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Abstract—As a result of the daily workflow in the design 

development departments of companies, databases containing huge 
numbers of 3D geometric models are generated. According to the 
given problem engineers create CAD drawings based on their design 
ideas and evaluate the performance of the resulting design, e.g. by 
computational simulations. Usually, new geometries are built either 
by utilizing and modifying sets of existing components or by adding 
single newly designed parts to a more complex design.  

The present paper addresses the two facets of acquiring 
components from large design databases automatically and providing 
a reasonable overview of the parts to the engineer. A unified 
framework based on the topographic non-negative matrix 
factorization (TNMF) is proposed which solves both aspects 
simultaneously. First, on a given database meaningful components 
are extracted into a parts-based representation in an unsupervised 
manner. Second, the extracted components are organized and 
visualized on square-lattice 2D maps. It is shown on the example of 
turbine-like geometries that these maps efficiently provide a well-
structured overview on the database content and, at the same time, 
define a measure for spatial similarity allowing an easy access and 
reuse of components in the process of design development. 
 

Keywords—Design decomposition, topographic non-negative 
matrix factorization, parts-based representation, self-organization, 
unsupervised feature extraction.  

I. INTRODUCTION 
URING the daily process of design development, in the 
industrial area a huge amount of different geometries is 

compiled for solving a given technical problem. Usually, these 
designs are created by teams of engineers who store their 
proposals in large CAD data repositories. Because of the size 
of the database it is almost impossible for an individual 
engineer to get an entire overview on the database content just 
by scanning visually through it. Consequently, reliable 
computational methods for extracting a structured database 
overview and processing it automatically to a well-presented 
visualization of its content are highly required and helpful in 
many ways. First, the chances of multiple reinventions of 
similar designs are reduced. Second, a perfect approach 
defines a measure for similarity, hence, allowing a search 
algorithm to automatically scan for similar designs and 
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suggest them to the designer. Third, a new team member is 
capable of acquiring development steps of a design in history 
and is integrated faster into the team. 

Under the headline of content based 3D shape retrieval, 
classical methods and algorithms are summarized, targeting 
key issues such as e.g. shape representation, similarity 
measures, search efficiency [1] which overlap with related 
topics as shape analysis and shape decomposition [2]. Further 
details on existing methods and concepts are given in 
section II. In the present paper, a solution for the analysis and 
visualization of 3D shape data is suggested which relies on an 
unsupervised method for extracting features organized in a 
parts-based representation. The proposed approach is 
motivated from a biological point of view and refers to 
methods known from the field of object and pattern 
recognition in images. Technically, the application of the 
topographic non-negative matrix factorization (TNMF) [3], a 
variant of the standard NMF [4], is suggested to extract and 
organize local features in a parts-based representation in an 
unsupervised way. A fast application of the TNMF in the area 
of 3D design development is possible by taking advantage of 
the analogy of pixels in 2D images and voxels in the 3D 
world. 

With respect to pattern recognition in 2D images, the 
standard NMF is capable of decomposing the content of large 
image repositories into salient parts or features with a more 
local character. These parts or components, as it will be 
further referred to, are used as an efficient representation of 
the images and their presence helps to predict the content of a 
before unseen image. Mathematically, the NMF calculates the 
decomposition by minimizing the reconstruction error of the 
image database while iteratively adjusting two matrices. The 
first one contains the basis vectors which are finally 
interpretable as the components. The second one contains the 
coefficients which reflect the contribution of each basis vector 
to reconstruct one of the images in the database.  

In a previous work, the applicability and high quality of the 
sparse-orthogonal NMF has already been shown in the 
engineering field of 3D design development [2]. The method 
robustly generated local 3D design components of general 
relevance. Because of the non-negativity constraint of the 
matrices these components comprise a high degree of 
interpretability which is very important for 3D CAD designs 
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in real-world applications. So far, the algorithm suggested in 
[2] is able to extract salient design components but it drops 
their global topology context, i.e. the local neighbourhood 
between different parts is lost. Nevertheless, especially the 
topology contains valuable information on the arrangement 
and spatial distance of parts. Therefore, to integrate the local 
links between components the application of the TNMF is 
proposed which has been suggested by Hosoda et al. [3] for 
learning objects in the visual cortex. The TNMF extends the 
standard NMF by a matrix defining neighbourhood 
connections for local features. More details on the TNMF are 
given in section III.  

In the application field of 3D design development, it is 
intended to utilize the additional features of the TNMF, as 
they enable the simultaneous extraction and organization of 
design components. Based on the spatial distance measure it is 
possible to arrange the components on 2D design maps. These 
maps visualize on the one hand an interpretable 
decomposition of all designs contained in the design 
repository and on the other hand an overview on the spatial 
distribution of these components. Similar components are 
easily detected visually and engineers are able to locate 
possible further development directions or exclude unsuitable 
design developments based on their local neighbourhoods. 

 Because of the unsupervised character of the proposed 
framework, an additional advantage is the extraction of 
conceptual important components which may not be obviously 
visible to the engineers if scanning visually through holistic 
designs. E.g. if a number of designs contain always a part 
which is shaped in a similar way, the NMF is capable of 
extracting it as a single component with general character. 
Furthermore, since the framework as described in section IV 
relies on voxels, it is possible to perform the algorithm on 
different hierarchical scales depending on the chosen voxel 
size. Global maps contain more global components on a high 
level, and additional maps with a finer granularity, i.e. smaller 
voxel size, provide more detailed smaller components.  In the 
ideal case, an engineer could zoom in and out of the design 
maps, by adjusting the size of the underlying voxel 
representation. 

To illustrate the proposed framework, in section V the 
application to an engineering scenario based on 3D turbine-
like structures is presented. This scenario highlights the 
decomposition performance and illustrates how 2D design 
maps may look like. 

Section VI closes with concluding remarks.  

II. DATA STRUCTURING, SHAPE DECOMPOSITION  
AND SHAPE DESCRIPTORS 

In the area of 3D shape retrieval there exist three topics 
which are considered as particular important in the context of 
the framework presented in the present paper. This section 
points to these aspects, namely data structuring, shape 
decomposition and shape descriptors providing more 
explanatory details and related literature.  

From a more general point of view, methods for clustering 

and organizing data are of interest which are possible to be 
applied either on holistic designs or on design parts. These 
methods comprise state-of-the-art algorithms like e.g. the 
principle component analysis (PCA) [5], k-means clustering 
[6] or self-organizing maps (SOM) [7]. PCA is a well 
established and widely used statistical technique for 
discovering main features within data sets. Given a set of  
N-dimensional points the PCA aims to re-express the data by 
finding a linear transformation of the coordinate system which 
results in an optimal representation of the data set in 
eigenvectors. A given data set is then reproducible by using 
the calculated eigenvectors ranked by their corresponding 
eigenvalues. K-means clustering attempts to separate given 
data into k distinct clusters. A major drawback of the 
algorithm is the fact that the number of clusters must be 
known in advance, thus making it unsuitable for unsupervised 
problems. Furthermore, the result of the clustering algorithm 
strongly depends on the choice of the correct metric for 
calculating the similarity between the shapes. A self-
organizing map (SOM) is a very common method for 
organizing and visualizing data on 2D maps. The method is 
based on artificial neural networks which utilize 
neighbourhood functions for structuring the input data. 
Nevertheless, in contrast to the framework proposed in the 
present paper for extracting and organizing parts-based 
representations, SOMs focus on holistic data.   

With a closer focus on the application of 3D design data 
and their decomposition in salient parts, Bozakov et al. [2] 
and Bozakov [8] give a brief overview on relevant methods. 
The approaches of convex decomposition [9] and approximate 
convex decomposition schemes [10], [11] have been suggested 
to decompose designs into polygons. For the 2D case a 
number of algorithms for optimal solutions exist and concepts 
for the 3D case have been developed and implemented. 
Computational costs restrict these methods mostly to simple 
shapes. Geometrical skeletons have been suggested to 
represent geometries using a set of line segments. A graph-
based representation can then be extracted from the skeleton. 
On a large number of skeletons methods from graph theory 
are applicable to find matching sub-graphs, which represent 
individual components present in multiple geometries [12]. 
Fuzzy clustering for object segmentation and cuts to extract 
regions corresponding to features called patches is presented 
in [13]. Based on facet distance information, a probability is 
calculated that two facets belong to a certain patch. Since the 
method is computationally expensive, a decomposition of 
large models is accomplished by generating a simplified 
model on which the decomposition is performed and 
projecting the resulting patches onto the original model. 

A biologically motivated solution to generate a parts-based 
representation of components has been researched by Lee et 
al. [4]. They suggest the application of the non-negative 
matrix factorization (NMF) to extract salient parts in images. 
In Fig. 1, the result of the NMF on a data set of faces is 
depicted. The NMF decomposes the images given in a 
database into salient parts like e.g. noses, eyes, eyebrows etc. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1826

 

 

contained in the feature matrix. The factorization of feature 
and coefficient matrix allows the reconstruction of a face 
image which is contained in the original data set with minimal 
error. In the context of 3D design decomposition the NMF 
promises several appealing characteristics. The decomposition 
is calculated in an unsupervised manner, the resulting feature 
matrix contains only non-negative components allowing a 
high degree of interpretability and the coefficient matrix 
allows an analysis of the occurrence and distribution of the 
extracted features in the database. 

 

 
Fig. 1 NMF applied to face image data, taken from [4] 

 
In [8], Bozakov already evaluated the NMF and several 

variants on their applicability for 3D design decomposition. A 
sparse-orthogonal NMF framework has been released which 
offers the advantage of an automatic adaptation of the feature 
number to the given problem. Instead of defining the number 
of components in advance which may lead to inappropriate 
3D decompositions, the sparse-orthogonal NMF adjusts the 
feature number during runtime. Additionally, the algorithm 
contains the possibility to deal with thin design parts by 
iterative dilation steps on the voxel representation. The good 
performance of the framework has been illustrated on a design 
database containing 3D turbine-like shapes. The sparse-
orthogonal NMF was capable to decompose a given set of 
turbines into an optimal set of interpretable components which 
likewise reconstruct the database with minimal error [2]. The 
result of the sparse-orthogonal NMF on 3D turbine-like 
shaped geometries is depicted in Fig. 2. Fig. 2(a) illustrates a 
horizontal cross-section through the 3D turbine, Fig. 2(b) and 
(c) depict two extracted components allowing a reconstruction 
of turbines similar to the type shown in Fig. 2(a). 

 

     
Fig. 2 Sparse-orthogonal NMF applied on 3D turbine-like structures, 

taken from [2] 
 
So far, more general methods for clustering data and 

algorithms for decomposing geometries into salient parts have 
been summarized. From the point of view of handling 3D 
designs in technical applications, important aspects for 

organizing geometries and searching for similar designs are 
shape descriptors and similarity measures. These issues are 
reflected by methods developed for automatic shape retrieval. 
Motivated by the high increase of available 3D models in 
different domain databases, adequate methods for searching 
similar designs are of high interest and constantly researched. 
Tangelder et al. [1] and Funkhouser et al. [14] present well-
prepared surveys on the most important issues for shape 
retrieval systems, such as shape representation, similarity 
measures, efficiency, discrimination abilities, ability to 
perform partial matching, robustness and normalization. One 
main criterion is the way of representing the descriptors 
characterizing the design as they significantly influence the 
search process. Three main methods, namely feature based 
methods, graph based methods and geometry based methods 
are broadly categorized [1].  

Feature based methods make use of global features, global 
feature distributions, spatial maps or local features to generate 
a vector of constant dimension for all designs. Hence, the 
vector content is dependent on the kind of chosen features 
comprising e.g. statistical values, ratios or histograms. The 
similarity is calculated based on these vectors. Graph based 
methods rely on graph structured descriptions of the design 
containing the geometric linkage, e.g. for shapes in CAD 
systems. The similarity is computed by a comparison of these 
graphs. Geometry based methods are e.g. based on the idea 
that two 3D models are similar if they look similar from all 
viewing angles. Practically, the 3D object is mapped to a 
number of 2D views rotating around the center of the object. 
For each of the different 2D views descriptors are calculated 
which are the basis for measuring the similarity [1].  

In summary, guided by the objective of extracting 
meaningful 3D design components from complex objects, a 
large overlap to the field of NMF algorithms for object 
recognition is noticeable. It is argued that especially the parts-
based approach and the possibilities of an unsupervised 
application are very promising. As an alternative to the shape 
descriptors mentioned above, the framework proposed in the 
present paper favors to map the design to voxel space as 
suggested in [2]. Therefore, each design is embedded in a 3D 
voxel cube and the resolution is defined by the number of 
voxels. As an advantage, the specification of the voxel 
number is adjustable to the requested size of the components 
allowing a perfect scaling of the NMF. Recently, the 
topographic NMF (TNMF) has been proposed in [3] realizing 
the integration of neighbourhood connections for data 
structuring in the NMF. Utilizing the TNMF, a unified 
framework is sketched for an unsupervised extraction and 
organization of components from 3D designs. To introduce 
the idea of the TNMF, the following section presents more 
details on the algorithm in the field of object recognition. 

III. TOPOGRAPHIC NON-NEGATIVE MATRIX FACTORIZATION 
FOR LEARNING OBJECTS IN THE VISUAL CORTEX 

The topographic NMF (TNMF) has been introduced by 
Hosoda et al. [3] in the field of object recognition. They build 

(a) (b) (c) 
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an object representation in the inferior temporal cortex (IT) 
which relies on activated columnar clusters of neurons with 
two characteristics. First, objects are represented by salient 
features or parts of objects and second, closely related features 
are represented continuously along the tangential direction of 
individual columnar clusters. They utilize the NMF extended 
by a matrix defining neighbourhood connections between the 
NMF basis functions. As a result, the authors achieve 
topographic maps containing the basis functions while 
keeping the parts-based property of the NMF. Besides 
presenting the mathematical formulation, Hosoda et al. apply 
the TNMF successfully to a hierarchical model of neural 
computation by the ventral pathway.  

Analogous to the framework presented in section IV, the 
objective of the TNMF is the following: For N samples of a 
data set X є ℝN×I, where each data point is given by I voxels in 
voxel space, the non-negative matrices W є ℝN×F and H є ℝF×I 
have to be found in such a way that the product of W, M and 
H reconstructs the original data set with minimal square 
Euclidean distance. M є ℝF×F is a constant non-negative 
matrix containing the neighbourhood connections, W denotes 
the feature matrix and H the coefficient matrix. F is the 
number of requested components. 

Mathematically, this is expressed by 
 

min     , 2

2
→−≈ WMHXWMHX                         (1) 

 
M is a constant non-negative FxF matrix and each element 

Mab is given by 
 

)2/exp(- 22 σbaab ppM −=              (2) 

 
The vectors pa and pb denote the position of the features on 

the map. The Gaussian radius σ is a user-defined parameter 
which has to be specified to the problem at hand accordingly.  

 

 
Fig. 3 A diagram of the TNMF, taken from [3] 

 
To apply the TNMF, at first the number of features F, the 

topographic map and the Gaussian radius σ have to be 
defined. Based on the chosen topographic map, e.g. a square-
lattice grid, the distances between the different position 
vectors are calculated and inserted into the matrix M 

according to (2). Fig. 3 illustrates the TNMF schematically. 
The basis functions are indicated by W, the neighbourhood 
functions by M, the vector h contains the coefficients and v 
indicates one data sample. The shading represents the 
magnitudes of input and coefficient entries. 

To illustrate the capability of the TNMF, Hosoda et al. [3] 
learned a parts-based representation of different objects. In 
Fig. 4 the most relevant result with respect to the application 
presented in this paper is depicted.    

 

 
Fig. 4 Object representation calculated by the TNMF, taken from [3] 

 
A data set of 250 grey-level photographs has been 

presented to the algorithm for training and the activations on 
the 2D square-lattice map for five images are marked by dots 
of different grey shadings. As it is visible, the left image 
containing the first cup view generates clustered activations in 
the neurons which are continuously shifting when the object 
view is rotated, as indicated by the arrows. Each peak 
corresponds to an activated part or component.  

With respect to the desired functionality in the area of 3D 
design decomposition the images show clearly two 
worthwhile characteristics. First, parts are present which have 
to be activated simultaneously to reconstruct a given object 
view, and second, the well-structured spatial distribution of 
components is visualized on 2D maps. Components which are 
close in the original image data set are also spatially close on 
the 2D map. Because of these two characteristics the TNMF is 
very appealing for the area of 3D design decomposition and 
component organization and a unified framework is proposed 
in section IV in more detail. 

IV. A UNIFIED FRAMEWORK FOR THE EXTRACTION AND 
ORGANIZATION OF DESIGN COMPONENTS FROM 3D MODELS 
In this section, the transfer of the TNMF from the field of 

object recognition to the area of 3D design development is 
described in more detail. The unified framework to generate a 
parts-based representation and a well-structured visualization 
of the extracted design components on 2D maps is outlined. 

The framework falls into several steps based on two 
assumptions. First, the 3D design data is stored in a database 
in a triangulated format, e.g. STL or VRML. Second, all 
geometries are located in the same coordinate space at the 
same position to avoid costly computations for repositioning 
the designs. For real-world environments both assumptions 
hold true, since first, almost any kind of CAD format is 

(a) (b) 
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exportable to triangulated mesh formats and second, 
geometries which are used by teams for design development 
are usually located at the same offset position in 3D space to 
allow reusability. 

The principal concept of the proposed framework bears 
high similarities to the one which is described in [2]. The 
major difference consists in the interpretation of the third 
matrix which is additionally introduced in the standard NMF 
algorithm. In [2], this matrix has been defined as a constant 
smoothing matrix S which is used to impose sparseness in W 
and H. As an advantage, the feature number adapts during the 
learning phase to an optimal number and does not need to be 
defined beforehand correctly. To prepare the algorithm for the 
topographic NMF, the smoothing matrix S is replaced by 
matrix M which contains the neighbourhood connections on a 
2D grid. Since M is also a constant matrix, the resulting 
update steps for the NMF algorithm are the same as presented 
in [2] and the framework is directly transferable. 

In a preprocessing step, the given 3D physical bodies are 
mapped from a triangulated mesh format to the voxel 
representation. Therefore, all designs are embedded in a 
virtual 3D cube with a predefined number of voxels. For each 
voxel it is calculated if or if not the voxel is crossed by the 
geometry. Each 2D slice of voxels represents a horizontal 
cross-section through the geometry. To generate the analogy 
to pixel-based images, all slices are merged into one single 2D 
image as depicted in Fig. 5.   
 

       
              ° ° ° 

 
Fig. 5 Transformation of 3D designs into voxel space 

 
The result is one single image per geometry where the black 

and white colors of each pixel indicate the possible existence 
of the object in the corresponding voxel. To speed up the 
computation time of the NMF, for each pixel position the 
activation in all images is compared. If a pixel is activated 
(white) or not-activated (black) in all images it is neglected to 
reduce the input vector dimension. The reduced image vectors 
containing the remaining pixel activations are afterwards row-
wise added to the data matrix X. 

As stated above, the sparse-orthogonal NMF presented in 

[2] and the TNMF differ in the interpretation of the matrix S 
but not in the mathematical solution since both matrices are 
constant. Hence, to calculate the matrix factorization, matrix S 
is replaced by M according to (1). A detailed derivation of the 
update rules for the sparse-orthogonal NMF is presented in 
[2]. To reflect the changes for the TNMF, the iterative update 
rules for H and W are modified by replacing S with M. 

As a consequence, the feature matrix W and the coefficient 
matrix H are finally calculated by 
  

ij
TT

ij
T

ijij MXHWW
MXH
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))((
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←                (3) 

 
and 
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T
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←                 (4) 

 
Before executing the TNMF it is necessary to instantiate the 

matrix M containing the neighbourhood connections. As 
stated in section III the features will be finally organized on a 
2D map where each location of a feature is defined by one of 
the F position vectors. The topographic map can be generated 
arbitrarily but with respect to the illustrative example of 
section V a 5x5 square-lattice grid for 25 components is 
chosen. Fig. 6 depicts the distribution of the features. For a 
Gaussian radius of 0.8 the matrix entry M1,10 is exemplarily 
calculated. The image depicted in Fig. 8(b) illustrates the 
matrix containing map topology and neighbourhood 
connections graphically. 

  
Fig. 6 The 5x5 matrix M based on the location of the 25 features 
 
Based on the matrices X and M the TNMF is executed. The 

detailed process for calculating W and H is described in 
Algorithm 1. Algorithm 1 is similar to the one proposed in [2]. 
While the iterative updates for W and H are the same, both 
algorithms differ in the initialization as well as in the outer 
loop which is responsible for the dilation of the designs. In the 
experiments described in section V in detail, the feature and 
coefficient matrix are initialized with random values. 
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Additionally, the dilation step is skipped because the design 
database chosen for the experiments presented in section V 
does not focus on detecting similarities for geometries with 
small variations but on conceptionally different designs. 
Hence, the TNMF algorithm for decomposing 3D designs is 
as follows. The symbol ⊙ denotes element-wise 
multiplication; the symbol ⊘ denotes element-wise division.   

 
Algorithm 1: TNMF for 3D Design Decomposition. 

 nz  ← 1 × 10-20 
 load image-set X 

initialize feature matrix W with random values 
initialize coefficient matrix H with random values 
initialize matrix M according to p and σ 
repeat 

Ws  ← (WM)T 

H   ← H ⊙ (WsX) ⊘ (( T
ssWW )H + nz) 

Hs  ← HTM 
W  ← W ⊙ ((XHs) ⊘ (W(WT(XHs)) + nz))0.5 

L2  ← (I ⊙ (WTW))0.5 

H   ← L2 H 
W  ← 1

2
−WL  

until convergence 
 

 
By executing Algorithm 1, matrix W containing the F 

extracted components and matrix H containing the N 
coefficients are calculated. The product of W, M and H 
reconstructs the given data set X with minimal error. In the 
final step, the components stored in W are arranged on the 
square-lattice grid. According to their position in the feature 
matrix, the parts are inserted into the 2D map. For the 
illustrative scenario described in section V, 25 feature vectors, 
i.e. 25 salient parts, are calculated by Algorithm 1 and 
arranged on the 2D map depicted in Fig. 6. The following 
section provides more detail on the setup and the performance 
of the proposed method on a data set of 3D turbine-like 
geometries. 

V. DECOMPOSITION OF 3D TURBINE-LIKE GEOMETRIES AND  
VISUALIZATION OF EXTRACTED PARTS ON 2D MAPS 

To evaluate the applicability of the framework proposed in 
section IV, the capability of the TNMF to extract a parts-
based representation and organize the components on 2D 
design maps is studied. At first, an adequate design database 
has been generated which contains 20 turbine-like structures. 
Each design consists of a central cylinder and 2 adjacent 
vertical blades. There exist 20 possible positions for a blade, 
i.e. the blade positions differ by 18° as shown in Fig. 7(a).  

The initial design starts at an angle of 0°. Each follow-up 
design is a by 18° rotated version of the former one, thus the 
first blade of the current design is at the position of the second 
blade of the previous design. Three exemplary consecutive 
designs are depicted in Fig. 7(b)-(d). By the rotation and blade 

overlaps the topographic neighbourhood of the designs is 
defined which has to be visible on the 2D map. Adjacent 
blades should finally organize spatially close on the design 
map. 

As described in section IV, in the next step each turbine is 
transferred into voxel space and the cross-sections are merged 
into one image. Activated pixels are white-colored, not-
activated ones are black-colored. To speed up the algorithm 
the data size is drastically reduced by removing all pixels 
which are either activated in all images or not-activated in all 
images. Hence, e.g. the cylinder which is existent in all 
geometries and images is neglected for the TNMF algorithm. 
All remaining pixels of one image are added to a vector and 
all vectors are row-wise added to the matrix X containing the 
input data set.  

 

   

   
Fig. 7. (a) Turbine prototype showing all possible blade positions;  

(b)-(d) Consecutive turbine designs, each rotated by +18° 
 
To illustrate the content of X the pixel representation is 

transferred to a symbolic representation. Analyzing the 
remaining activated and not-activated pixels for one design, it 
becomes obvious that there exist 20 different pixel clusters 
which may be activated or not-activated according to the 20 
possible blade positions. Therefore, the activated pixel 
clusters can be symbolized by a single activated pixel in a 
20x20 image. The result is illustrated in Fig. 8(a). Each of the 
20 rows of the image depicts one design and each of the 20 
columns one possible blade position. Hence, each row 
contains two white adjacent pixels representing the activated 
pixel clusters of two blades. Since the follow-up design is 
rotated by 18°, the two activated pixels move one position to 
the right generating the stair-like character of the image.     

Before executing Algorithm 1, the matrix M defining the 
neighbourhood connections has to be calculated. For the 
present scenario 25 features are chosen which are organized 
on a 5x5 square-lattice grid as shown in Fig. 6. The Gaussian 
radius σ is defined by 0.8. Based on these assumptions the 
matrix M is computed and visualized in Fig. 8(b). The white 
diagonal matrix elements are 1. The brighter a pixel, the closer 
is the distance of the position vectors on the map and vice 

(a) (b) 

(c) (d) 
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versa. This explains why pixel 6 in row 1 has a brighter color 
than pixel 5 because position vector 6 is spatially closer to 
position vector 1 then position vector 5. 

 

      
Fig. 8. (a) Symbolic visualization of the turbine data set  

(b) Matrix M containing neighbourhood connections  
for 25 features organized on a 5x5 grid 

 
Based on the given data X and matrix M, 25 features are 

calculated using Algorithm 1. Finally, the extracted parts are 
stored in matrix W. According to the position vectors p, each 
component is added to the 2D map. The sequence is visible in 
Fig. 6, thus the parts are organized on a 5x5 square grid 
starting with feature 1 in the upper left tile and finishing with 
feature 25 in the lower right tile. A symbolic visualization is 
depicted in Fig. 9. 
 

 
Fig. 9. Symbolic components of the turbine data set extracted by the 
TNMF. The representation is parts-based and neighbourhood clusters 

are perfectly visible 
 
Fig. 9 illustrates two important characteristics of the 

proposed method very well. First, the algorithm extracts 
exactly 20 components which are required to rebuild the 
database, so each possible blade position is detected. Overall, 
20 features are activated where each one contains exactly one 
vertical blade. 5 features are not used. Second, the 
neighbourhood relations between the features are clearly 
visible. Adjacent components are organized with very small 
spatial distances on the map, i.e. adjacent single blades are 
spatially very close on the map.  

For the final visualization of the design parts, the symbolic 
representation is replaced by the geometry components. Since 
the cylinder has been present at the same position in all 
designs, it is added to all components for reasons of a better 
visualization. Hence, e.g. based on the components given by 
feature 20 and 25 as numbered in Fig. 6, it is possible to 
reconstruct the turbine types depicted in Fig. 7(b). The two 
blades are decomposed into two single parts and organized 
spatially with a very close distance on the map. 

    

      

      

      

      

      
Fig. 10.  Extracted 3D components from design database  

organized on a 2D design map 
 
To analyze statistically the occurrence and spatial 

distribution of the features on the design map, a second 
scenario has been performed using 100 experiments based on 
the given database with different random numbers for 
initializing the feature and coefficient matrix. For all 
experiments the coefficient and feature matrix is calculated, 
matrix M is kept constant. To analyze and visualize the 
neighbourhood connections of one specific feature, this 
feature is chosen and placed at the center of the map as 
reference component. Next, all 100 resulting design maps are 
scanned for the chosen reference feature and rearranged in 
such a way that the reference feature is centered. Finally, the 
sum over all rearranged maps is calculated and visualized on a 
5x5 map. As a consequence, each of the 25 tiles reflects the 
number of occurrences of specific features at a specific spatial 
position on the design map. An exemplary symbolic 
visualization for feature 16 as reference which corresponds 
geometrically to blade position 10 is depicted in Fig. 11. The 
brighter the color the more occurrences of a feature are 
counted at the corresponding spatial position on the map. 
Consequentially, the activation of feature 16 is 1 for the center 
tile. It can be seen that in the adjacent north, east, south and 
west tiles of the center tile the activations for feature 11 and 
21 which correspond to blade positions 9 and 11 are 

(a) (b)
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significantly high, illustrated as grey bars. If one would add 
these four tiles the activation of each of the features is very 
close to 1. The result points to a good robustness of the 
proposed framework because in each of the 100 maps adjacent 
blades are arranged typically also spatially close on the design 
maps.  

 

 
Fig. 11 Spatial distribution of parts with feature 16 as reference 

VI. CONCLUSION 
In the present paper, a unified framework is proposed for an 

unsupervised extraction of components from a data set of 3D 
designs which simultaneously allows an arrangement of the 
components on 2D design maps. The visualization of the 
components bears the advantages of having a well-structured 
overview on the content of the database and at the same time 
providing a simple distance measure between design parts. In 
contrast to a self-organizing map, the presented framework 
focuses on the parts-based aspect of the TNMF as it is 
targeted to prepare a method which allows small local changes 
instead of holistic ones. Technically, the insertion of the 
matrix M into the standard NMF algorithm invokes the self-
organization process of the components in the feature matrix 
which finally allows the arrangement of the components on 
2D maps. 

  Based on the generated design maps the search for similar 
design parts to a given one is easily achievable allowing the 
designer to locate his current state in a design development 
process. Furthermore, computer driven algorithms like 
optimization methods can rely on these distant measures to 
automatically exchange parts if needed.  

As further extensions, from a practical perspective, the 
aspect of varying the voxel resolution is very appealing. It 
would be very attractive for an engineer to zoom smoothly 
through different scales of large geometries being able to have 
design decompositions on each scale available. If thinking of 
cars, decompositions on a top level would contain doors, 
wheels, engine etc. while on a low level single components of 
an engine, like valves or pistons would be visible. 

Additionally, an extension of the proposed framework to 
higher-dimensional maps is worth for further research since it 
would allow more possibilities to visualize the resulting 
components focusing on different design aspects. 
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