
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4213

Abstract—Data mining, which is the exploration of

knowledge from the large set of data, generated as a result of

the various data processing activities. Frequent Pattern Mining

is a very important task in data mining. The previous

approaches applied to generate frequent set generally adopt

candidate generation and pruning techniques for the

satisfaction of the desired objective. This paper shows how

the different approaches achieve the objective of frequent

mining along with the complexities required to perform the

job. This paper will also look for hardware approach of cache

coherence to improve efficiency of the above process. The

process of data mining is helpful in generation of support

systems that can help in Management, Bioinformatics,

Biotechnology, Medical Science, Statistics, Mathematics,

Banking, Networking and other Computer related

applications. This paper proposes the use of both upward and

downward closure property for the extraction of frequent item

sets which reduces the total number of scans required for the

generation of Candidate Sets.

Keywords—Data Mining, Candidate Sets, Frequent Item set,

Pruning.

Vaibhav Kant Singh is a Research Scholar in the Department of Computer

Science & Engineering Samrat Ashok Technological Institute, Vidisha

affiliated to Rajeev Gandhi Prodyogiki Vishwavidyalaya Bhopal, India.

(phone; +919424174443);(e-mail:vibhu200427@gmail.com).

Vijay Shah is currently Reader in Department of Computer Science &

Engineering Samrat Ashok Technological Institute, Vidisha affiliated to

RGPV Bhopal, India. (e-mail:vijayvidisha@gmail.com).

Yogendra Kumar Jain is currently HOD in the Department of Computer

Science & Engineering Samrat Ashok Technological Institute, Vidisha

affiliated to RGPV Bhopal, India. (e-mail:ykjain_p@yahoo.co.in).

Dr. Anupam Shukla is currently Assistant Professor in the Department of

Information Technology ABV-Indian Institute of Information Technology &

Management Gwalior, India. (email; anupamshukla@iiitm.ac.in).

Dr. A.S. Thoke is HOD Department of Electrical Engineering National

Institute of Technology Raipur, India. (email; asthoke@yahoo.co.in)

Vinay Kumar Singh is Research Scholar and also with Department of

Master of Computer Science & Application Guru Ghasidas University

Bilaspur India (email; vks_123123@rediffmail.com)

Chhaya Dule is Assistant Professor in CSVTU and research scholar in the

Department of Computer Science and Engineering Samrat Ashok

Technological Institute, Vidisha affiliated to RGPV Bhopal, India (email;

chhaya_dule@rediffmail.com)

Vivek Parganiha is with the Department of Electrical Engineering National

Institute of Technology Raipur, India (Mobile; +919827402322); (email;

vivekparganiha@rediffmail.com)

I. INTRODUCTION

HE introduction of computing technology has

significantly influenced our society and the two major

impacts of this include:-

Business Data Processing

Scientific Computing

Due to widespread computerization and due to affordable

storage facilities, there is an enormous Wealth of

information embedded in huge database belonging to

different Enterprises. In the Domain of Scientific,

computing the Major problem is to infer some valuable

Information on from observed data. The Key idea of Data

Mining is to find Effective ways to combine the Computer’s

Power to Process Data with human eye’s Ability to detect

patterns. The techniques Of Data-Mining are designed for

and Work best with, Large Data Sets.

Today, the Computer Processor is having speed that is

underutilized due to improper localization of the various

parameters if these parameters would be properly localized

than the performance of the system can be improved a lot.

This can be done using several cache conscious

mechanisms that are going to help in optimal use of the

resources for better outcome. Together with the proposed

approach, the efficiency of frequent pattern mining is going

to improve by some amount.

A. Evolution of Data Mining

The Evolution of Data Mining was a result of the support

of three Technologies. The three Technologies are:-

Massive Data Collection

High Performance Computing

Data Mining Algorithms

Of the above three, the first two technologies have a very

vital role in the advent of Data Mining, which is playing a

very significant role in today’s information processing

environment.

Several factors have contributed to bring Data mining to

the forefront. Some of the factors are:-

Untapped value in Databases.

Concept of Data warehousing.

Drop in Cost/Performance ratio.

Proposing an Efficient Method for Frequent

Pattern Mining

Vaibhav Kant Singh, Vijay Shah, Yogendra Kumar Jain, Anupam Shukla, A.S. Thoke, Vinay Kumar

Singh, Chhaya Dule, Vivek Parganiha

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4214

B. Datamining

Data mining is the exploration and analysis of large

datasets, in order to discover meaningful patterns and rules.

Data mining is a component of a wider Process called

(KDD) Knowledge Discovery from Database. Before a data

set is mined, it first has to be cleaned. This removes, errors,

ensures consistency and takes missing values into account.

Data mining may use quite simple or highly sophisticated

data analysis. Data mining is a component of Data ware

housing but it can be a stand-alone process for data analysis,

even in the absence of a Data warehouse.

C. Data Mining V/S Knowledge Discovery From

Database

The term “Data Mining” refers to the finding of relevant

and useful information from database. Data mining and

knowledge discovery in the database is a new

interdisciplinary field, merging ideas from statistics,

machine learning and parallel computing.

Data Mining is only one of the many steps involved in

the database. The KDD process tends to be highly iterative

and interactive under computation.KDD is the Process of

identifying a valid, potentially useful and ultimately

understandable structure in data.

STAGES OF KDD

1. Selection

2. Preprocessing

3. Transformation

4. Data Mining

5. Interpretation

6. Data Visualization

D. Data Mining Techniques

The two fundamental goals of Data-Mining are:-

1. Prediction

2. Description

Prediction

Prediction makes use of the existing variables in the

database in order to predict unknown or future values of

interest.

Description

Description focuses on finding patterns describing the

data and the subsequent presentation for user interpretation.

There are Several Data-Mining techniques fulfilling to

the above goals. This paper mainly deals with Association.

Some of them along with brief introduction are listed

below:-

Association :- The Presence of one set of items

in a transaction implies other set of items

Classification: - Develops profiles of different

groups.

Sequential Patterns: - Identifies sequential

patterns subject to user constraints.

Clustering: - Segments database into subsets

or clusters.

II. THE APRIORI ALGORITHM:-

One of the first algorithms proposed for association rules

mining was the AIS algorithm [1]. The problem of association

rules mining was introduced in [1] as well. This algorithm was

improved later to obtain the Apriori algorithm [2]. The Apriori

algorithm employs the downward closure property if an item

set is not frequent, any superset of it cannot be frequent either.

The Apriori algorithm performs a breadth-first search in the

search space by generating candidate k+1-itemsets from

frequent k itemsets. The frequency of an item set is computed

by counting its occurrence in each transaction.

Apriori is an influential algorithm for mining frequent

itemsets for Boolean association rules. Since the Algorithm

uses prior knowledge of frequent item set it has been given the

name Apriori.

Apriori is an iterative level wise search Algorithm, where k-

itemsets are used to explore (k+1)-itemsets. First, the set of

frequents 1- itemsets is found. This set is denoted by L1. L1 is

used to find L2 , the set of frequent 2-itemsets , which is used

to find L3 and so on , until no more frequent k-itemsets can be

found . The finding of each Lk requires one full scan of

database.

There are two steps for understanding that how Lk-1 is used

to find Lk:-

1. The join step :-

To find Lk , a set of candidate k-itemsets is generated by

joining Lk-1 with itself . This set of candidates is denoted Ck.

2. The prune step:-

Ck is a superset of Lk , that is , its members may or may not

be frequent , but all of the frequent k-itemsets are included in

Ck .

A scan of the database to determine the count of each

candidate in Ck would result in the determination of Lk.Ck,

however, can be huge, and so this could involve heavy

computation. To reduce the size of Ck , the Apriori property is

used as follows .

Any (k-1)-item set that is not frequent cannot be a subset of

frequent k-item set.

Hence, if (k-1) subset of a candidate k item set is not in Lk-1

then the candidate cannot be frequent either and so can be

removed from C.

III. TECHIQUES TO OVERCOME APRIORI

A. Previous Approaches

FP-growth [3] is a well-known algorithm that uses the FP-

tree data structure to achieve a condensed representation of

the database transactions and employs a divide and-conquer

approach to decompose the mining problem into a set of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4215

smaller problems. In essence, it mines all the frequent itemsets

by recursively finding all frequent itemsets in the conditional

pattern base which is efficiently constructed with the help of a

node link structure. A variant of FP-growth is the H-mine

algorithm [4]. It uses array-based and trie-based data

structures to deal with sparse and dense datasets respectively.

PatriciaMine [5] employs a compressed Patricia trie to store

the datasets. FPgrowth* [6] uses an array technique to reduce

the FP-tree traversal time. In FP-growth based algorithms,

recursive construction of the FP-tree affects the algorithm’s

performance.

Eclat [8] is the first algorithm to find frequent patterns by a

depth-first search and it has been devised to perform well. It

uses a vertical database representation and counts the item set

supports using the intersection of tids. However, because of

the depth-first search, pruning used in the Apriori algorithm is

not applicable during the candidate itemsets generation.

VIPER [9] and Mafia [10] also use the vertical database

layout and the intersection to achieve a good performance.

The only difference is that they use the compressed bitmaps to

represent the transaction list of each item set. However, their

compression scheme has limitations especially when tids are

uniformly distributed. The dEclat [11] uses the vertical

database representation. They store the difference of tids

called diffset between a candidate k item set and its prefix k-1

frequent itemsets, instead of the tids intersection set. They

compute the support by subtracting the cardinality of diffset

from the support of its prefix k-1 frequent item set. This

algorithm has been shown to gain significant performance

improvements over Eclat[8]. However, when the database is

sparse, diffset will lose its advantage over tidset.

The Mafia algorithm [10] uses vertical database layout and

does intersection to achieve good performance. The search

strategy of the algorithm integrates a depth-first traversal of

the item set lattice with effective pruning mechanisms that

significantly improve mining performance. The Mafia

algorithm [10] uses vertical database layout and intersection

.It uses compressed bitmaps to represent the transaction list of

each item set.

The dEclat algorithm [11] makes use of the vertical

database representation where each item maintains a set of

transaction ids where this item is contained. They store the

difference of ids, called the diffset, between the candidate item

set and its prefix frequent item sets, instead of the tids

intersection set. They compute the support by subtracting the

cardinality of diffset from the support of its prefix frequent

item set.

B. Current Proposed RSTDB Algorithm and Use of

Hardware based Cache Conscious approach

The paper proposes an algorithm called RSTDB [15] which

reduces the number of scans involved in Apriori which is

implemented in C++.The Outputs are shown in Fig. 1.It is

clear from the description of the working of Apriori

Algorithm that the major computational challenges that

Apriori was facing were Multiple Scans of Transaction

database, Huge number of candidates and Tedious workload

of support counting for candidates.RSTDB tries to overcome

the above problem by Reducing passes, Shrinking number of

candidates and facilitating support counting of

candidates.RSTDB uses heuristic function which calculates

the overall number of times the scanning is going to be done ,

before actually iteration starts , this reduces the number of

passes required for frequent item set estimation. The

Algorithm is a combination of both bottom up and Top down

approach. The algorithm uses Heuristic function to implement

upward closure property. Heuristic function has been

implemented in C++ to perform the objective. Use of dynamic

memory allocation property of variables in C++ has been done

to make the Algorithm Efficient. The performance of

Algorithm depends upon the Efficiency of the Heuristic

function used. Heuristic function taken depends on two

constraints the first constraint is the number of different items

in the Database and the Total number of Transactions in the

TDB.

RSTDB Algorithm:-

STEP 1:

Calculate the size of each transaction in the Transaction

Database.

STEP 2:

Evaluate the transaction set having maximum size.

STEP 3:

Check for the Transaction set size having frequency or

support value more than the given threshold value. Set this

Transaction size as the maximum value up to which scanning

& candidate-generation step has to proceed. This will be the

maximum value of k up to which iteration has to be done.

Value HeuFn[no. of items,TDB size] = Max k (1)

Step 4 & Step 5 iterates until k = Max k

Value of k lies between 1 and Max k.

STEP 4:

Candidate-Generation

gen_cand_itemsets with the given Lk-1 as follows

Ck = (2)

for all item set I1 Lk-1 do

for all item set I2 Lk-1 do

If I1[1]= I 2 [1] I 1 [2]= I 2 [2] ... I 1 [k-1]< I 2 [k-1]

then c= I 1 [1], I 1 [2]….. I 1 [k-1],I 2[k-1]

 Ck = Ck { c } (3)

STEP 5:

Candidate Set Pruning

Prune(Ck)

for all c Ck

for all (k-1) subsets d of c do

If d Lk-1

then Ck = Ck\{c}

 (4)

Here,

k is the number of passes required.

I is the item set present in TDB.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4216

Lk is a set of candidate k-item set.

Ck is a superset of Lk.

RSTBD V/S APRIORI

For Evaluating the performance difference between the

Apriori Algorithm and RSTDB we will be considering the

example of the below transaction database. Consider the

below database having five elements A, B, C, D, E.In the

below table there are 10 transactions. We will mathematically

show as to the difference between the two approaches:-

TABLE I

TDB1 CONSISTING OF A, B, C, D, E

Transaction ID Items

100 A

101 B

102 C

103 D

104 E

105 B

106 B

107 A

108 B

109 C

The two Algorithms for the Above Transaction Database

show slight difference in terms of utilization of Memory and

execution time for different set of Threshold values. For the

TDB the two approaches RSTDB and Apriori give the

following results in terms of Space and execution time shown

by graphs of Fig. 2 and Fig. 3 calculated mathematically [14].

Space Graph RSTDB v/s Apriori

0

10

20

30

0.1 0.5 0.9 0.2 0.6 1

Support threshold%

S
p

a
ce RSTDB

Apriori

Fig. 2 Space complexity Graph for TDB1

Time Graph RSTDB V/S Apriori

0

100

200

300

0.1 0.3 0.5 0.7 0.9

Support threshold%

T
im

e RSTDB

Apriori

Fig. 3 Time Complexity Graph for TDB1

Limitations of RSTDB

1. It does not work for all conditions as it depends on the

heuristic function

2. The increased efficiency is very less.

3. Overhead is associated with heuristic function evaluation.

Result and discussion

1. The Proposed algorithm depends on the heuristic

function.

2. It is more efficient for lower threshold values.

3. It depends both on the number of different items and on

total number of transactions.

Cache Conscious Optimizations

There are several mechanisms for improving the efficiency

of frequent pattern mining using cache conscious

optimizations [13]. Some of them are-

1. Prefix Trees

2. FP-Growth Algorithm

3. Spatial Locality Related Enhancements

4. Prefetching

5. Temporal Locality Related Enhancements.

1. Prefix Trees

A prefix tree is a data structure that provides a compact

representation of transaction data set [13]. Each node of the

tree stores an item label and a count, with the count

representing the number of transactions, which contain all the

items in the path from the root node to the current node.

2. FP-Growth Algorithm

The FP-growth algorithm [3] is one of the fastest

approaches for frequent item set mining. The FP-growth

algorithm [3] uses the FP-tree data structure to achieve a

condensed representation of the database transaction and

employees a divide-and-conquer approach to decompose the

mining problem into a set of smaller problems. In essence, it

mines all the frequent itemsets by recursively finding all

frequent itemsets in the conditional pattern base which is

efficiently constructed with the help of a node link structure.

.

3. Spatial Locality Related Enhancements

A Cache Conscious prefix-tree a data structure designed to

significantly improve cache performance through spatial

locality [13]. A cache conscious prefix tree is a modified

prefix tree which accommodates fast bottom up traversals and

improves cache line usage.

4. Prefetching

Cache line Prefetching is a popular technique for reducing

the effect of cache line misses, particularly when applications

do not perform a significant amount of computation per cache

line[13].

5. Temporal Locality Related Enhancements

Temporal locality states that recently accessed memory

locations are likely to be accessed again in near future [13].

Cache designers assume that programs will exhibit good

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4217

temporal locality, and store recently accessed data in the cache

accordingly.Therefore,it is imperative that we find any

existing temporal locality in the algorithm and restructure

computation to exploit it.

6. Results and Discussion

This part mathematically proves that for the given set of

transaction databases even if dynamic memory allocation is

implemented by previous basic approach i.e. Apriori, the

prefix tree approach is more efficient in terms of processor

utilization due to the availability of the content in the memory

Consider Table-II consisting of records of 5 Transaction

databases. Also consider Fig. 4 consisting of FP-trees of the

Transaction Databases in Table-II.

The graph in Fig. 5 that has been drawn from the results

obtained after comparing the FP-trees drawn in Fig. 4 , shows

as to how the prefix tree approach is better in performance as

compared to the previous basic approach i.e. Apriori ,in terms

of memory utilization which in turn causes inefficiency in

terms of Processor utilization due to weak Hit/Miss Ratio.

Graph Showing Space Utilization

0
5

10
15
20

TD
B1

TD
B2

TD
B3

TD
B4

TD
B5

Transaction Databases

S
p

a
c
e
 R

e
q

u
ir

e
d

 f
o

r

P
ro

c
es

si
n

g

FP-Tree

Apriori

Fig. 5 Graph Representing Space Utilization for Transaction Data

Bases in TABLE II.

Graph in Fig. 5 shows the performance difference between the

two algorithms.

IV. CONCLUSION

Apriori is the simplest algorithm which is used for mining

of frequent patterns from the transaction database. The

purpose of reducing the number of scans of database to extract

frequent item set has been resolved by proposed algorithm by

using both upward and downward closure property

RSTDB although not that efficient increases the efficiency

in frequent pattern mining by some amount. It mainly

concerns with reducing the number of scans of database

involved in mining process.

The Cache optimization techniques described are going to

improve the Data mining system as they are going to improve

Hit/Miss ratio.

The Paper concludes that it would be very beneficial if we

implement a system from combination of both the proposed

approaches i.e. RSTDB using Heuristic function employing

both upward and downward closure properties and Cache

Coherence Techniques such as Prefix Tree for storing TDB

which creates data structure that increases the Hit/Miss ratio

and in turn increases efficiency of the overall frequent pattern

Mining Process.

ACKNOWLEDGEMENT

Authors would like to thank Professor and Head MBA Dr.

L.P.Pateria and Professor and Head Mathematics, Former

Dean Faculty of Science, Founder Fellow International

Academy of Physical Science (Allahabad) Dr. S.P. Singh

G.G. University, Bilaspur for there helps in our research work.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A.N. Swami, “Mining association rules

between sets of items in large databases,” Proceedings of ACM

SIGMOD International Conference on Management of Data, ACM

Press, Washington DC, pp.207-216, May 1993.

[2] Mohammed J. Zaki, “Scalable Algorithms for Association Mining,”

IEEE Transactions on Knowledge and Data Engineering, vol.12, no. 3,

pp. 372-390, May/June 2000.

[3] J. Han, J. Pei, and Y. Yin,“Mining Frequent Patterns without Candidate

Generation,” Proceedings of ACM SIGMOD International Conference

on Management of Data, ACM Press, Dallas, Texas, pp. 1-12, May

2000.

[4] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “Hmine: Hyper-

Structure Mining of Frequent Patterns in Large Databases,” Proceedings

of IEEE International Conference on Data Mining, pp. 441-448, 2001.

[5] Pietracaprina, and D. Zandolin, “Mining Frequent Item sets Using

Patricia Tries,” FIMI ’03, Frequent Itemset Mining Implementations,

Proceedings of the ICDM 2003 Workshop on Frequent Item set Mining

Implementations, Melbourne, Florida, Dec. 2003.

[6] G. Grahne, and J. Zhu, ”Efficiently using prefix-trees in mining frequent

itemsets,” FIMI ’03, Frequent Itemset Mining Implementations,

Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining

Implementations, Melbourne, Florida,December 2003.

[7] Doug Burdick, Manuel Calimlim, Jason Flannick, Johannes Gehrke,

“MAFIA: A Maximal Frequent Itemset Algorithm,” IEEE Transactions

on Knowledge and Data Engineering, vol.17, no. 11, pp. 1490-1505,

Nov. 2005.

[8] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ”New algorithms for

fast discovery of association rules,” Proceedings of the Third

International Conference on Knowledge Discovery and Data Mining,

AAAI Press, pp. 283-286, 1997.

[9] P. Shenoy, J. R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D.

Shah, ”Turbo-charging vertical mining of large databases,” Proceedings

of ACM SIGMOD Intnational Conference on Management of Data,

ACM Press, Dallas, Texas, pp. 22-23, May 2000.

[10] Burdick, M. Calimlim, and J. Gehrke, ”MAFIA: a maximal frequent

item set algorithm for transactional databases,” Proceedings of

International Conference on Data Engineering, Heidelberg, Germany,

pp. 443-452, April 2001.

[11] M.J. Zaki, and K. Gouda, ”Fast vertical mining using diffsets,”

Proceedings of the Nineth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Washington,D.C., ACM Press,

New York, pp. 326-335, 2003.

[12] R. Agrawal, C. Aggarwal, and V. Prasad, ”A Tree Projection Algorithm

for Generation of Frequent Item Sets,” Parallel and Distributed

Computing, pp. 350-371, 2000.

[13] Amol Ghoting,Gregory Buehrer,Srinivasan Parthasarthy,Daehyun

Kim,Anthony Nguyen,Yen-Kuang Chen and Pradeep Dubey “Cache-

conscious Frequent Pattern Mining on a Modern Processor” Proceedings

of the 31st VLDB Conference,Trondheim,Norway,2005.

[14] Vaibhav Kant Singh and Vijay Shah “Minimizing Space Time

Complexity in Frequent Pattern Mining by Reducing Database Scanning

and Using Pattern Growth Method” To be appeared in Chhattisgarh

Journal of Science & Technology, Coming Volume ISSN 0973-7219.

[15] Vaibhav Kant Singh and Vinay Kumar Singh “Minimizing Space Time

Complexity by RSTDB a new method for Frequent Pattern Mining” To

be appeared in Proceeding of the First International Conference on

Intelligent Human Computer Interaction ,Allahabad,2009.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4218

Fig. 1 The Output Windows in C++ of RSTDB Algorithm showing working of RSTDB.

TABLE II

TABLE REPRESENTING RECORD OF 5 TDB’S

TDB1 TDB2 TDB3 TDB4 TDB5

TID Item TID Item TID Item TID Item TID Item

T10 ABC T20 AC T30 ABCDE T40 AB T50 BC

T11 AB T21 BCD T31 ABC T41 AE T51 BCD

T12 ABE T22 BE T32 BCD T42 A T52 BE

T13 AD T23 CE T33 AC T43 ADC T53 AC

T14 BE T24 ABCD T34 ADE T44 AC T54 A

 (a) (b) (c) (d) (e)

Fig. 4 Figure Representing FP-trees for the 5 TDB’s in TABLE-II.(a)FP-Tree for TDB-1,(b) FP-Tree for TDB-2,(c) FP-Tree for TDB-3 ,(d)

FP-Tree for TDB-4 ,(e) FP-Tree for TDB-5.

