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Persistence of Termination for Non-Overlapping
Term Rewriting Systems

Munehiro lwami

Abstract— A property P is called persistent if for any many-
sorted term rewriting system R, R has the property P if and
only if term rewriting system ©(R), which results from R by
omitting its sort information, has the property P. In this paper,
we show that termination is persistent for non-overlapping term
rewriting systems and we give the example as application of this
result. Furthermore we obtain that completeness is persistent for
non-overlapping term rewriting systems.
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I. INTRODUCTION

Term rewriting systems (TRSs) can offer both flexible
computing and effective reasoning with equations. TRSs have
been widely used as a model of functional and logic program-
ming languages and as a basis of theorem provers, symbolic
computation, algebraic specification and software verification
(31, [4], [11], [14].

A rewrite system is called terminating (strongly normal-
izing) if there exists no infinite reduction sequence. In a
confluent rewrite system, the normal form of a given term
is unique, that is, the final result does not depend on the
strategy in which the rewrite rules were applied. Termination
and confluence are the fundamental properties of TRSs. It is
well-known that termination and confluence are undecidable
for TRSs in general [3], [5].

Zantema [17] introduced the notion of persistence as fol-
lows: A property P is called persistent if for any many-
sorted TRS R, R has the property P if and only if TRS
©(R), which results from R by omitting its sort information,
has the property P. Zantema [17] showed that termination is
persistent for TRSs without collapsing or duplicating rules.
However termination is not persistent in general [17]. The
basic counterexample from Toyama [16] leads to the following
sorted TRS R:

f(0,1,2) = f(z,z,)
9(y,2) =y
9(y,2) ==

R =

where the set of sorts S = {«, 8} and the function symbols
and variables are defined as follows:
fraxaxa—=a,0:a,l:a,9:8x0—>6,2:a,y:0,

z: 0.
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The sorted TRS R is terminating. Let © be a sort elimi-
nation function. Then TRS ©(R), which results from R by
omitting its sort information, is not terminating.

f(9(0,1),9(0,1),9(0,1))
—O(R) f(oag(oa l)a g(Oa 1))
_>@(R) f(07 179(07 1))
—O(R) - -

is an infinite reduction in ©(R). In each step the contracted
redex is underlined. Aoto and Toyama showed the persistence
of confluence [1]. Ohsaki and Middeldorp [15] studied the
persistence of termination, acyclicity and non-loopingness on
equational many-sorted TRSs. Aoto proved that the persistence
of termination for TRSs in which all variables are of the
same sort [2]. We showed that the persistence of termination
for locally confluent overlay TRSs [7]. And we showed that
the persistence of termination for right-linear overlay TRSs
[8]. Also we showed that the persistence of termination for
TRSs with ordered sorts [9]. Furthermore we showed that the
persistence of semi-completeness for TRSs [10].

In this paper, we show the persistence of termination for
non-overlapping TRSs and we give the example as application
of this result. Zantema’s result can not be applied to our
example. As a result we obtain the persistence of completeness
for non-overlapping TRSs.

In section 2, many-sorted TRS is formulated and well-
sortedness is characterized in section 3. First, we show the
persistence of weak innermost normalization. Next, we show
the persistence of termination for non-overlapping TRSs and
we give the example as an application of this result in section
4. Furthermore, we obtain the persistence of completeness for
non-overlapping TRSs.

I1. PRELIMINARIES
We mainly follow basic definitions in the literature [1], [11].

A. Sorted term rewriting systems

In this subsection, we introduce the basic notions of sorted
term rewriting systems. Usual term rewriting systems [3] are
considered as special cases of sorted term rewriting systems.

Let S be a set of sorts and V' be a set of countably infinite
sorted variables. We assume that there are countably infinite
variables of sort « for each sort @ € S. Let F be a set of
sorted function symbols. We assume that each sorted function
symbol f € F is given with the sorts of its arguments and
the sort of its value, all of which are included in S. We write
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fiapr x ... X a,, = B if and only if f takes n arguments
of sorts a;,...,a, respectively to a value of sort 3. Function
symbol of with no arguments is constant.

The set T(F,V) = Uaes T (F, V)? of all sorted terms built
from F and V is defined as follows: (1) V* C T(F, V)%, (2)
fiar X ... X ap > a, t; € T(F,V)* (i = 1,...n) then
f(t1,-.tn) € T(F, V). Here T(F,V)* denotes the set of
all sorted terms of sort .

We write ¢ : « if ¢ is of sort a. V(t) denotes the set of all
variables in ¢t. 7(F,V)® and T(F,V) are abbreviated as 7
and 7, respectively. Let O be a special constant (hole) of sort
a. Elements of 7(F U {O0% | a € S},V) are called contexts
over 7(F,V). We write C:a; X ... x a,, — « if and only if
the sort of context C' is « and it has n holes Ot ..., 0% If
Cion X ... X ap = aandt;ia; (i =1,...,n) then C[t1,.. . t,)
denotes the term obtained from C by replacing holes with
t1,. ..ty from left to right. A context that contains precisely
one hole is denoted by C[]. A term ¢ is said to be a subterm
of s if and only if s = C[t] for some context C'. A substitution
6 is a mapping from Y to 7 such that z € V< implies 6(z)
€ T*. A substitution over terms is defined as a homomorphic
extension. 6(t) is usually written as t6. A sorted rewrite rule
on 7 is a pair [ —r such that I € Vv, V(r) C V(l), sorted
terms [ and r have the same sort. A sorted term rewriting
system (STRS, for short) is a pair (F, R) where F is a set of
sorted function symbols and R is a set of sorted rewrite rules
on T(F,V). (F,R) is often abbreviated as R and in that case
F is defined to be the set of function symbols that appear in
R.
Given a STRS R, a sorted term s is reduced to a sorted
term ¢ (s — t, in symbol) when s = C[l] and ¢t = C[rd] for
some rewrite rule [ —r € R, context C' and substitution 6.
We call s —5 t a rewrite step or reduction from s to ¢ of R.
16 is called redex of this rewrite step. One can easily check
that sorted terms s and ¢ have the same sort whenever s — .

The transitive reflexive closure of — is denoted by —%.
Terms ¢, and ¢ are joinable if there exists some term ¢’ such
that t; =3 t' <% to. A term ¢ is confluent if for any terms
t, and to, t; and ¢y are joinable whenever t; <7, t =7 to.
A STRS R is confluent if every term is confluent to —5. A
term ¢ is a normal form if there is no term ¢’ such that t - ¢'.
A term t is terminating (strongly normalizing) if there is no
infinite reduction sequence starting from term ¢. A STRS R
is terminating if every term is terminating to —5. A STRS R
is weakly innermost normalizing if every term has a normal
form which can be reached by an innermost reduction. In
an innermost reduction a redex may only be contracted if it
contains no proper subredexes. In that case we write s —;5 t.
A STRS R is complete if R is confluent and terminating.
Every terminating STRS is weakly innermost normalizing.

A rewrite rule [ — r is a collapsing rule if r is a variable.
A rewrite rule I —r is a duplicating rule if some variable
has more occurrences in r than in . Let I; —r; and Iy — o
be renamed versions of rewrite rules in a STRS R such that
they have no variables in common. Suppose I; = C[t] with
t ¢ V such that ¢ and I, are unifiable, i.e. t§ = 1,6 for a

most %gneral unifier 8. The term {16 = C[l5]6 is subject to the
rewrite steps l;0 — 716 and 1,6 —x C[r2]0. Then the pair of
reducts (C[r2]6,r160) is called a critical pair of R. A STRS
R is said to be non-overlapping if there is no critical pair
between rules of R.

When § = {x}, an STRS is called a term rewriting system
(TRS, for short). Given an arbitrary STRS R, by identifying
each sort with %, we obviously obtain a TRS ©(R) - called
the underlying TRS of R.

B. Sorting of term rewriting systems

Aoto and Toyama [1] defined the notion of sort attachment
and formulated the notion of persistence using sort attachment.
We mainly follow basic definitions in [1] in this subsection.

Let 7 and V be sets of function symbols and variables,
respectively, on a trivial set {«} of sorts. Terms built from
this language are called unsorted terms. Let S be another set
of sorts. A sort attachment 7 on S is a mapping from FUYy
to the set $* of finite sequences of elements from S such that
7(z) € § forany z € y and 7(f) € S**! for any n-ary
function symbol f € F. We write 7(f) = a3 X ... X a, = .
Without loss of generality we assume that there are countably
infinite variables z with 7(z) = « for each a € S. The set of
7-sorted function symbols from F is denoted by F7.

A term ¢ is said to be well-sorted under = with sort « if
t : a is derivable in the following rules: (1) 7(z) = a implies
zia, (2 7(f) = a1 X ... X ap, = B, tiiaa,. .., tyia, imply
Flte, ... tn):B.

The set of well-sorted terms under 7 is denoted by 77,
ie. 77 = {t € Tt : « for some a € S}. Clearly,
77 C 7. For a context C, we write C:ay X ... X ap, —
g if Cc[Oer,...,0%]:43 is derivable by rules (1), (2) with an
additional rule: (3)a € S implies O% : a.

Let R be a TRS. A sort attachment 7 is said to be consistent
with R if for any rewrite rule I —r € R, [ and r are well-
sorted under 7 with the same sort. Note that R™ acts on 77,
i.e. well-sorted terms s,t € 7™ whenever s —x- t; and that
for any s,t € 77, s >y t if and only if s 55~ t.

From a given TRS R and a sort attachment 7 consistent
with R, by regarding each function symbol f to be of sort
7(f) and each variable = to be of sort 7(x), we get a STRS
R" - called a STRS induced from R and 7.

Using the sort attachment, persistence can be alternatively
formulated as follows. It is clear that definition of Zantema
[17] and the following definition are equivalent.

Definition 2.1: A property P is called persistent if for any
TRS R and any sort attachment 7 that is consistent with R
the following property holds:

R™ has the property P < R has the property P.

We consider the persistent property for TRSs using defini-
tion 2.1 in this paper instead of Zantema’s definition. From
now on, we assume that a set S of sorts, a TRS R are given.
Then an attachment = on S that is consistent with R is fixed.

I11. CHARACTERIZATIONS BY WELL-SORTEDNESS

In this section, we give a characterization by well-
sortedness.
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Definition 3.1: The top sort (under 7) of an unsorted term
t is defined as follows:
o top(t) =7(t) ifteV.

o top(t) = Bift = f(t1,...,tn) With 7(f) = a1 X...xa,

- B.

Definition 3.2: Let ¢ = C[t1,...,t,] (n > 0) be an
unsorted terms with C[,...,] # O. We write t = C[t1, - .., tn]
if and only if
(1) C:a1 x ... x ap = [ is a context that is well-sorted

under 7.

(2) top(t;) # a; fori=1,...,n.

The t4,...,t, are said to be the principal subterms of ¢.

We denote t = C{(t1,...,t,)) if either t = C[t1,...,t,]
orC =0and t; € {t1,..tn}

Definition 3.3: Let ¢ be an unsorted term. The rank of £ is
defined by

o rank(t) = 1 if t is well-sorted term.

o rank(t) = 1+ maz{rank(t,),...,rank(t,)} if t =
Clts, - -, tn)-

We consider the example of top sort, principal subterm and

rank of an unsorted term.

Example 3.4: Let ¥ = {f,9,h,A,B}, S = {0,1} and 7

={f:0x0—->1,9g:1-50,h:0x1x1—-1,4:0,B:0}.

We consider the unsorted term f (g (4), h (2,B,B)).

o top(f(g(A),h(z,B,B))) = 1 because of 7(f) =0 x 0
— 1.

o f(9(A),h(z,B,B)) = C[ A, h(z,B,B)] where
Cl,...,] = f(g(0),0). The principal subterms of
f(g(A)h(z,B,B)) are A and h(z, B, B).

o rank(f(g(A),h(z,B,B))) = 1 + maz {rank (A),
rank (h(z,B,B))} = 3.

IV. PERSISTENCE OF TERMINATION FOR
NON-OVERLAPPING TRSs

In this section, we show the persistence of termination
for non-overlapping TRSs. It is main theorem in this paper.
First, we show the persistence of weak innermost normal-
ization. Next, we show the persistence of termination for
non-overlapping TRSs. Furthermore we give the example as
application of our main result.

Let s1,...,8, and tq, ..., t, be terms. We write (s1,...,5,)
x (t1,...,tn) if and only if for any 1 < i,j < n, s
= s; implies t; = t;. Moreover, we write (s,...,s,) 00
(t1,...,tn) if and only if (s1,...,8,)  (t1,...,t,) and
(tl,"'atn> X <31,"'a8n>'

The following theorem was proved by Gramlich in [6].

Theorem 4.1: ([6]) Let R be a non-overlapping TRS. Then,
R is weakly innermost normalizing if and only if R is
terminating.

Lemma 4.2: Let R™ be a non-overlapping STRS. Then,
R" is weakly innermost normalizing if and only if R™ is
terminating.

Proof. For any well-sorted terms s,t € 77, s —»x-t if and
only if s> t. By theorem 4.1, R™ is weakly innermost
normalizing if and only if R" is terminating. m|

We give the proof of persistence of weak innermost nor-
malization.

Theorem 4.3: Weak innermost normalization is a persistent
property of TRSs.

Proof. Let R be a TRS. We show that R is weakly innermost
normalizing if and only if R is weakly innermost normalizing.

o (if)-part: For well-sorted term s,t € 77, s =g~ t if
and only if s =5 t. Hence, every well-sorted term has
a normal form which can be reached by an innermost
reduction.

o (only if)-part: We will show by induction on rank(t)
that every unsorted term ¢ has a normal form which
can be reached by an innermost reduction with respect
to R. If rank(t) = 1 then the result follows from the
assumption that R is weakly innermost normalizing. Let
t = C[t1,---,tn]- Applying the induction hypothesis to
t1,- - -ty Yyields normal forms ¢1,.. .t such that t; —;%
t; for j =1, ..., n. We clearly have C[t},...,t,] =
C'[s1,---,sm] for some context C'[,...,J:aq X ... X
a,y, — « and normal forms sq,...,s,,. Choose fresh
variables z; € Yy fori =1,...,m such that (z1,...,zm)
o (S1,---,8m). Because rank(C'[z1,...,zm]) = 1,
the well-sorted term C'[zy,..., 2] has a normal form
which can be reached by an innermost reduction, say
C'lx1,...,2m) =iy C*[zi1, ..., 2] Hence, we have
the following innermost reduction sequence:

t _)zj;kg C'[[sl,. . .,Sm]] _)Z:;Q c* ((Sil,. . .,Sip» =t'. Since
C*, s;1, ..., 8ip are normal forms which can be reached
by an innermost reduction with respect to R, ¢' is normal
form which can be reached by an innermost reduction
with respect to R. We conclude that every unsorted term
has a normal form which can be reached by an innermost
reduction with respect to R. m|

We obtain the main theorem in this paper from theorem 4.1,
lemma 4.2 and theorem 4.3.

Theorem 4.4: Termination is a persistent property of non-
overlapping TRSs.

Proof. Let R be a non-overlapping TRS. We have to show
that R” is terminating if and only if R is terminating. By
theorem 4.1, R is weakly innermost normalizing if and only
if R is terminating. By theorem 4.3, R” is weakly innermost
normalizing if and only if R is weakly innermost normalizing.
Hence, R7 is weakly innermost normalizing if and only if R
is terminating. Since TRS R is non-overlapping, so is STRS
R". By lemma 4.2, R™ is weakly innermost normalizing if
and only if R™ is terminating. Therefore, R7 is terminating if
and only if R is terminating. a

Example 4.5: We show that the following non-overlapping
TRS R is terminating using theorem 4.4. To show the ter-
mination of the following TRS directly seems difficult from
known results (E.g. recursive path ordering [5]). Also, we can
not use the modularity results for composable systems [13],
[14] , hierarchical combination and hierarchical combination
with common subsystem [12], [14].
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( 9(e(A, B),d(z, B))

—g(e(4, B),d(z,4)) (rl)
I(d(z,C), g(x,d(y, C)))

— 1(d(z, D), g(z,d(y, C)))
d(z,D)—=z (r3)
d(z,E)—e(z,2) (rd)
e(z,A) —e(z,B) (rb)
I(e(z,D), g(,d(y, C)))

[ = 1(e(2,0), 9(z,d(y, C))) (r6)

Zantema’s result that termination is persistent for TRSs
without collapsing or duplicating rules can not be applied,
because the above TRS contains both collapsing rule (r3) and
duplicating rule (r4). However, we can show the termination
of the above TRS using our results in this paper.

Let s = {0, 1,2}. We give the following sort attachment 7.

(r2)

g:0x0—1
I:0x1—>2
d:0x0—-0
e:0x0—>0
A:0,B:0,C:0,D:0,E:0

Any well-sorted term in 70, 71 and 72 is terminating, i.e.
any well-sorted term in 77 is terminating. We consider the
following cases:

o t €70 Then (r3), (r4) and (r5) are the only applicable
rules. A TRS {(r3),(r4),(r5)} is terminating using
recursive path ordering. Hence, ¢ is terminating.

o t € T Then (r1), (r3), (r4) and (r5) are the only
applicable rules. For any proper subterm s of ¢, top(s) =
0. Since the above case, s is terminating. Since top(t) =
1, (r1) is the only applicable rule to root position of term
t. Hence, ¢ is terminating.

e t € T2 Then (r1), (r2), (r3), (r4), (r5) and (r6)
are the applicable rules. For any proper subterm s of ¢,
top(s) = 0 or top(s) = 1. Since the above two cases, s
is terminating. Since top(t) = 2, (r2) and (r6) are the
only applicable rules to root position of term ¢. Hence, ¢
is terminating.

Then, STRS R™ is terminating. Since R™ is non-

overlapping TRS and theorem 4.4, TRS R is terminating.

Furthermore we obtain the persistence of completeness for
non-overlapping TRSs.

The following theorem was given by Aoto and Toyama [1].

Theorem 4.6: ([1]) Confluence is a persistent property of
TRSs.

Since a complete TRS is confluent and terminating, we
obtain the following corollary from theorem 4.4 and theorem
4.6.

Corollary 4.7: Completeness is a persistent property of
non-overlapping TRSs.

V. CONCLUSION

In this paper, we have discussed the persistence of termi-
nation for non-overlapping TRSs. We have given our main
results in the following.

First, we have shown the persistence of weak innermost
normalization. Next, we have shown the persistence of termi-
nation for non-overlapping TRSs and we have given the ex-
ample as application of our main result. Furthermore we have
obtained the persistence of completeness for non-overlapping
TRSs.
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