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Abstract—We study the problem of decision making with 

Dempster-Shafer belief structure. We analyze the previous work 

developed by Yager about using the ordered weighted averaging 

(OWA) operator in the aggregation of the Dempster-Shafer decision 

process. We discuss the possibility of aggregating with an ascending 

order in the OWA operator for the cases where the smallest value is 

the best result. We suggest the introduction of the ordered weighted 

geometric (OWG) operator in the Dempster-Shafer framework. In 

this case, we also discuss the possibility of aggregating with an 

ascending order and we find that it is completely necessary as the 

OWG operator cannot aggregate negative numbers. Finally, we give 

an illustrative example where we can see the different results 

obtained by using the OWA, the Ascending OWA (AOWA), the 

OWG and the Ascending OWG (AOWG) operator. 

Keywords—Decision making, aggregation operators, Dempster-

Shafer theory of evidence, Uncertainty, OWA operator, OWG 

operator.

I. INTRODUCTION

HE Dempster-Shafer theory of evidence was introduced 

by Dempster [1-2] and by Shafer [3]. Since then, it has 

been used in a lot of situations [4-5]. It provides a unifying 

framework for representing uncertainty as it can include in the 

same formulation the cases of risk and ignorance.  

When using the Dempster-Shafer framework in decision 

making, we need to aggregate the decision information. One 

of the most common aggregation methods is the ordered 

weighted averaging (OWA) operator introduced by Yager [6]. 

Since its appearance, the OWA operator has been used in a 

wide range of applications such as [7-24]. It provides a 

parameterized family of aggregation operators that includes 

the arithmetic mean, the maximum and the minimum. 

Recently, Chiclana et al [25] have developed a geometric 

version of the OWA operator, the ordered weighted geometric 

(OWG) operator. Since its appearance, the OWG operator has 

been extensively analysed by different authors [26-36]. 

Basically, it consists in combining in the same aggregation the 

OWA operator with the geometric mean.  

In [37], Yager suggested the use of the OWA aggregation 

in the Dempster-Shafer belief structure as a more general 
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formulation for decision making in the face of evidential 

knowledge. This problem has also been studied in [38-39]. In 

this paper, we suggest the possibility of using the OWG 

operator in situations of decision making under uncertainty 

where the Dempster-Shafer belief structure plays a major role. 

We also propose the use of different types of orderings 

depending on the specific problem found. Basically, we 

suggest a descending order for situations where the highest 

value is the best result and an ascending order for situations 

where the smallest value is the best result.  

In order to do so, the paper is organized as follows. In 

Section 2, we briefly comment the OWA and the OWG 

operator. In Section 3, we briefly comment the main concepts 

of the Dempster-Shafer belief structure. In Section 4, we study 

the process to follow in decision making with Dempster-

Shafer belief structure. We analyze the process using OWA 

operators in the aggregation as suggested by Yager [37]. The 

difference with Yager’s work is that we distinguish between 

aggregations that use a Descending OWA (DOWA) operator 

or an Ascending OWA (AOWA) operator. In Section 5, we 

propose the use of the OWG operator in the aggregation step 

of the decision making process with Dempster-Shafer belief 

structure. In Section 6, we give an illustrative example where 

we can see the different results obtained by using the OWA 

and the OWG operators in decision making with Dempster-

Shafer belief structure. Finally, we summarize the main 

conclusions of the paper in Section 7. 

II. AGGREGATION OPERATORS

A. Ordered Weighted Averaging Operator 

The OWA operator was introduced in [6] and it provides a 

parameterized family of aggregation operators which have 

been used in many applications [7-24]. In the following, we 

provide a definition of the OWA operator as introduced by 

Yager [6]. 

Definition 1. An OWA operator of dimension n is a mapping 

F: Rn R that has an associated weighting vector W of 

dimension n having the properties: 

(1) wj  [0, 1] 

(2) n
j jw

1
1

and such that:
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 OWA(a1, a2,…, an) = 
n

j
jjbw

1

                              (1) 

where bj is the jth largest of the ai.

From a generalized perspective of the reordering step, we 

have to distinguish between the DOWA operator and the 

AOWA operator. We should note that we consider for both 

cases a situation where the highest value is the best result. The 

DOWA operator is defined as in definition 1. 

Definition 2. An AOWA operator of dimension n is a 

mapping H: Rn R that has an associated weighting vector W

of dimension n having the properties: 

(1) wj  [0, 1]  

(2) n
j jw

1
1

and such that: 

      AOWA(a1, a2,…, an) =
n

j
jj cw

1

                            (2) 

where cj is the jth lowest of the ai. As it can be seen, the 

elements cj (j= 1, 2, …, n) are ordered in an increasing way 

[19]:  c1 c2 … cn.

The OWA operator is a mean or averaging operator. This is 

a reflection of the fact that the operator is commutative, 

monotonic, bounded and idempotent. It can also be 

demonstrated that the OWA operator has as special cases the 

maximum, the minimum and the average criteria [6]. Other 

types of aggregations with the OWA operator can be seen in 

[10,12-13,16,17-18,20,23]. 

Another factor to consider, are the two measures introduced 

by Yager [6] for characterizing the weighting vector and the 

type of aggregation it performs. The first measure, the 

attitudinal character, is defined as:  

(W) = 
n

j
jw

n

jn

1 1
                                     (3) 

It can be shown that  [0, 1]. The more of the weight 

located near the top of W, the closer  to 1 and the more of the 

weight located toward the bottom of W, the closer  to 0. Note 

that for the optimistic criteria (W) = 1, for the pessimistic 

criteria (W) = 0, and for the average criteria (W) = 0.5.

The second measure introduced in [6], is called the entropy 

of dispersion of W and it is used to provide a measure of the 

information being used. It is defined as:  

H(W) = 
n

j
jj ww

1

)ln(                                   (4)

That is, if wj = 1 for some j, known as step-OWA [16], then 

H(W) = 0, and the least amount of information is used. If wj = 

1/n for all j, then H(W) = ln n, and the amount of information 

used is maximum. 

These two measures can also be studied with the AOWA 

operator. Then, the attitudinal character (W) is defined as:  

(W) = 
n

j
jw

n

jn

1 1
                                     (5) 

It can be shown that here we also get  [0, 1]. The more 

of the weight located near the top of W, the closer  to 0, and 

the more of the weight located toward the bottom of W, the 

closer  to 1. Note that for the optimistic criteria (W) = 1, for 

the pessimistic criteria (W) = 0, and for the average criteria 

(W) = 0.5. An interesting result found when comparing the 

descending and the ascending version of the measure is that 

they are dual [15] between them. That is: OWA(W) = 1 

AOWA(W). For the entropy of dispersion, we will get the same 

index as in [6], so the measure is the same for both the 

DOWA and the AOWA operator although the reordering step 

is different.

B. Ordered Weighted Geometric Operator 

The OWG operator was introduced by Chiclana et al [25] 

and it provides a family of aggregation operators similar to the 

OWA operator. It consists in combining the OWA operator 

with the geometric mean. In the following, we provide a 

definition of the OWG operator as introduced by Xu [34]. 

Definition 3. An OWG operator of dimension n is a mapping 

F: R
+n

R
+
 that has an associated weighting vector W of 

dimension n having the properties: 

(1) wj  [0, 1] 

(2) 1
1

n
j jw

and such that: 

       OWG(a1, a2,…, an) =
n

j

w

j
j

b
1

                             (6) 

where bj is the jth largest of the ai, and R
+
 is the set of positive 

real numbers. 

From a generalized perspective of the reordering process in 

the OWG operator, we have to distinguish between the 

Descending OWG (DOWG) operator and the Ascending 

OWG (AOWG) operator [34]. The DOWG operator is 

defined as in definition 3. 

Definition 4. An AOWG operator of dimension n is a 

mapping H: R
+n

R
+
 that has an associated weighting vector 

W = (w1, w2, …, wn)
T, having the properties: 

(1) wj  [0,1]    

(2) 1
1

n
j jw

and such that:      

          AOWG(a1, a2,…, an) = 
n

j

w

j
j

c
1

                         (7) 
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where cj is the jth largest of the ai, and R
+
 is the set of positive 

real numbers. As it can be seen, the elements cj (j = 1, 2, …, n)

are ordered in an increasing way: c1 c2 … cn.

As it is seen in [25,34], the OWG operator has the 

following properties: 

(1) Commutative: any permutation of the arguments has 

the same evaluation. 

(2) Monotonic: If ai di i  OWG(a1,…, an)

OWG(d1,…, dn).

(3) Bounded: Min{ai}  OWG(a1,…, an)  Max{ai}.

(4) Idempotent: OWG(a1,…, an) = a, if ai = a, i

By choosing a different manifestation of the weighting 

vector, we are able to obtain different types of aggregation 

operators [25]. For example, with the DOWG operator we get: 

(1) Optimistic criteria: w1 = 1 and wj = 0 j  1

OWG(a1,…, an) = Max{ai}

(2) Pessimistic criteria: wn = 1  and wj = 0 j n

OWG(a1,…, an) = Min{ai}

(3) Geometric mean: wj = 1/n j  OWG(a1,…, an) =  
n

i 1
(ai)

1/n

Other types of aggregations that could be obtained with the 

DOWG operator are the olympic geometric average and the 

geometric median. For the olympic geometric average, that it 

is based on the olympic average [16,20], we should say the 

following: if w1 = wn = 0; and wj = 1/(n-2) j  1,n; then:  

      OWG(a1,…, an) = 
1

2

2

1

)(
n

j

n
jb                           (8) 

where bj is the jth largest of the ai.

For the geometric median, based on the OWA median [17], 

we should distinguish between cases where the number of 

arguments is odd or even. If it is odd, then OWG(a1,…, an) = 

b(n+1)/2, where b(n+1)/2 is the [(n+1)/2]th largest of the ai. If the 

number of arguments n is even, then we shall call bn/2 the 

lower median and b(n/2) + 1 the upper median. The lower 

median represents the (n/2)th largest of the ai and the upper 

median represents the [(n/2) + 1]th largest of the ai. Then, we 

can define the median in a different number of ways according 

to our interests or our attitudinal character. For example: 

OWG(a1,…, an) = (lower median + upper median) / 2. Other 

examples for obtaining the geometric median could consist in 

select the lower median, the upper median, or the whole range 

between the lower and the upper median. 

 Using the same methodology as for the DOWG operator, if 

we look for different types of AOWG operators [34], we get 

the following: 

(1) Optimistic criteria: wn = 1  and wj = 0 j n

AOWG(a1,…, an) = Max{ai}

(2) Pessimistic criteria: w1 = 1  and wj = 0 j  1

AOWG(a1,…, an) = Min{ai}

(3) Geometric mean: wj = 1/n j  AOWG(a1,…, an) =  

n
i

n
ia

1
/1)(

Other types of aggregations that could be obtained with the 

AOWG operator are the olympic geometric average and the 

geometric median. For the olympic geometric average we get 

the same result as with the DOWG operator although the 

reordering is different. Then, the formulation is as follows: if 

w1 = wn = 0; and wj = 1/(n-2) j  1,n; then:

  AOWG(a1,…, an) = 
1

2

2

1

)(
n

j

n
jb                           (9) 

where bj is the jth smallest of the ai.

 For the geometric median, we also get the same result 

when the number of arguments is odd although the reordering 

of the arguments is different. That is: AOWG(a1,…, an) = 

b(n+1)/2, where b(n+1)/2 is the [(n+1)/2]th smallest of the ai.

When the number of arguments is even, then, we find some 

differences. With the AOWG operator we shall call bn/2 the 

lower median and b(n/2) + 1 the upper median but now the lower 

median is the (n/2)th smallest of the ai and the upper median is 

the [(n/2) + 1]th smallest of the ai. With this information, we 

can obtain the median in a different number of ways. For 

example: AOWG(a1,…, an) = (lower median + upper median) 

/ 2. Other examples for obtaining the median are the lower 

median, the upper median, or the whole range between the 

lower and the upper median. 

III. DEMPSTER-SHAFER BELIEF STRUCTURE

The Dempster-Shafer belief structure was introduced by 

Dempster [1-2] and by Shafer [3]. Since then, a lot of new 

developments have been developed about it [4-5,37-39]. It 

provides a unifying framework for representing uncertainty as 

it can include in the same formulation the cases of risk and 

ignorance. Obviously, the case of certainty is also included as 

it can be seen as a particular case of risk or ignorance. For the 

case of risk, we find a situation of certainty when the 

probability of some outcome is one. For the case of ignorance, 

we find a situation of certainty when there is only one element 

in the set of events. Apart from these traditional cases, the 

Dempster-Shafer framework allows to represent various other 

forms of information a decision maker may have about the 

states of nature. 

A Dempster-Shafer belief structure defined on a space X

consists of a collection of n nonnull subsets of X, Bj for j = 

1,…,n, called focal elements and a mapping m, called the 

basic assignment function, defined as: 

m:  2X  [0, 1] 

such that: 
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(1) )(
1

n
j jBm = 1. 

(2) m(A) = 0, A Bj.

As we said before, the cases of risk and ignorance are 

included as special cases of belief structure in the Dempster-

Shafer framework. For the case of risk, a belief structure is 

called Bayesian belief structure [3] if it consists of n focal 

elements such that Bj = {xj}, where each focal element is a 

singleton. Then, we can see that we are in a situation of 

decision making under risk environment as m(Bj) = Pj = Prob 

{xj}.

For the case of ignorance, the belief structure consists in 

only one focal element B, where m(B) essentially is the 

decision making under ignorance environment as this focal 

element comprises all the states of nature. Thus, m(B) = 1. 

Other special cases of belief structures such as the consonant 

belief structure or the simple support function are studied in 

[3]. 

The two measures associated with these belief structures 

are the measures of plausibility and belief [3]. The plausibility 

measure Pl is defined as Pl: 2X  [0, 1] such that: 

                   Pl(A) = )(

jBA
jBm                                (10) 

The belief measure Bel is also defined as Bel: 2X  [0, 1] 

such that: 

            Bel(A) = 
AB

j
j

Bm )(                                   (11) 

Bel(A) represents the exact support to A and Pl(A)

represents the possible support to A. With these two measures 

we can form the interval of support to A as [Bel(A),Pl(A)]. 

This interval can be seen as the lower and upper bounds of the 

probability to which A is supported. From this we see that 

Pl(A)  Bel(A) for all A. Another interesting aspect about 

these two measures is that they are connected by Bel(A) = 1 – 

Pl( ) or by Pl(A) = 1 – Bel( ), where  is the complement of 

A.

IV. DECISION MAKING WITH DEMPSTER-SHAFER BELIEF

STRUCTURE

The problem of selecting an appropriate alternative in 

situations in which our knowledge about the state of nature is 

in the form of a belief structure, has been studied by different 

authors such as [37-39]. In [37], Yager proposed a more 

generalized methodology by using the OWA operator. In the 

following, we are going to summarize the process as 

suggested by Yager. 

Assume we have a decision problem in which we have a 

collection of alternatives {A1, …, Aq} with states of nature {S1,

…, Sn}. Cij is the payoff to the decision maker if he selects 

alternative Ai and the state of nature is Sj. In addition, the 

knowledge of the state of nature is captured in terms of a 

belief structure m. The focal elements of m are B1, …, Br and 

associated with each of these is a weight m(Bk). The objective 

of the problem is to select the alternative which best satisfies 

the payoff to the decision maker. In order to do that, we 

should follow the following steps: 

(1) Determine the payoff matrix. 

(2) Determine the belief function m about the states of 

nature and the decision makers degree of optimism .

(3) Calculate the collection of weights, w, to be used in 

the OWA aggregation function for each different 

cardinality of focal elements. 

(4) Determine the payoff collection, Mik, if we select 

alternative Ai and the focal element Bk occurs, for all 

the values of i and k. Hence Mik = {Cij | Sj Bk}.

(5) Calculate the aggregated payoff, Vik = OWA(Mik),

using Eq. 1, for all the values of i and k.

(6) For each alternative, calculate the generalized 

expected value, Ci, where:

Ci =
r

k
kik BmV

1

)(                                   (12) 

(7) Select the alternative with the largest Ci as the 

optimal. 

In this process, we could also introduce the AOWA 

operator instead of the traditional OWA operator. The reason 

for considering both aggregations is because of the different 

types of decisions we can find depending on the problem 

analyzed. Basically, we could distinguish between situations 

where the highest payoff is the best alternative such as in 

situations where we analyze benefits, and situations where the 

highest payoff is the worst alternative such as in situations 

where we analyze costs. Then, if for a situation of costs we 

use the OWA operator, our aggregation would not reflect 

correctly this situation as it would take first the worst result 

and the weighting vector is prepared for taking the best one. 

This problem can be demonstrated with an example. 

Example 1. Assume we want to aggregate the following 

arguments (20, 50, 30, 40) and (10, 0, 70, 60), representing 

the costs of two projects depending on the state of the nature 

that will happen in the future. Assume the decision maker is 

very conservative, then, he will have a low degree of 

optimism . Assume he uses the following weighting vector: 

W = (0.1, 0.2, 0.3, 0.4). As we can see, this weighting vector 

gives more importance to the last weight because this one is 

supposed to aggregate the worst case. As the decision maker 

is conservative, he wants to consider a pessimistic scenario in 

order to select between these two projects. If we look to the 

projects before making the aggregation, we could see that the 

first one is more conservative as its possible results are more 

stable than the second project. Then, we should expect that the 

aggregation would give us a result that shows that the first 

project is the best one. But if we use the OWA operator (Eq. 

1), that will not be the case. 
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OWA(20, 50, 30, 40) = 50  0.1 + 40  0.2 + 30  0.3 + 20 

0.4 = 30 

OWA(10, 0, 70, 60) = 70  0.1 + 60  0.2 + 10  0.3 + 0  0.4 

= 22 

As we can see, we should select the second alternative as it 

gives us a smaller expected cost. But as it was mentioned 

before, this is wrong because the arguments are more unstable 

than the first project and the decision maker was supposed to 

be conservative. The explanation is that the traditional OWA 

operator takes first the highest value, and in this case, the 

highest value is the worst possible scenario. With this 

example, it is very easy to see that these results are wrong. 

Then, this problem can be extended to more complex 

situations where it is not so easy to see directly the conflict of 

using the OWA operator in a situation of costs. 

In order to aggregate correctly in a situation of costs, we 

need to use the AOWA operator because then we consider 

first the lowest value which is the best result and so on. In this 

example, we will get (Eq. 2): 

AOWA(20, 50, 30, 40) = 20  0.1 + 30  0.2 + 40  0.3 + 50 

 0.4 = 40 

AOWA(10, 0, 70, 60) = 0  0.1 + 10  0.2 + 60  0.3 + 70 

0.4 = 48 

As we can see, with the AOWA operator we decide to 

select the first alternative as it has the lowest expected cost. 

This is in accordance with our intuition because the decision 

maker is selecting the project with more stable results as he is 

conservative.

From this example, we can conclude that we should use the 

traditional OWA operator or also called DOWA operator, in 

situations concerning benefits. But in situations where we 

analyze costs, we should use the AOWA operator. This 

conclusion could also be extended for other situations 

different from benefits and costs. In general, we should use 

the traditional OWA when we want to aggregate arguments 

where the highest value is the best result. And we should use 

the AOWA operator when we want to aggregate arguments 

where the smallest value is the best result. We should note that 

for the particular case of costs, we could solve the problem by 

using negative numbers instead of the AOWA operator as it is 

shown in [38]. But for other cases, this alternative would not 

be possible such as in the OWG operator [34] or would be 

inadequate such as in regret methods [21]. 

For the case of decision making with Dempster-Shafer 

belief structure, if we use the AOWA operator, we should 

make the following changes in the decision process: 

In Step 3, when determining the collection of weights, w, to 

be used in the AOWA aggregation function for each different 

cardinality of focal elements, we should consider that now the 

attitudinal character (W) is defined by Eq. (5). 

In Step 5, when determining the aggregated payoff, we 

should use Vik = AOWA(Mik), using Eq. 2, for all the values of 

i and k.

In Step 7, we should select the alternative with the lowest Ci

as the optimal because the best result is the one which predicts 

the lowest expected values. 

V. USING THE OWG OPERATORS IN DECISION MAKING WITH 

DEMPSTER-SHAFER BELIEF STRUCTURE

An alternative method when taking decisions with 

Dempster-Shafer belief structure is possible by using the 

OWG operator in the aggregation instead of the OWA 

operator. The motivation for using the OWG operator is 

because there are some cases where we could prefer to 

aggregate with a geometric operator instead of the traditional 

methods used previously. Here, the procedure will be the 

same as for the case with the OWA operator [37] with the 

difference that now we will use the OWG operator in the 

aggregation step. Then, we can summarize the procedure as 

follows:

Assume we have a decision problem in which we have a 

collection of alternatives {A1, …, Aq} with states of nature {S1,

…, Sn}. Cij is the payoff to the decision maker if he selects 

alternative Ai and the state of nature is Sj. In addition, the 

knowledge of the state of nature is captured in terms of a 

belief structure m. The focal elements of m are B1, …, Br and 

associated with each of these is a weight m(Bk). The objective 

of the problem is to select the alternative which best satisfies 

the payoff to the decision maker. In order to do that, we 

should follow the following steps: 

(1) Determine the payoff matrix. 

(2) Calculate the belief function m about the states of 

nature.

(3) Determine the collection of weights, w, to be used in 

the OWG aggregation function for each different 

cardinality of focal elements. 

(4) Determine the payoff collection, Mik, if we select 

alternative Ai and the focal element Bk occurs, for all 

the values of i and k. Hence Mik = {Cij | Sj Bk}.

(5) Calculate the aggregated payoff, Vik = OWG(Mik),

using Eq. 3, for all the values of i and k.

(6) For each alternative, calculate the generalized 

expected value, Ci, with: 

Ci =
r

k
kik BmV

1

)(                                 (13) 

(7) Select the alternative with the largest Ci as the 

optimal. 

As in the case with OWA operators, we could use in the 

aggregation step the AOWG operators. The reason for using 

them is also because they are necessary when analysing a 

situation of costs or a situation where the smallest value is the 

best result. We should note that in this case, it is completely 

necessary because the OWG operator cannot aggregate 

negative numbers [34]. Then, the alternative method that 

could be used with the OWA operator [38] is not applicable. 
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Then, if we use the AOWG operators in the decision process, 

we should make the following changes to the 7 steps 

mentioned before: 

In Step 5, when determining the aggregated payoff, we 

should use Vik = AOWG(Mik), using Eq. 4, for all the values of 

i and k.

In Step 7, we should select the alternative with the lowest Ci

as the optimal because now we assume the best result is the 

lowest one.

VI. ILLUSTRATIVE EXAMPLE

In the following, we are going to develop an example in 

order to understand numerically all the procedures commented 

previously. We will distinguish four cases: the aggregation 

with the OWA operator, with the AOWA, with the OWG 

operator and with the AOWG operator. We will use the same 

payoff matrix for all the cases. But we have to implicitly 

assume that when using the OWA and the OWG operator we 

are considering a decision with benefits and when using the 

AOWA and the AOWG, a decision with costs. 

Step 1: Assume we have the following payoff matrix shown 

in Table 1. 

TABLE I 

PAYOFF MATRIX 

S1 S2 S3 S4 S5

A1 20 30 10 40 40 

A2 35 20 10 50 25 

A3 30 40 30 30 10 

A4 20 35 40 25 20 

Step 2: Assume the decision maker has a degree of 

optimism of 0.6 or 60% when using OWA operators and 

assume the following belief function m about the states of 

nature:

Focal element 

B1 = {S1, S2, S5} = 0.4 

B2 = {S2, S3, S4, S5} = 0.3 

B3 = {S1, S3} = 0.3 

Step 3: Assume we have used one of the different methods 

existing [10,13] for determining the OWA weights or the 

OWG weights and we have obtained the following weighting 

vector for different number of arguments. 

Weighting vector 

W2 = (0.6, 0.4) 

W3 = (0.4, 0.4, 0.3) 

W4 = (0.3, 0.3, 0.3, 0.1) 

Step 4: Determine the payoff collection, Mik, if we select 

alternative Ai and the focal element Bk occurs, for all the 

values of i and k. Then, we calculate the bags Mik.

A1: M11 =  20, 30, 40 ; M12 =  30, 10, 40, 40 ;

M13 =  20, 10 .

A2: M21 =  35, 20, 25 ; M22 =  20, 10, 50, 25 ;

M23 =  35, 10 .

A3: M31 =  30, 40, 10 ; M32 =  40, 30, 30, 10 ;

M33 =  30, 30 .

A4: M41 =  20, 35, 20 ; M42 =  35, 40, 25, 20 ;

M43 =  20, 40 .

From the fifth step, we will distinguish 4 cases: the 

aggregation with the OWA, with the AOWA, with the OWG 

and with the AOWG operator. 

Step 5: Calculate the aggregated payoff, Vik, using Eq. 1 for 

the OWA operator, using Eq. 2 for the AOWA, using Eq. 6 

for the OWG operator and using Eq. 7 for the AOWG 

operator, for all the values of i and k. The results are shown in 

Table 2. 

TABLE II 

AGGREGATED PAYOFF 

OWA AOWA OWG AOWG 

V11 32 28 31.03 27.02 

V12 34 28 31.94 24.2 

V13 16 14 15.15 13.19 

V21 28 25 27.35 24.45 

V22 29.5 21.5 26.26 19.03 

V23 25 20 21.2 16.5 

V31 30 24 27.01 20.47 

V32 31 25 29.3 22.2 

V33 30 30 30 30 

V41 26 23 25.01 22.37 

V42 32 28 31.14 27.11 

V43 32 28 30.31 26.39 

Step 6: For each alternative, calculate the generalized 

expected value, Ci, using Eq. 12 for the OWA and the AOWA 

operator and Eq. 13 for the OWG and the AOWG operator. 

The results obtained for the different operators are shown in 

Table 3. 

TABLE III 

GENERALIZED EXPECTED VALUE 

OWA AOWA OWG AOWG 

A1 27.8 23.8 26.54 22.02 

A2 27.55 22.45 25.18 20.43 

A3 30.3 26.1 28.59 23.84 

A4 29.6 26 28.44 24.99 

Step 7: For the OWA and the OWG operator, we will select 

alternative 3 as it gives the highest expected value. For the 

AOWA and the AOWG operator, we will select alternative 2 

because in these cases we assume that the best result is the 

smallest one. 

VII. CONCLUSIONS

In this paper, we have suggested the use of the OWG 
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operator in decision making with Dempster-Shafer belief 

structure. We have distinguished between aggregations with 

an ascending or a descending order. We have seen that there 

are some problems to aggregate with descending operators 

when we are in a situation where the smallest value is the best 

result. We have demonstrated this situation with an example. 

Although there are alternative solutions with the OWA 

operator such as using negative numbers, we have seen that 

for the OWG operator it is completely necessary to use an 

ascending order because this operator cannot aggregate 

negative numbers. We have developed the decision making 

process distinguishing in the aggregation step between the 

OWA operator, the AOWA, the OWG and the AOWG 

operator. Finally, an illustrative example has been given by 

using the four different cases in the aggregation step. 

REFERENCES

[1] A.P. Dempster, “Upper and lower probabilities induced by a multi-

valued mapping”, Annals of Mathematical Statistics, vol. 38, pp. 325-

339, 1967. 

[2] A.P. Dempster, “A generalization of Bayesian inference”, J. Royal 

Statistical Society B, vol. 30, pp. 205-247, 1968. 

[3] G. Shafer, Mathematical Theory of Evidence, Princeton University 

Press, Princeton, NJ, 1976. 

[4] R.P. Srivastava, T. Mock, Belief Functions in Business Decisions,

Physica-Verlag, Heidelberg, 2002. 

[5] R.R. Yager, L. Liu, Classic Works of the Dempster-Shafer Theory of 

Belief Functions, Springer-Verlag, Berlin, 2008. 

[6] R.R. Yager, “On Ordered Weighted Averaging Aggregation Operators 

in Multi-Criteria Decision Making”, IEEE Trans. Systems, Man and 

Cybernetics, vol. 18, pp. 183-190, 1988. 

[7] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A guide for 

practitioners, Springer-Verlag, Berlin, 2007. 

[8] T. Calvo, G. Mayor, and R. Mesiar, Aggregation Operators: New Trends 

and applications, Physica-Verlag, New York, 2002. 

[9] X. Liu, “The solution equivalence of minimax disparity and minimum 

variance problems for OWA operators”, Int. J. Approximate Reasoning,

vol. 45, pp. 68-81, 2007. 

[10] J.M. Merigó, New Extensions to the OWA Operators and its application 

in business decision making, Thesis (in Spanish), Dept. Business 

Administration, Univ. Barcelona, Barcelona, Spain, 2007. 

[11] V. Torra, Information Fusion in Data Mining, Springer, New York, 

2002. 

[12] Y.M. Wang, C. Parkan, “A preemptive goal programming method for 

aggregating OWA operator weights in group decision making”, 

Information Sciences, vol. 177, pp. 1867-1877, 2007. 

[13] Z.S. Xu, “An Overview of Methods for Determining OWA Weights”, 

Int.  J. Intelligent Systems, vol. 20, pp. 843-865, 2005. 

[14] Z.S. Xu, and Q.L. Da, “An Overview of Operators for Aggregating 

Information”, Int. J. Intelligent Systems, vol. 18, pp. 953-969, 2003. 

[15] R.R. Yager, “On generalized measures of realization in uncertain 

environments”, Theory and Decision, vol. 33, pp. 41-69, 1992.  

[16] R.R. Yager, “Families of OWA operators”, Fuzzy Sets and Systems, vol. 

59, pp. 125-148, 1993. 

[17] R.R. Yager, “On weighted median aggregation”, Int. J. Uncertainty 

Fuzziness and Knowledge-Based Systems, vol. 2, pp. 101-113, 1994. 

[18] R.R. Yager, and D.P. Filev, “Parameterized “andlike” and “orlike” 

OWA operators”, Int. J. General Systems, vol. 22, pp. 297-316, 1994. 

[19] R.R. Yager, “Constrained OWA Aggregation”, Fuzzy Sets and Systems,

vol. 81, pp. 89-101, 1996.  

[20] R.R. Yager, “Quantifier Guided Aggregation Using OWA operators”, 

Int. J. Intelligent Systems, vol. 11, pp. 49-73, 1996. 

[21] R.R. Yager, “Decision making using minimization of regret”, Int. J. 

Approximate Reasoning, vol. 36, pp. 109-128, 2004.  

[22] R.R. Yager, “Generalized OWA Aggregation Operators”, Fuzzy Opt. 

Decision Making, vol. 3, pp.93-107, 2004. 

[23] R.R. Yager, “Centered OWA operators”, Soft Computing, vol. 11, pp. 

631-639, 2007.  

[24] R.R. Yager, and J. Kacprzyck, The Ordered Weighted Averaging 

Operators: Theory and Applications, Kluwer Academic Publishers, 

Norwell, MA, 1997. 

[25] F. Chiclana, F. Herrera, and E. Herrera-Viedma, “The ordered weighted 

geometric operator: Properties and application”, in Proc. 8th Conf. 

Inform. Processing and Management of Uncertainty in Knowledge-

based Systems (IPMU), Madrid, Spain, 2000, pp. 985-991. 

[26] C.H. Cheng, and J.R. Chang, “MCDM aggregation model using 

situational ME-OWA and ME-OWGA operators”, Int. J. Uncertainty, 

Fuzziness and Knowledge-Based Systems, vol. 14, pp. 421-443, 2006. 

[27] F. Chiclana, F. Herrera and E. Herrera-Viedma, “Integrating 

multiplicative preference relations in a multipurpose decision-making 

model based on fuzzy preference relations”, Fuzzy Sets and Systems, vol. 

122, pp. 277-291, 2001. 

[28] F. Chiclana, F. Herrera and E. Herrera-Viedma, “Multiperson Decision 

Making Based on Multiplicative Preference Relations”, European J. 

Operational Research, vol. 129, pp. 372-385, 2001. 

[29] F. Chiclana, F. Herrera and E. Herrera-Viedma, and S. Alonso, “Induced 

ordered weighted geometric operators and their use in the aggregation of 

multiplicative preference relations”, Int. J. Intelligent Systems, vol. 19, 

pp. 233-255, 2004. 

[30] F. Herrera, E. Herrera-Viedma, and F. Chiclana, “A study of the origin 

and uses of the ordered weighted geometric operator in multicriteria 

decision making”, Int. J. Intelligent Systems, vol. 18, pp. 689-707, 2003. 

[31] J.I. Peláez, J.M. Doña and A. Mesas, “Majority Multiplicative Ordered 

Weighted Geometric Operators and Their Use in the Aggregation of 

Multiplicative Preference Relations”, Mathware & Soft Computing, vol. 

12, pp. 107-120, 2005. 

[32] Z.S. Xu, “EOWA and EOWG operators for aggregating linguistic labels 

based on linguistic preference relations”, Int. J. Uncertainty, Fuzziness 

and Knowledge-Based Systems, vol. 12, pp. 791-810, 2004.

[33] Z.S. Xu, “An approach based on the uncertain LOWG and induced 

uncertain LOWG operators to group decision making with uncertain 

multiplicative linguistic preference relations”, Decision Support Systems,

vol. 41, pp. 488-499, 2006. 

[34] Z.S. Xu, and Q.L. Da, “The Ordered Weighted Geometric Averaging 

Operators”, Int. J. Intelligent Systems, vol. 17, pp. 709-716, 2002. 

[35] Z.S. Xu, and R.R. Yager, “Some geometric aggregation operators based 

on intuitionistic fuzzy sets”, Int. J. General Systems, vol. 35, pp. 417-

433, 2006. 

[36] R.R. Yager, and Z.S. Xu, “The continuous ordered weighted geometric 

operator and its application to decision making”, Fuzzy Sets and 

Systems, vol. 157, pp. 1393-1402, 2006. 

[37] R.R. Yager, “Decision Making Under Dempster-Shafer Uncertainties”, 

Int. J. General Systems, vol. 20, pp. 233-245, 1992.  

[38] K.J. Engemann, H.E. Miller and R.R. Yager, “Decision making with 

belief structures: an application in risk management”, Int. J. Uncertainty, 

Fuzziness and Knowledge-Based Systems, vol. 4, pp. 1-26, 1996. 

[39] R.R. Yager, “Uncertainty modeling and decision support”, Reliability

Engineering and System Safety, vol. 85, pp. 341-354, 2004. 

José M. Merigó (M’08) was born in Barcelona (Spain) in 1980. He is an 

assisstant professor in the Department of Business Administration at the 

University of Barcelona. He holds a master degree in Business Administration 

from the University of Barcelona and a Bachelor of Science and Social 

Science in Economics from the Lund University (Sweden). Currently, he is 

developing his PhD thesis in Business Administration in the Department of 

Business Administration of the University of Barcelona. 

He has written more than 40 papers in journals and conference proceedings 

including articles in Fuzzy Economic Review, International Journal of 

Computational Intelligence and International Journal of Information 

Technology. He is on the editorial board of the Association for Modelling and 

Simulation in Enterprises (AMSE). He has served as a reviewer in different 

journals such as IEEE Transactions on Fuzzy Systems and European Journal 

of Operational Research. His current research interests include Decision 

Making, Aggregation Operators and Uncertainty. 

Montserrat Casanovas was born in Barcelona (Spain) in 1947. She is a full 

professor in the Department of Business Administration at the University of 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3941

Barcelona. She holds a master degree in Business Administration from the 

University of Barcelona and a PhD degree in Business Administration from 

the Autonomous University of Barcelona. She is also an Auditor, a Financial 

Analyst and an European Financial Advisor. 

She has written more than 70 papers in journals and conference 

proceedings including articles in Fuzzy Economic Review, International 

Journal of Computational Intelligence and International Journal of 

Information Technology. She is the general secretary of the Catalonian School 

of Economists. She has also participated in several journals and in the 

scientific comitee of different conferences. She has served as a reviewer in 

different journals such as European Journal of Operational Research. Her 

current research interests include Corporate Finance, Financial Markets, 

Decision Making and Uncertainty. 


