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Abstract—An optimal mean-square fusion formulas with scalar 

and matrix weights are presented. The relationship between them is 
established. The fusion formulas are compared on the continuous-time 
filtering problem. The basic differential equation for cross-covariance 
of the local errors being the key quantity for distributed fusion is 
derived. It is shown that the fusion filters are effective for multi-sensor 
systems containing different types of sensors. An example 
demonstrating the reasonable good accuracy of the proposed filters is 
given. 
 

Keywords—Kalman filtering, fusion formula, multi-sensor, 
mean-square error.  

I. INTRODUCTION 

N recent years, there has been growing interest to fuse 
multi-sensor data in order  to increase the accuracy of 

parameter estimates and system states. This interest is 
motivated by the availability of different types of sensors which 
use various characteristics of the optical, infrared, and 
electromagnetic spectra. In many situations, system states or 
targets are measured by multi-sensors. Many techniques for 
distributed estimation fusion are presented in [1]-[4] and 
references therein. The measurements used in the estimation 
process are assigned to a common target as a result of the 
association process. There is a problem of how to combine 
local estimates obtained from different types of sensors. 

Several distributed fusion architectures were discussed in 
[3], [4]. Some algorithms for distributed estimation fusion, 
which are for finding the “best” linear combination of the local 
estimates have been developed in [4], [6]-[8].  The Bar-Shalom 
and Campo fusion formula (FF) for two-sensors systems [5] 
has been generalized for an arbitrary number of sensors in 
[7]-[9].  The FF represents an optimal mean-square linear 
combination of the local estimates with the matrix weights 
satisfying  linear algebraic equations [7], [8]. The explicit and 
recursive formulas for the matrix weights have been derived in 
[9]. The FF with scalar weights has been presented in [10]-[12]. 

The main purpose of this paper is to establish relation 
between the FFs with matrix and scalar weights, and compare 
their accuracy on the filtering problems. 

This paper is organized as follows. In Section 2, we present 
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the FFs with matrix and scalar weights and demonstrate some 
interesting particular cases, including relationship with the 
Bar-Shalom and Campo formula. In Section 3, we theoretically 
establish the relation between the FFs. In Section 4, we apply 
the FFs to the filtering problem in multi-sensor continuous-time 
linear systems. The equation for local cross-covariance being 
the key for usage of the FFs is derived.  In Section 5, the fusion 
filters based on the FFs are verified and compared via 
simulations.  In Section 6, the conclusions are made.  

 

II. FUSION FORMULAS 
Suppose that we have N  local estimates of an unknown 

random vector nx ℜ∈ , 
 

 (N)(1) x̂,,x̂ …                                     (1) 
 
where nℜ  is an n-dimensional Euclidean space. The 
associated error cross-covariances are given, 
 

( ) N.,1,ji,,x̂-xe,e,ecovP (i)(j)(i)(ij) …===         (2) 
 

Let consider two linear combinations of the local estimates (1) 
with matrix and scalar weights. We have  
 

 ,IA,x̂Ax̂ n

N

1i

(i)
N

1i

(i)(i)FFM == ∑∑
==

 (3) 

 ,1a,x̂ax̂
N

1i

(i)
N

1i

(i)(i)FFS == ∑∑
==

                         (4) 

 
where nI  is an nn×  identity matrix, (N)(1) A,,A …   are nn×  
constant weight matrices, and (N)(1) a,,a …  are scalars. The 
matrices (i)A  and scalars (i)a   are determined from the 
mean-square criterions 
 

,minx̂xEJ,minx̂-xEJ
(i)(i) a

2FFSa

A

2FFMA →−=→=  (5) 

 
respectively. 

We call the formula (3) as the fusion formula with matrix 
weights  (FFM). And analogously the formula (4) is called the 
fusion formula with scalar weights (FFS). 

The following results completely define the FFM and FFS, 
and also the fusion error covariances, 
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( )( ) ,x̂-xe,eeEP FFMFFMTFFMFFMFFM ==                   (6) 

( )( ) .x̂-xe,eeEP FFSFFSTFFSFFSFFS ==                  (7) 
 
respectively. 
 
Theorem 1 [7]-[9]. Let  (N)(1) x̂,,x̂ …  be the local estimates 
(1) of an unknown vector x . Then the matrix weight matrices 

nn×ℜ∈(N)(1) A,,A … satisfy the following  linear algebraic 
equations: 
 

( ) n

N

1i

(i)
N

1i

(iN)(ij)(i) IA,1N,1,j,0P-PA =−== ∑∑
==

…  (8) 

 
and they can be explicitly written down as 
 

( ) ( ) .N1,...,i,PPA
1

N

1j,

1)(j
N

1k

1(ik)(i) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

=

−

=

− ∑∑
A

A              (9) 

 
Theorem 2 [10]-[12]. Let  (N)(1) x̂,,x̂ …  be the local 
estimates (1) of an unknown vector x . Then the scalar weights  

ℜ∈(N)(1) a,,a …  satisfy the following  linear algebraic equations: 
 

( )
1N1,...,j

,1a,0P-P-PPtra
N

1i

(i)
N

1i

(Ni)(iN)(ji)(ij)(i)

−=

==+ ∑∑
==

        (10) 

 
and they can be explicitly written down as 
 

[ ] [ ]

( )[ ] .ea,,PtrC

,111e,aaa,
eCe

eCa

NNN
N1,...,ji,

(ij)

TT(N)(1)
1T

1

ℜ∈ℜ∈=

===

×
=

−

−

……       (11) 

 
In (10), (11) ( )Xtr  is the trace of matrix X. 
 
Corollary 1. If the local estimates (N)(1) x̂,,x̂ …  are unbiased 
then the fusion estimates FFMx̂  and FFSx̂  are also unbiased.   
 
Corollary 2. The fusion error covariances FFMP and FFSP  are 
given by 
 

∑∑
==

==
N

1ji,

(ij)(j)(i)FFS
N

1ji,

T(j)(ij)(i)FFM PaaP,APAP .           (12) 

 
 

Example 1: Fusion of Two Vector Estimates 
In the particular case with 2N = , the FFM (3), (8) is reduced 

to the Bar-Shalom and Campo formula [5]: 
 

( )( )
( )( ) .PPPPPPA

,PPPPPPA

,x,x,x̂Ax̂Ax̂

1
(21)

(12)(22)(11)(12)(11)(2)

1(21)(12)(22)(11)(21)(22)(1)

(2)(1)(2)(2)(1)(1)FFM

−

−

−−+−=

−−+−=

ℜ∈+= n

            (13) 

and the FFS  (4), (10) takes the form 
 

( )
( )

( )
( ).

PPPP2tr
PP2Ptra

,
PPPP2tr

PP2Ptra

,x,x,x̂ax̂ax̂

(21)(12)(22)(11)

(21)(12)(11)
(2)

(21)(12)(22)(11)

(21)(12)(22)
(1)

(2)(1)(2)(2)(1)(1)FFS

−−+
−−

=

−−+
−−

=

ℜ∈+= n

                (14) 

 
 

Example 2: Fusion of the Uncorrelated Vector N-estimates 
Suppose that the local vector estimates nℜ∈(N)(1) x̂,,x̂ …  are 

uncorrelated, i.e., ji,0P(ij) ≠= . Then the linear systems (8) 
and (10) have the following explicit solutions: 

 

( ) ( ) ( ) N.1,...,i,
Ptr
1Ptra,PPA

1
N

1\j
(jj)

(ii)(i)

1
N

1j

1(jj)(ii)(i) =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

−−

=

− ∑∑
  

 (15) 

  
 For the scalar uncorrelated estimates ℜ∈(N)(1) x̂,,x̂ …  the 
formulas  (15) coincide, i.e.,  

( ) .N1,...,i,x̂-xEP,
P

1
P

1
P
1aA 2(i)(ii)

1

(NN)(11)(ii)
(i)(i) ==⎟

⎠
⎞

⎜
⎝
⎛ ++==

−

"    (16) 

 

III. RELATIONSHIP BETWEEN FFM AND FFS 
Here we establish relationship between the mean-square 

errors (MSEs) ( )FFMA PtrJ =  and  ( )FFSa PtrJ = .  
Let the matrix weights (i)A  have the diagonal form with 

identical elements (i)a , i.e., [ ] .N1,...,i,a,,adiagA (i)(i)(i) == …  
Then it is evident that  the FFM coincides with FFS and  
 

 .JJ aA =  (17) 
 
 Further, let consider one example in which  .JJ aA <   
  

Example 3: Fusion Least Square Estimation of a Constant 
Vector Unknown 

If 2x ℜ∈  is a constant vector measured in additive white 
noise by using two independent sensors then the measurement 
model is 
 

( ) ( ) ( )
[ ] [ ].σσdiagQ,σσdiagQ

,0vvE,Q0,N~v,Q0,N~v

,y,yx,,vxy,vxy

2
4

2
32

2
2

2
11

T
212211

2
212211

==

=

ℜ∈+=+=
            (18) 

 
 Then the local least square estimates (1)x̂  and  (2)x̂  based on 
the single measurements 1y  and 2y , respectively, take the 
following form: 1

(1) yx̂ =  and .yx̂ 2
(2) =  With the assumption 

that 
1v  and 

2v  are uncorrelated, the local cross-covariances 
( )( )[ ] 1,2i,x̂xx̂xEP (j)(i)(ij) =−−=  are 

 
( ) ( )
( ) .0PP0,vvEP

,QvvEP,QvvEP
T(12))21(T

21
(12)

2
T
22

(22)
1

T
11

(11)

====

====                    (19) 
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Substituting (19) into (12)-(14), we obtain precise formulas 
for the FFM’s and FFS’s weights, and the corresponding fusion 
MSEs: 
 

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

[ ] [ ]

[ ] ( ) ( ) ( )( ).
σσσσ
σσσσPtraPtraPtrJ

,
σσ
σσ

σσ
σσPAPAtrPtrJ

,σσσσ/σσPP/trPtra

,σσσσ/σσPP/trPtra

,
σσ/σ0

0σσ/σ
PPPA

,
σσ/σ0

0σσ/σ
PPPA

2
4

2
3

2
2

2
1

2
4

2
3

2
2

2
1(22)(2)(11)(1)FFSa

2
4

2
2

2
4

2
2

2
3

2
1

2
3

2
1(22)(2)(11)(1)FFMA

2
4

2
3

2
2

2
1

2
2

2
1

(22)(11)(11)(2)

2
4

2
3

2
2

2
1

2
4

2
3

(22)(11)(22)(1)

2
4

2
2

2
2

2
3

2
1

2
11(22)(11)(11)(2)

2
4

2
2

2
4

2
3

2
1

2
31(22)(11)(22)(1)

22

22

+++
++

=+==

+
+

+
=+==

++++=+=

++++=+=

⎥
⎦

⎤
⎢
⎣

⎡

+
+

=+=

⎥
⎦

⎤
⎢
⎣

⎡

+
+

=+=

−

−

 (20) 

 
 In general, comparing AJ  and aJ , we obtain  
 

 .JJ aA <  (21) 
 

Note that the precise equality aA JJ =   is achieved in the case 
that  .σσσσ 2

4
2
1

2
3

2
2 =  

Thus the results (17) and (21) yield the following: 
 
Theorem 3. Let FFM and FFS be fusion formulas 
determined by (8), (9) and (10), (11), respectively. Then 
 
  .JJ aA ≤  (22) 
 

IV. FUSION OF LOCAL KALMAN ESTIMATES 
Consider a continuous-time linear dynamic system with 

additive white Gaussian noise 
 

 ,0t,vGxFx ttttt ≥+=�                      (23) 

 
where n

tx ℜ∈  is a state vector, and  r
tv ℜ∈   is a zero-mean 

white Gaussian noise with intensity ,Q t  ( ) ( ).stδQvvE t
T
st −=  

Suppose that the measurement system involves Nsensors 
 

 

,y,wxHy

,y,wxHy

)N(
t

(N)
tt

(N)
t

(N)
t

(1)
t

(1)
tt

(1)
t

(1)
t

N

1

m

m

R

R

∈+=

∈+=
""  (24) 

 
where (i)

tw  are a zero mean white Gaussian noises with 
intensities N.1,...,i,R (i)

t =  We assume that the initial state 

( )000 P,xN~x  and the white noises (N)
t

(1)
tt w,...,w,v  are 

mutually uncorrelated. 
Then the Kalman filter (KF) can be used to produce the 

optimal mean square state estimate based on the overall sensor 

measurements { }(N)
t

(1)
tt y,,yY …= , 

 
 ,wxHY tttt +=                               (25) 

where 

[ ] [ ]
[ ] .w,...,ww

,H,...,HH,y,,yY
T(N)

t
(1)
tt

T(N)
t

(1)
tt

T(N)
t

(1)
tt

TT

TTTT

=

== …          (26) 

 
The KF is the centralized filter, where all measured sensor 

data are communicated to the central site for processing. The 
advantage of this filter is that there is a minimal information 
loss. However, the centralized filter may be unreliable or suffer 
from poor accuracy and stability when there is severe data fault. 
The second method is the decentralized, where information 
from local filters can yield the optimal or suboptimal fusion 
filter according to some information fusion criterion. The 
advantages of this method are that the requirement of memory 
space to the fusion center is broadened, and the parallel 
structures can increase the input data rates. However, the 
precision of the decentralized filter is generally lower than that 
of the centralized filter when there is not data fault. Recently, 
various decentralized and parallel versions of the KF have been 
reported [3],[4], [7]-[12]. 

However, the purpose of the paper to compare the accuracy 
of two decentralized KFs based on the FFM and FFS. 
According to (23) and (24), we have N  dynamic subsystems 
( N,1,i …= ) with the common state tx  and individual  (local) 
sensor (i)

ty : 
 

( )
( ),R0,N~w,wxHy

,Q0,~v,vGxFx
(i)
t

(i)
t

(i)
tt

(i)
t

(i)
t

ttttttt

+=

+=�

                
 (27) 

 
where the number  i  of  the subsystem is fixed. 

Further, denote a local estimate of the state tx  based on the 
local sensor measurement (i)

ty  by tx̂ . To find tx̂ , we apply the 
KF to the subsystem (27) and obtain 

 
( )

( ) .x̂xx~,x~x~EP

,PP,xx̂,GQGQ~
,Q~PRHPFPPFP

,x̂HyRHPx̂Fx̂

(i)
ttt

(i)
t

(i)
t

(ii)
t

0
(ii)
00

(i)
0

T
tttt

t
(ii)
t

(i)
t

(i)
t

(ii)
t

T
t

(ii)
t

(ii)
tt

(ii)
t

(i)
t

(i)
t

(i)
t

(i)
t

(i)
t

(ii)
t

(i)
tt

(i)
t

T

1T

1T

−==

===

+−+=

−+=
−

−

�

�

     

 (28) 

Thus we have N  local Kalman estimates and corresponding 
error covariances. 

 
 .P,x̂,,P,x̂ (NN)

t
(N)
t

(11)
t

(1)
t …      (29) 

To express the final fusion estimate of the state on terms of 
the local Kalman estimates (N)

t
(1)
t x̂,...,x̂ , we use the FFM and 

FFS. From (3) and (4) we have 
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 .x̂ax̂,x̂Ax̂
N

1i

(i)
t

(i)
t

FFS
t

N

1i

(i)
t

(i)
t

FFM
t ∑∑

==

==                  (30) 

 
The linear equations (8) and (10) for the unknown weights 
(i)A  and (i)a  are given by 
 

( )

( )
.1N,1,j

,1a,0PPPPtra

,IA,0P-PA

N

1i

(i)
t

N

1i

(Ni)
t

(iN)
t

(ji)
t

(ij)
t

(i)
t

n

N

1i

(i)
t

N

1i

(iN)
t

(ij)
t

(i)
t

−=

==−−+

==

∑∑

∑∑

==

==

…

        (31) 

 
Note that (31) depend on the local error covariances 

N1,...,i,P (ii)
t =  determined by the Riccati equations (28), and 

the cross-covariances ( ) j.i,x~x~EP
T(j)

t
(i)
t

(ij)
t ≠=  Knowledge of 

the cross-covariance is needed for distributed fusion. It is a key 
quantity for the linear fusion estimation. The cross-covariance  

(ij)
tP  satisfies the following differential equation: 
 

[ ] [ ]
.jiN,1,...,ji,,PP,RHPK

,Q~HKFPPHKFP

0
(ij)
0

(i)
t

(i)
t

(ii)
t

(i)
t

t
T(j)

t
(j)
tt

(ij)
t

(ij)
t

(i)
t

(i)
tt

(ij)
t

1T

≠===

+−+−=
−

�
 (32) 

 
The derivation of (32) is given in Appendix. 
 
Thus, the local estimates and covariances ( )(ii)

t
(i)
t P,x̂ , the 

local cross-covariances ji,P (ij)
t ≠ , and the equations for 

weights  (31) completely establish the fusion estimates (30). 
 
Remark 1. The local Kalman estiamtes (28) are separated for 

different sensors, i.e., each estimate (i)
tx̂  is found independently 

of other estimates. Therefore, they can be evaluated in parallel. 
 
Remark 2. The fusion estimates FFM

tx̂  and FFS
tx̂  can be 

corrected if one of the parallel local estimate (i)
tx̂  diverges. In 

this case, the corresponding weight (i)
tA  (or (i)

ta ) tends to zero, 
thereby indicating that the diverging estimate (i)

tx̂   is discarded 
in the weighting sum (30). 

 
Remark 3. All local error covariances (ij)

tP , and the weights 
(i)
tA , (i)

ta   can be pre-computed, since they do not depend on 
the current measurements, but only on the noise statistics, and 
the system matrices, which are the part of system model (23), 
(24). Thus, once the measurement schedule has been settled, 
the real-time implementation of the fusion filters requires only 
the computation of the local Kalman estimates  (N)

t
(1)
t x̂,...,x̂  and 

the final fusion estimates FFM
tx̂  or  FFS

tx̂ . 
 

V. EXAMPLE: A PIPELINE 
Consider an industrial complex including two factories 

which need water for production. In order to supply required 
water for the factories, a special structure of pipelines should be 
used, because there are situations when one of the factories 
needs more water than another (see Fig. 1). 

 

 
Fig. 1 Structure of pipelines 

 
For supply water control, we need know the amount of water 

in each pipeline at any time instant. Assuming that the function 
of the water flow is like that xwater=e-at, then the system model 
for 

t1,x  and 
t2,x  can be following 

 

,0t,
v
v

x
x

β0
0α

x
x

x
t2,

t1,

t2,

t1,

t2,

t1,
t ≥⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
=
�
�

�          (33) 

 
where we have added zero-mean white Gaussian noise 

[ ]T
t2,t1,t vvv =  to compensate system uncertainties, 

( ) ( ) [ ],qqdiagQ,stδQvvE 21tt
T
st =−=  0βα, >  are known 

constants, ( )000 P,xN~x . 
The amount of water in each pipeline is observable through 

the measurements. According to Fig. 1 we have 
 

 
,wxxy

,wxxy
(2)
tt2,t1,

(2)
t

(1)
tt2,t1,

(1)
t

+−=

++=                               (34) 

where [ ]Tt2,t1,t www =  is zero-mean white Gaussian noise 

with intensity [ ]21t rrdiagR = . 
The two fusion filters (FFM and FFS) for the system model 

(33), (34) are considered and compared with the optimal KF. 
To study the behavior of the KF, FFM and FFS error 
covariances, set 

[ ] [ ]
.3r,2r,2.0q,3.0q

,7.07.0diagP,415x,7.0β,1.0α

2121

0
T

0

====
====  

The point of interest is the MSEs of the state components 
t1,x  

and 
t2,x , 
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( )( )[ ]

( )( )[ ]

( )( )[ ] .
PP
PP

x̂xx̂xEP

,
PP
PP

x̂xx̂xEP

,
PP
PP

x̂-xx̂-xEP

FFS
t22,

FFS
t21,

FFS
t12,

FFS
t11,TFFS

tt
FFS
tt

FFS
t

FFM
t22,

FFM
t21,

FFM
t12,

FFM
t11,TFFM

tt
FFM
tt

FFM
t

KF
t22,

KF
t21,

KF
t12,

KF
t11,TKF

tt
KF
tt

KF
t

⎥
⎦

⎤
⎢
⎣

⎡
=−−=

⎥
⎦

⎤
⎢
⎣

⎡
=−−=

⎥
⎦

⎤
⎢
⎣

⎡
==

 

 
 

 
Fig. 2 Comparison of  MSEs for 

t1,x  

 
These quantities are shown in Figs. 2 and 3. From these Figs. 

it follows that the differences between the optimal MSEs 
( )KF

k22,
KF

k11, P,P  and the fusion MSEs ( )FFM
k22,

FFM
k11, P,P  and ( )FFS

k22,
FFS

k11, P,P  
are not negligible both for the first amount 

t1,x  and for the 

second one 
t2,x .  

As the relationship between FFM and FFS has been already 
discussed theoretically in chapter 3, we can see that the fusion 
MSEs follow the relationship of the result (22). 

 
.FFS

t
FFM

t PP ≤                                (35) 
 
Besides, we can also observe that the fusion filter with 

matrix weights yields a good estimate accuracy as compared to 
the optimal Kalman filter, while the fusion filter with scalar 
weights produces a poor estimate accuracy relatively 

 

 
Fig. 3 Comparison of  MSEs for 

t2,x  

VI. CONCLUSION 
In this paper we compare two fusion formulas with matrix 

and scalar weights. The rigorous relationship between their 
mean square errors is established (Theorem 3).  

Two suboptimal fusion filters for continuous-time linear 
systems with multi-sensor environment are proposed. The key 
differential equation for the local cross-covariance which 
influence on the accuracy of distributed fusion is derived  (Eq. 
(32)).  

However it is not sufficient to show the only theoretical 
results. Even though the relationship is clear, sometimes 
theoretical result can be thought of as pedantic or a little bit 
vague. So, a numerical example is given to support the 
theoretical results, and through them the theoretical 
relationship between two fusion formulas has confirmed. It was 
also shown that the fusion filters yield a reasonably good 
estimation accuracy, especially for steady-state regime. The 
obtained fusion filters with matrix weights are slightly 
suboptimal as compare with the optimal centralized KF. 

  

APPENDIX: DERIVATION OF EQ. (32) 
The KF equations (28) yield the following differential 

equation for the local error (i)
tt

(i)
t x̂xx~ −= : 

 
( )

( )
( ) .wKvGx~HKF

x̂HwxHKvGx~F

x̂HyKx̂FvGxFx~xx~

(i)
t

(i)
ttt

(i)
t

(i)
t

(i)
tt

(i)
t

(i)
t

(i)
tt

(i)
t

(i)
ttt

(i)
tt

(i)
t

(i)
t

(i)
t

(i)
t

(i)
tttttt

(i)
tt

(i)
t

−+−=

−+−+=

−−−+=−= ���
 

 
Substituting this expression into the Lyapunov equation for the 
cross-covariance ( )T(j)

t
(i)
t

(ij)
t x~x~EP =  [13]. By virtue to the 

assumptions that the system and sensor noises (i)
tt w,v  and 

ji,w (j)
t ≠ , are mutually uncorrelated, we obtain (32). This 

completes the derivation of (32) 
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