relative to the earth. Fcosωt indicates 
the external torque. This system details analysis was show in 
[12]. The ( ) ( )txtx1 = and ( ) ( )txtx2 &= are denoted the state 

variables. The HPS model (1) can be rewritten as follows：  
( ) ( )txtx 21 =&                    (2) 
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B. Differential Transformation Method 
Differential transformation is one of the most widely used of 

all techniques for solving differential equations due to its rapid 
rate of convergence and its minimal computational error. 
Furthermore, compared to the integral transformation 
approach, differential transformation has the further advantage 
that it can be used to solve nonlinear differential equations. In 
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solving (2), and (3) using the differential transformation 
method, the HPS model is transformed with respect to the time 
domain, and hence the equation becomes[13]-[15] 
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III. RESULTS AND DISCUSSIONS 

A. Numerical Simulation Results 
As discussed above, the nonlinear behavior of the HPS is 

analyzed in this study using the differential transformation 
method (DTM). The dynamic behavior of the horizontal 
platform system is characterized by reference to power spectra, 
Poincaré maps, maximum Lyapunov exponent plots and 
bifurcation diagrams produced using the time-series data for 
the displacement and velocity of the center of gravity. Note that 
in producing these various plots, the time-series data 
corresponding to the first 1000 revolutions are deliberately 
excluded in order to ensure that the results reflect steady-state 
conditions.  

Table 1 compares the results obtained by the DTM and the 
Runge-Kutta method (RKM) for the relative rotation of the 
platform at various values of F. It is seen that a good agreement 
exists between the two sets of numerical results. It also clarifies 
the effect of the time-step value on the Poincaré maps for the 
center of gravity at different values of F. It can be seen that for a 
given F, the rotation calculated using different values of the 
time step are in agreement to approximately 4~5 decimal places 
for DTM. 

B. Phase Portraits 
As shown in Fig.2, the phase portraits of the HPS at various 

values of the torque F, are regular and symmetrical, i.e. the 
center exhibits a periodic response. Figs. 2(a)~2(h) reveal that 
the orbit is regular at low value of F= 1.33, but becomes 
irregular when the F is increased to 2.78. When F is increased 
further to 3.21, the orbit performs from regular to non-periodic 
motion. Finally, the HPS transfers to periodic motion at F 
=3.59. 

C. Power Spectra 
Fig. 3 shows the power spectra of the HPS responses. At F 

=1.33, the power spectra show that the HPS performs 
5T-periodic motion. However, when F is increased to 3.59, it 
can be seen that the HPS exhibits multi-periodic motion. At 
F=2.78 and 3.21, the system has a chaotic behavior. 

D. Maximum Lyapunov Exponents  
The maximum Lyapunov exponent can also be used to 

identify the dynamic behavior of the HPS. Figs. 4(a) and 4(d), 
corresponding to F=1.33, 3.59, respectively, show that the 

maximum Lyapunov exponent has a value of approximately 
zero, which indicates that the system has a periodic response. 
However, at F=2.78 and 3.21, shown in Figs. 4(b) and 4(c), 
respectively, the maximum Lyapunov exponent is positive, and 
hence it can be inferred that the system has a chaotic response. 

E. Bifurcation Diagrams and Poincaré Maps 

In general, bifurcation diagrams and Poincaré maps 
summarize the essential dynamics of a system, and are 
therefore useful tools for observing nonlinear dynamic 
behavior. In the current study, Figs. 5(a) and 5(b) plot the 
bifurcation diagrams of the HPS over the interval 1.0≤  F  
≤10.0, taking F as the bifurcation parameter. Figs. 5(c) and 5(d) 
plot the local bifurcation diagrams of the HPS over the interval 
2.0≤  F  ≤4.0. Finally, Figs. 6(a)-6(d) present the Poincaré maps 
of the HPS at F=1.33, 2.78, 3.21, and 3.59, respectively.  

Fig. 5(c) and 5(d) show that at lower values of F, i.e. F <2.78, 
the HPS exhibits a dynamic periodic response, including 5T-, 
10T- and multi-periodic motions. Fig. 6(a) presents the 
Poincaré map corresponding to F =1.33 and the map has five 
discrete points which confirms the existence of 5T-periodic 
behavior shown in the bifurcation diagrams. As the value of F 
is increased over the interval 2.78≤  F  <2.95, Fig. 5 and 6(b) 
show that HPS performs chaotic-periodic motion.  

When F is increased over the interval 2.95≤ F <3.59, the 
HPS response is sub-harmonic motion. Fig. 6(b) and Fig. 6(c) 
present the Poincaré maps at F =2.78 and 3.21, respectively and 
behave chaotic motion. The presence of chaos is observed at 
five intervals and shown in Table 2. As F is increased over the 
interval 3.59≤ F <3.61, the HPS exhibits 10T-periodic motion, 
as shown in Fig. 6(d).  

From the discussions above, it is clear that the dynamic 
response of the HPS depends on the magnitude of F. The 
various motions performed by HPS as F increases from 1.0 to 
10.0 are summarized in Table 2. In general, the results show 
that depending on the value of F, the HPS may exhibit periodic 
behavior, i.e. 5T-, 10T- or multi-periodic motion, or a chaotic 
response. This result also indicates that a discontinuous 
increase takes place in the size and form of the chaotic attractor 
as F is increased. 

IV. CONCLUSION 
In the present paper the HPS has been studied and applied the 

differential transformation method and the Runge-Kutta 
method, respectively, to investigate the dynamic behavior of 
horizontal platform. Dynamic orbits, Poincaré maps, maximum 
Lyapunov exponent plots, and bifurcation diagrams have been 
used to characterize the dynamic response of the HPS as a 
function of the torque and to detect the occurrence of chaotic 
motion. In general, the results have shown that as the torque is 
increased from 1.0 to 10.0, the HPS behaves different kinds of 
dynamic responses including 5T-, 10T-, multi-periodic, and 
chaotic motions. In some intervals of torque, the HPS motion 
changes initially from 5T-periodic to 10T-periodic, and then 
from 10T-periodic to multi-periodic, and finally to chaotic 
motions.  
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Fig. 1 The horizontal platform system. 

 

 
2(a) 2(b) 

 
2(c) 2(d) 

Fig. 2 Phase portraits of HPS at F=(a)1.33, (b)2.78, (c)3.21, (d)3.59. 
 

 
3(a) 3(b) 

 
3(c) 3(d) 

Fig. 3 Power spectra of HPS at F=(a)1.33, (b)2.78, (c)3.21, (d)3.59. 
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4(c) 4(d) 

Fig. 4 Lyapunov exponent at  F=(a)1.33, (b)2.78, (c)3.21, (d)3.59. 
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Fig. 5 Bifurcation diagrams: (a) for X1 (F=1~10), (b) for X2 (F=1~10), 
(c) for X1 (F=2~4), (d) for X2 (F=2~4) 

 
6(a) 6(b) 

 
6(c) 6(d) 

Fig. 6 Poincaré maps of HPS at  F=(a)1.33, (b)2.78, (c)3.21, (d)3.59. 
 

TABLE I 
COMPARISON OF POINCARÉ MAPS OF HPS OBIT DATA CALCULATED BY DTM 

AND RKM METHODS 
     Displacement   

 
 
Conditions 

X1(nT) X2(nT) 

H (time step) 
0.001 0.01 0.001 0.01 

DTM 
F = 1.33 

1.22312178 1.22312689 -2.42342159 -2.42342159

RKM 1.22310511 1.22305476 -2.42311762 -2.42346771

DTM 
F = 3.59 

-3.21431351 -3.21435217 -3.51789121 -3.51781311

RKM -3.21410872 -3.21438856 -3.51711441 -3.51782098

 
TABLE II 

EVOLUTION OF ROTOR BEHAVIOR OVER ROTOR MASS  
INTERVAL 1≤ F ≤10 

F [1,2.67) [2.67,2.75) [2.75,2.78) [2.78,2.95) [2.95,3.0) 

Dynamic 
behavior 5T 10T Multi Chaos Multi 

F [3.01,3.2) [3.2,3.21) [3.21,3.34) [3.34,3.35) [3.35,3.39) 

Dynamic 
behavior Chaos Multi Chaos Multi Chaos 

F [3.39,3.4) [3.40,3.57) [3.57,3.59) [3.59,3.63) [3.63,10.0] 

Dynamic 
behavior Multi Chaos Multi 10T 5T 

 
 
 


