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Abstract—Microarrays have become the effective, broadly used 
tools in biological and medical research to address a wide range of 
problems, including classification of disease subtypes and tumors. 
Many statistical methods are available for analyzing and 
systematizing these complex data into meaningful information, and 
one of the main goals in analyzing gene expression data is the 
detection of samples or genes with similar expression patterns. In this 
paper, we express and compare the performance of several clustering 
methods based on data preprocessing including strategies of 
normalization or noise clearness. We also evaluate each of these 
clustering methods with validation measures for both simulated data 
and real gene expression data. Consequently, clustering methods 
which are common used in microarray data analysis are affected by 
normalization and degree of noise and clearness for datasets. 

Keywords—Gene expression, Clustering, Data preprocessing. 

I. INTRODUCTION

ICROARRAYS allow the high-throughput analysis of 
gene information, and thus have led to revolutionary 

changes in bioinformatics research. Microarray technology is 
being applied to biological and medical investigations of the 
reliable and precise classification of tumors, which is essential 
to the successful cancer treatment. A critical aspect of such 
analyses of microarray data is the identification of classes of 
genes with similar function. An important statistical problem in 
tumor classification is identifying new tumor classes based on 
gene expression profiles. To obtain the goal, the clustering is 
the basic tool that has been applied to microarray data. Due to 
the vast number of genes involved in microarray experiments 
and the complexity of biological processes, an effective 
clustering algorithm for grouping samples is essential for such 
studies like tumor classification, function annotation, and other 
biomedical applications [1].  

Clustering faces two main problems. One is how to correctly 
determine the number of clusters, and the other is how to assign 
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samples to those clusters. Since a clustering analysis relies 
heavily on limited biological and medical information like 
tumor classification, the results therefrom are not only sensitive 
to noise but also prone to over-fitting, which is a major concern 
in the clustering analysis of microarray data. Many studies have 
analyzed microarray data with the aim of identifying sample 
classes using methods like hierarchical clustering (HC), 
K-means (KM) [2], ensemble clustering [3],[4], partitioning 
around medoids (PAM) [5], fuzzy C-means (FCM) [6]. These 
clustering methods can be broadly divided into two groups: (1) 
partitioning methods like the FCM, PAM, and KM, which seek 
to optimally dissect objects into a fixed number of clusters even 
if the expression profile of each sample has a number of similar 
cluster patterns, and (2) hierarchical methods, which produces 
a nested sequence of clusters [7].

In medical cancer diagnoses based on microarray data, the 
definition of tumor classes would be based on clustering 
results[8]. Inaccurate cluster assignments could lead to 
misdiagnoses and poor treatment protocols. Therefore, 
statistical clustering is very important to identifying new tumor 
classes. The results of clustering depend on various 
characteristics of the data, including the microarray 
experimental conditions, the variations between data points, 
and the degree of noise. Data preprocessing is therefore an 
essential procedure for handling original microarray data, but 
this has often not been used in cluster analyses thereof. 
Although many studies have compared the performances of 
various clustering methods [9],[10], such comparisons could be 
invalid without the inclusion of data preprocessing. In 
particular, many studies mainly used that all data are 
normalized such that every sample has a mean expression value 
of 0 and a standard deviation (SD) of 1 across genes [8],[9],[11]. 
However, this is simply no more than location and spread 
transformation of data though it was commonly used in 
microarray data analysis, in what ways, this method also could 
reflect no transformation. It can not be the most transformation 
when the data include the complicated variability from two 
directions of genes and samples like microarray data [12]. Thus, 
this study especially shows how the clustering result is not 
good when the simple mean and SD normalization is applied. 

In this paper, we compare the performances of the HC, FCM, 
PAM, and KM whilst considering data preprocessing by 
normalization, effective gene selection among thousands of 
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genes, and noise treatment. The performances of the four 
clustering methods are compared using simulated and real 
microarray datasets, with the results evaluated based on the 
silhouette (sil) [5], and the adjusted Rand index [13].

II. MATERIALS AND METHODS

A. Datasets 
We used five simulated datasets such as Sim 1 to Sim 5, and 

three real gene expression datasets such as leukemia [11], 
melanoma [14], and lung cancer [15] to inspect the 
performance and features of clustering methods based on the 
data preprocessing. 

Sim 1. Three clusters in two dimensions: 25, 25, and 50 objects 
are generated from bivariate normal distribution in each of the 
three clusters with means (0, 0), (0, 5), and (5, 3),
respectively, and 2I covariance matrix, where the matrix I is an 
identity matrix.  

Sim 2. Four overlapping clusters in 10 dimensions: each cluster 
is chosen to have 50 objects from normal distribution with an 
appropriate mean vector and an identity covariance matrix. The 
cluster means are randomly chosen from a bivariate normal 
distribution )5.2,(N2 I0 . Each simulated where the Euclidean 
distance between the two closest objects belonging to different 
clusters is less than 1 discarded. 

Sim 3. Two elongated clusters in three dimensions: cluster 1 is 
generated as follows. Set txxx 321  with t  taking on 100 
equally spaced values from 0.5 to 0.5, and then let Gaussian 
noises with standard deviation 0.1 be added to each variable. 
Cluster 2 is generated in the same way except that the value 10 
is added to each variable. These result in elongated clusters, 
stretching out along the main diagonal of a three dimensional 
cube.

Sim 4. Three overlapping clusters in 13 dimensions, 10 noise 
variables: the first three variables in each of three clusters have 
a multivariate normal distribution with mean vectors (0,0,0), (2, 
2, 2), and ( 2, 2, 2), respectively, and with covariance 

matrix , where 1ii
, 31 i , and 5.0ij , 31 ji . The 

remaining 10 noise variables are generated independently from 
the ),(N10 I0 distribution. Each cluster contains 50 objects. 

Sim 5. Two overlapping clusters in 10 dimensions, 9 noise 
variables. Each cluster contains 50 objects. The first variables 
in each cluster were generated from normal distribution with 
mean 0 and 2.5, respectively, and with variance 1. The 
remaining nine noise variables are generated from the 

),(N9 I0 distribution.  
Note that above configurations in generating the datasets 

were considered in earlier papers [8],[16]. The configurations 
are summarized in Table I. 

TABLE I
DESCRIPTION OF FIVE SIMULATED DATASETS

Data true 
clusters

Number of  
dimensions 

Number of 
objects
in each cluster 

Degree of 
overlap 
among clusters 

Sim1 3 2 25, 25, 50  None 
Sim2 4 10 50, 50, 50, 50 Strong 
Sim3 2 3 100, 100 None 
Sim4 3 13 50, 50, 50 Strong 
Sim5 2 10 50, 50 Weak 

Leukemia. Leukemia dataset consists of 38 learning samples on 
the Affymetrix high density oligonucleotide chips containing 
7129 human genes [11]. The goal of this experiment is to 
identify genes that are differentially expressed in 27 acute 
lymphoblastic leukemia (ALL) patients and 11 acute myeloid 
leukemia (AML) patients. 

Melanoma. The melanoma dataset consists of two types of 31 
cutaneous melanomas and 7 controls [14]. Gene expression 
levels were measured using cDNA microarrays containing 
8150 human genes. Of the 8150 genes, 3613 genes were 
identified as well measured. This experiment data had many 
Cy5/Cy3 expression ratios above 10000 and also had many 
below 0.02. Therefore, the data filtering method, which 
excluded the genes with expression ratio greater than 50 and 
less than 0.02, was applied for this dataset17. These ratios were 
transformed to a base 2 logarithmic scale.

Lung cancer. The lung cancer dataset comes from a study gene 
expression in five types lung carcinoma: 139 lung 
adenocarcinomas, 21 squamous cell lung carcinomas, 20 
pulmonary carcinoids, 6 small-cell lung carcinomas cases, and 
17 normal lung specimens. Gene expression levels were 
measured using Affymetrix high density oligonucleotide arrays 
containing 12000 human genes [15].  

B.  Preprocessing Strategy 
Normalization 
It is meaningful to remove from microarray data variations 

due to non-biological factors [18]. This process, known as 
normalization, is important for obtaining reliable data for 
subsequent analysis. One of the most commonly utilized 
normalization approaches is the mean and SD normalization, 
whereby all data are normalized such that every object has a 
mean expression value of 0 and a SD of 1 across genes. And, 
one of often used nonlinear correction methods is locally 
weighted scatter plot smoothing (LOWESS), which was first 
applied to microarray data by Yang et al. [12]. The main idea of 
LOWESS is to utilize a locally weighted polynomial regression 
of the intensity scatter plot to obtain the calibration factor. 
Compared to other methods, the LOWESS method is known to 
be robust across a wider range of types of datasets. 
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Preliminary Gene Selection 
Thousands of gene expression levels were monitored in each 

of the three microarray datasets. But, the large numbers of 
genes exhibit nearly constant expression levels, as measured by 
the variance of the expression levels across arrays. These genes 
did not seem to be useful for classification purposes, and thus 
we used genes with high-variance of expression levels across 
objects in the clustering process. First three plots of Fig. 1 show 
for each dataset the individual gene variance divided by the 
maximum variance over all genes [8]. In these plots, all 
variance curves show a clear drop-off which gradually flattens. 
All plots indicate similar patterns for three microarray datasets. 
In this paper, we selected 100 genes with high variance from 
Leukemia and Melanoma datasets, and then we selected 200 
genes for Lung cancer dataset as it contains more classes [8]. 
The last box plot of variance of Fig. 1 indicates the dispersion 
of each of three datasets. Of these, melanoma dataset has more 
variance for expression levels relative to other two microarray 
datasets. 

Fig. 1 Plots of the variance of the expression levels of each gene across 
samples. The variances are scaled by the maximum variance over all 
genes, and the genes are ordered by variance in descending order. The 
vertical lines indicate 100 and 500 genes. The last plot is the box plot 

of the variances for the three microarray datasets 

C.  Clustering Algorithm 

Fuzzy C-Means Clustering 

The FCM can be represented as follows [6]:
n

i

c

k
ki

m
ikfcm vxwVWJminimize

1 1

2||||)(),( ,

where, ( , )fcmJ W V  represents the objective function defining the 
quality of the result obtained for prototypes V  and 
membership W , and m  is the degree of fuzziness in the 
clustering. The membership degrees ikw  are defined such that 
0 1,ikw  under the constraint of c

k ikw1 1  for 1, ,i n .
( )kV v  is the cluster center or prototype, and 2|| ||i kx v  is 

the squared Euclidean distance between object i and the 
prototype of cluster k . Here, ix  indicates i -th object vector.
In case of the FCM clustering, when they are applied to 
microarray data, it is very important to choose appropriate 
values for the fuzziness parameter due to its effect on the 
minimization criterion for the objective function. Dembele and 
Kastner showed that the common value of 2 used for the 
fuzziness parameter is not appropriate for microarray data [19]. 
For the FCM, we firstly determined the optimal fuzziness 
parameter [19], and then used it when implementing the FCM 
algorithm. In general, the FCM is known to provide poor 
results compared to other crisp clustering methods when 
preprocessing is not considered [9]. However, here we show 
that the method produces accurate and clear clustering results. 
Although we do not mention for the computational procedure 
about fuzziness parameter, we can refer to [19] about it for the 
detail.

Hierarchical Clustering 
The agglomerative HC is one of popular methods for 

clustering gene expression. The clustering is based on a 
pairwise distance matrix between objects. The nested sequence 
of clusters produced by the HC makes them appealing when 
different levels of detail are of interest because small clusters 
are nested inside larger ones. The result of the algorithm is a 
dendrogram, which shows how the clusters are related. A 
clustering of the samples into disjoint groups is obtained by 
cutting the dendrogram at some level. In microarray data 
analysis, the goal of clustering may focus on both small groups 
of similar samples and a few large clusters. The former occur 
when small samples have special meanings, and the latter occur 
when larger groups exist, such as samples from several sources, 
or from different experiments [7].

PAM Clustering 
The PAM is a partitioning algorithm and can be regarded as a 

generalization of k-means clustering to arbitrary dissimilarity 
matrices [5]. The PAM is based on the search for k
representative medoids, among the objects to be clustered. 
After finding this k medoids, k clusters are built by allocating 
each object to the nearest medoid. This goal is to minimize the 
sum of the dissimilarities of the objects to their cloest medoid. 
The algorithm consists of two steps. The k initial sets of 
medoids are firstly sequentially selected, and then swap points 
so that the objective function is minimized iteratively by 
replacing one medoid with another entry and this step is 
repeated until convergence. The PAM is known to be more 
robust and computationally efficient than the KM [8].

K -means Clustering 
The most popular partitioning method, the KM clustering 

partitions data into k clusters such that objects in the same 
cluster are more similar to each other [2], i.e., the clusters are 
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internally similar, but externally dissimilar. The goal is to 
divide the objects into k clusters such that some metric relative 
to the centroids of the clusters is minimized. Two steps are 
available to search for the optimum set of clusters. The 
algorithm first assigns each object to a cluster that has the 
closest centroid, and then sets initial positions for the cluster 
centroids, that is, when all objects have been assigned, 
recalculate the positions of the k centroids. This procedure is 
continued until the optimum assignment of objects to clusters is 
found [20]. In this process, the KM method should have little 
difficulty with missing data because mean updates and distance 
computations can be performed with some missing values. 

D.  Evaluation Criteria 
Sil index: The method is to select the number of clusters 

which gives the largest average silhouette width, 
j

n

i
j nissilave

j

/)(
1

, where nj is the number of objects in the jth

cluster. The silhouette width for the ith object in the jth cluster is 
defined as:  

)}(),(max{
)()()(
ibia

iaibis .

Here, a(i) is the average distance between the ith object and all 
of the objects clustered in the jth cluster, and b(i) is the smallest 
average distance between the ith object and all of the objects 
clustered in cluster l ( ljklj ,,1 ) [3]. 

Adjusted Rand index: This method computes the extent of 
agreement between two partitions. Given the set D={o1, o2, …, 
on}, suppose U={u1, u2, …, uR} and V={v1, v2, …, vC} represent 
two different partitions of the objects in D. Here, for 

Rii '1  and Cjj '1 , Dvu j
C
ji

R
i 11  and nij is 

the number of objects that are in both classes ui and vj, and ni
and nj are the number of objects in classes ui and vj, respectively. 
The adjusted Rand index is as follows [13]: 
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For good clustering, we expect these values to be high [3]. 

III. ANALYSIS RESULTS

The clustering methods described in ealier section were 
applied to the three real microarray datasets and five simulated 
datasets. To compare the four clustering methods, we selected 
the more variable genes across arrays from the microarray 
dataset [8], and then applied both normalization methods to all 
the datasets. The values of the fuzziness parameters used for the 
FCM clustering of all datasets are given in Table II. The degree 
of fuzziness differed markedly between the datasets, being low 
for datasets with clear clustering and small variations such as 
Sim1, Sim3, and Lung cancer, and being lower for mean and 
SD normalization than for the LOWESS normalization. 
Therefore, no general assumption can be made for values of 

fuzziness that might give good FCM clustering results with a 
microarray dataset. This result leads us to the hypothesis that 
applying data preprocessing prior to clustering will greatly 
affect the results of clustering.

TABLE II
FUZZINESS PARAMETERS USED FOR THE FCM CLUSTERING.

Dataset true clusters LOWESS  Mean and SD 
Sim 1 3 1.35 1.27 
Sim 2 4 1.57 1.28 
Sim 3 2 1.30 1.25 
Sim 4 3 1.54 1.20 
Sim 5 2 1.76 1.24 
Leukemia 3 1.22 1.12 
Melanoma 2 1.23 1.11 
Lung cancer 5 1.15 1.13 

Two aspects of the performance of each clustering method 
were evaluated using both the sil and the adjusted Rand indices: 
(1) finding the correct number of clusters and (2) correctly 
assigning each object to the resulting clusters. Furthermore, to 
test the ability of each clustering method to handle noisy data, 
we performed additional clustering calculations on microarray 
datasets to which noise had been added, with subsequent the 
LOWESS normalization. The noisy datasets were generated by 
adding a small Gaussian random variable with 0 mean and 1.5 
SD to the expression levels in the original microarray dataset. 

A. Results for the Simulated Datasets 
We performed an extensive simulated study to evaluate each 

of the FCM, HC, PAM, and KM clustering methods.  

Fig. 2 Cluster distributions for the five simulated datasets, and a box 
plot showing the variation in the data points between and within 

clusters for each dataset 
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Above Fig. 2 depicts the shape of the cluster for each of the 
simulated datasets. Sim 1 and Sim 3 clearly exhibit three and 
two clusters, respectively, with very small variation in each 
cluster. As shown in box plot of Fig. 2, Sim 1 exhibits a large 
variation between data points, this may result in Sim 1 has a 
larger variation between clusters than within clusters. Sim 2 has 
heavily overlapped clusters with four clusters and unclear 
boundary between clusters. Sim 4 also has heavily overlapped 
clusters, with only small deviations in the data points from a 
linear trend. Thus these Sim 1 and Sim 2 are not expected to be 
accurate estimations of the clustering. Sim 5 has two clusters, 
and they are slightly unclear and more variable within each 
cluster compare to the other datasets. 

Table III lists the results of estimating the number of clusters 
using sil for the five simulated datasets. We first describe the 
results from applying LOWESS normalization. As indicated in 
Table III, all the clustering methods correctly identified the 
number of clusters for Sim 1 and Sim 3 (with clear clusters) and 
Sim 5 (with large variations between data points). However, for 
Sim 2 (with heavily overlapping among the clusters), only the 
FCM and KM were able to correctly classify the clusters. All 
the clustering methods failed to find the correct number of 
clusters for Sim 4, presumably due to the degree of overlap and 
linearity between the clusters. On the other hand, when 
applying the mean and SD normalization, most of the clustering 
methods failed to find the correct number of clusters for all 
datasets except Sim 3 and Sim 5. In particular, for mean and SD 
normalization, all the clustering methods estimated that there 
were two clusters in Sim 1, whereas they correctly estimated 
the presence of three clusters when LOWESS normalization 
was applied. These results indicate that the clustering methods 
are greatly affected by the degree of overlap. Moreover, the 
FCM and KM clusterings are stable irrespective of the shape of 
the data, and LOWESS normalization could be refined to cope 
with the presence of noise in the dataset. 

TABLE III
ESTIMATING THE NUMBER OF CLUSTERS IN SIMULATED DATA USING THE SIL

PROCEDURE

LOWESS Mean and SD 

data ture FCM HC PAM KM FCM HC PAM KM 
Sim 1 3 3 3 3 3 2 2 2 2 
Sim 2 4 4 3 3 4 2 2 2 2 
Sim 3 2 2 2 2 2 2 2 2 2 
Sim 4 3 2 2 2 2 2 2 2 2 
Sim 5 2 2 2 2 2 2 2 2 2 

Table IV lists the adjusted Rand indices for simulated 
datasets. In aspect of the normalization method, all the 
clustering methods showed better performance for LOWESS 
normalization than for mean and SD normalization for all 
datasets. In LOWESS normalized datasets, the FCM, and KM 
clusterings outperformed the other clustering methods, and in 
mean and SD normalized datasets the FCM and PAM 
clusterings perform better than other two clustering. These 

results indicate that the clustering method is sensitive to data 
normalization and the degree of variation or in overlapping 
between clusters. 

TABLE IV
ADJUSTED RAND INDICES FOR THE KNOWN CLUSTERS IN THE SIMULATED

DATASETS FROM EACH CLUSTERING METHOD
LOWESS  Mean and SD

Data true FCM HC PAM KM FCM HC PAM KM 
Sim 1 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.42 
Sim 2 4 0.93 0.88 0.81 0.62 0.56 0.45 0.54 0.61 
Sim 3 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Sim 4 3 0.60 0.31 0.34 0.53 0.33 0.21 0.30 0.26 
Sim 5 2 0.57 0.57 0.49 0.57 0.37 0.19 0.38 0.20 

B.  Results for the Real Microarray Datasets 
We next evaluated the four clustering methods using three 

gene expression datasets whilst applying only LOWESS 
normalization due to the results of simulated datasets. To check 
the ability of clustering methods dealing with nose data, we 
compared the performances of the clustering methods on noisy 
datasets. As mentioned in earlier, the noisy datasets were 
generated by adding a small Gaussian random variable with 0 
mean and 1.5 SD to the expression levels in the original 
microarray dataset. Table V lists the estimations of the numbers 
of clusters using sil for original and noise microarray datasets, 
and Table VI lists the corresponding adjusted Rand indices. 
Tables V and VI show that for the original leukemia and 
melanoma datasets with small numbers of clusters, all the 
clustering methods correctly identified the number of clusters. 
Moreover, the FCM and PAM clusterings found the correct 
numbers of clusters in the noisy datasets. However, none of the 
clustering methods found the correct number of clusters for the 
lung cancer dataset, which contained five clusters. This may be 
due to the dataset containing complicated and overlapping 
clusters.

TABLE V
ESTIMATING THE NUMBER OF CLUSTERS IN ORIGINAL AND NOISY

MICROARRAY DATASETS USING THE SIL PROCEDURE
 Original data Noisy data

Data true FC
M

HC PA
M

KM FC
M

HC PA
M

KM

Leukemia 3 3 2 3 3 3 2 3 2
Melanoma 2 2 2 2 2 2 3 2 2 
Lung cancer 4 3 2 2 2 2 2 2 2 

The FCM and KM clustering methods exhibited higher 
accuracy for the original leukemia and lung cancer datasets. 
However, the FCM and PAM outperformed the other clustering 
methods for the two noisy datasets, as indicated by the adjusted 
Rand indices given in Table VI. Like Sim 5, which had a small 
number of clusters but large variations, the melanoma dataset 
contained more variable data points than did the other datasets 
(Fig. 1). Tables V and VI also indicate that for the melanoma 
dataset, all the clustering methods correctly identified the 
number of clusters, but the values of adjusted Rand indices 
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were very low. To confirm the effects of noise for data, Table 
VII compares the agreement of clustering between the original 
and noisy datasets using the adjusted Rand index for each 
clustering method. In the Table VII, the FCM and PAM 
clusterings exhibited good agreement of clustering 
performances for noisy datasets, with the KM and HC being 
slightly sensitive to the noisy data for all real datasets.  

TABLE VI
COMPARISON RESULTS BY ADJUSTED RAND INDEX CORRESPONDING TO TRUE

CLUSTERS FROM AN ORIGINAL AND NOISY MICROARRAY DATASETS
 Original data Noisy data

Datasets true FCM HC PAM KM FCM HC PAM KM 
Leukemia 3 0.69 0.41 0.45 0.69 0.60 0.39 0.44 0.22 
Melanoma 2 0.31 0.31 0.33 0.31 0.20 0.27 0.26 0.16 
Lung 
cancer

4 0.58 0.38 0.53 0.55 0.58 0.37 0.53 0.50 

TABLE VII
COMPARISON RESULTS BY ADJUSTED RAND INDEX BETWEEN THE CLUSTERING

FOR BOTH ORIGINAL AND NOISY DATASETS FOR EACH METHOD
Datasets true FCM HC PAM KM 

Leukemia 3 1.00 1.00 1.00 0.80 
Melanoma 2 0.60 0.23 0.52 0.57 
Lung cancer 4 0.96 0.87 0.94 0.79 

IV. CONCLUDING REMARKS

We have compared the performance of various clustering 
methods using both simulated and real microarray datasets. In 
this paper, we considered various properties of datasets and 
data preprocessing procedures, and have confirmed the 
importance of preprocessing microarray data prior to 
performing core cluster analysis. All clustering methods were 
affected by data normalization and the data characteristics, such 
as the overlapping between clusters and the presence of noise. 
In particular, we identified that the mean and SD normalization, 
which is commonly applied to microarray data, was not 
appropriate than the LOWESS normalization in microarray 
data. Many other normalization methods that could be also 
applied [12],[18],[21] as the alternative of mean and SD 
normalization. We impress that the first step in explanatory 
clustering of microarray data should be to normalize the data so 
as to remove systematic variations due to non-biological 
factors.

Also, our comparative investigations revealed that the FCM 
and PAM clusterings were generally more accurate and 
consistent, in terms of finding the correct number of clusters 
and of assigning almost all objects to the correct clusters. 
Moreover, their cluster assignments tended to be more accurate 
when we used noisy data, as assessed by the adjusted Rand 
indices. The KM and HC clusterings tended to be not robust to 
both noisy data and data with overlapping clusters. The FCM 
showed particularly stable results for datasets with noise and 
overlapping clusters when we used the optimal fuzziness 
parameter. The crisp clustering methods like the PAM, HC, and 
KM forcibly assigns all genes to clusters, even those for which 
the variations in expression do not fit into any global pattern,19

while in the FCM clustering each gene can belong to more than 

one cluster, with a graded association with each cluster, only 
one of which may be biologically significant [19]. If one focus 
on finding genes showing coherent behavior within clusters the 
FCM clustering could be useful. 
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