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Inferences on Compound Rayleigh Parameters
with Progressively Type-l1 Censored Samples
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Abstract—This paper considers inference under progressive type
Il censoring with a compound Rayleigh failure time distribution. The
maximum likelihood (ML), and Bayes methods are used for
estimating the unknown parameters as well as some lifetime
parameters, namely reliability and hazard functions. We obtained
Bayes estimators using the conjugate priors for two shape and scale
parameters. When the two parameters are unknown, the closed-form
expressions of the Bayes estimators cannot be obtained. We use
Lindley.s approximation to compute the Bayes estimates. Another
Bayes estimator has been obtained based on continuous-discrete joint
prior for the unknown parameters. An example with the real data is
discussed to illustrate the proposed method. Finally, we made
comparisons between these estimators and the maximum likelihood
estimators using a Monte Carlo simulation study.

Keywords—Progressive type 11 censoring; Compound Rayleigh
failure time distribution; Maximum likelihood estimation; Bayes
estimation;  Lindley's approximation method; Monte Carlo
simulation.

I. INTRODUCTION

N the past several decades, censoring is very common in

reliability data analysis. It is usually applies when the exact
lifetimes are known for only a portion of the products and the
remainder of the lifetimes has only partial information. The
most common censoring schemes are type | and type Il
censoring. One important characteristic of these two censoring
schemes is that they do not allow for units to be removed from
the test at any other point other than the final termination
point. However, if an experimenter desires to remove
surviving units at points other than the final termination point
of the life test, these two traditional censoring schemes will
not be of use to the experimenter. The allowance of removing
surviving units from the test before the final termination point
is desirable, as in the case of studies of wear, in which the
study of the actual aging process requires units to be fully
disassembled at different stages of the experiment. In addition,
when a compromise between the reduced time of
experimentation and the observation of at least some extreme
lifetimes is sought, such an allowance is also desirable. These
reasons lead us into the area of progressive censoring. The
scheme of progressive type-11 right censoring arises naturally
in life-testing experimentation, as it is often desirable to
remove live items from experimentation at points other than
the final termination point. In this scheme, we begin the test at
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time zero with n independent live items on test. Immediately
following the first observed failure, a fixed number R; of
surviving items are removed at random from the test.
Immediately following the next observed failure, a fixed
number R, of surviving items are removed at random from

the test. This process continues until, immediately following
the time of the m" observed failure, the remaining
R,=n-R,-R,—---—R

the test. We will denote the ordered observed failure times by

m_1 items are removed from

Xi(fﬁ]';ﬁz """" Rm),i:l, ..... ,mand call them the progressive

type-I1 right censored order statistics of size m from a sample
of size n with progressive censoring scheme. It is clear that

n=m+>" Rjthe special case when R;=R,=..=

Rm =0, so that R, =Nn—m is the case of conventional

type-Il right  censored sampling. Also  when
Ri =Ry, =..=Ry_1 =0, so that m=n, the progressively
type-Il right censoring scheme reduces to the case of no
censoring (ordinary order statistics). Many authors have
discussed inference under progressive type-Il censored using
different lifetime distributions, see for example [5] - [7], [9]
and [12]. A thorough overview of the subject of progressive
censoring is given in [4], and in the excellent review article by
[3].

The two-parameter compound Rayleigh distribution (which
is denoted by CRD («, 8)) provides a population model which
is useful in several areas of statistics, including life testing and
reliability. The probability density function (pdf), and the
cumulative distribution function (cdf) of the CRD («, f) are

given, respectively, by

f(x,a, B)=(2a)BZx(B+x2)" @D x>0,a,8>0 (1)

and
2
F(x,a,ﬂ):1—(1+X7)_“,x>0,a,/3>0 @)

where « and g are the shape and the scale parameters
respectively. The compound Rayleigh distribution (CRD) is a
special case of the 3-parameter Burr type XII distribution. The
two-parameter version of this distribution was studied by
several authors, such as [1], [2] among others.
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The reliability function S(t)and hazard (instantaneous failure
rate) function H (t) at mission time t for the CRD («, B) are
given respectively by

t2
S)=(1+—)“ 3
©=a+) @
H(H =22 @
L+t

In this paper, we assume that the lifetimes have a two-
parameter CRD. Based on progressively type-11 censoring
order statistics arising from it, we obtain and discuss MLE's
and Bayesian estimation for the parameters, and some lifetime
parameters such as reliability and hazard functions. The
remaining of this paper is organized as follows. In Section I,
progressively censored samples, the corresponding likelihood
function, estimation of the parameters, reliability and hazard
functions based on the maximum likelihood method are
obtained and discussed. We also, drive the expression for the
observed Fisher information of parameters based on standard
normal approximation of the distribution of the MLE's.
Section 111 provides Bayes estimation using two types of prior
distributions, the first one is the informative continues
bivariate prior and using Lindley.s approximation form. The
second one is the continuous-discrete prior for the two
parameters. In Section 1V, for illustrative purposes, we
performed a real data analysis. Comparisons among estimators
are investigated through Monte Carlo simulations and
presented in Section V. Finally, we conclude the paper in
Section VI.

Il. MAXIMUM LIKELIHOOD ESTIMATORS (MLE)

If the failure times of the items originally on test with
progressive censoring scheme (Rq,R,....Ry)are from a
continuous population with cumulative distribution function
F(x) and probability density function f(x), then the joint
probability density function of a progressively type-Il
censored sample

X= (X xgale fnd X iz Rn)) s given by
m .

f12,0.m (4, X e Xin) = €11 f(xi, A~ F(x;, )% |;
1=

—00 < X < Xp <.... < Xy <0 (5)

where x; is used instead of Xi(:,Ff]%th’Rm) R >0,(i=12,..,m)

and

c=n(n-1-R)(n-2-R; -Ry)..(n—-m+1-R; —...—Rp_1)
In this paper, we assume that the underlying failure times

follow a two-parameter compound Rayleigh distribution, with

pdf and cdf given by (1) and (2) respectively. Substituting (1)

and (2) in (5), the likelihood function can be written as

L(e, B | X) =C(22)"uexp(-aT) (6)
where

X

m m 2
U=TI(——). and T=3 (R +1)In+L). )
i=1 B+ X i-1 B

The log-likelihood function may then be written as
e, B |i‘) =In L(a, B |_x) o« mIn(a)

m m 2y 0 £, (@®
+2Inx) - ZIn(B+x7)—aX (R +D) In(l+—).
i=1 i=1 i-1 B

Assuming that the parameters « and § are unknown, the

MLE & ,,_ and ﬁML of « and # can be obtained respectively
by solving the following likelihood equations;

ol(a, 2
(a—ﬂ‘—x)zm—g(RiJrl)ln(ler—'):O ©)
o a =1 B
ol(a, B | X 21 52
(@ |9 _ 3 SR oo
op i=1 8 + X{ i-1 1+ (X1 8%)
from (9) we obtain the MLE a y,_as
G L= m . (1)
S (R +1)In(1+ )
ML

Where ﬁ'ML can be obtained by eliminating « between (9)

and (10) , and solve the following resulting equation numeric-
ally

1
Z'm, “~ A
m _ R xf -0
xf xf
R+ In(l+ — ) I (R *Dﬁ
ML B (B M+ X))

(12)

The solution of (12) can be obtained by using the Newton-
Raphson method.
For a givent, the MLE of the reliability and hazard

functions R mL() and R mL(t) can be obtained by replacing

aand B by ay and ﬁML in (3) and (4), respectively.

The asymptotic variance-covariance matrix of the MLE for
parameters « and g is given by the elements of the Fisher
information matrix

[ Puepx]
i __E{W} i,j=12. (13)

But, the exact mathematical expressions for the above
expectation in (12) do not have exact forms. Therefore, we
take the approximate asymptotic variance-covariance matrix
for the MLE.

The asymptotic variance-covariance matrix is given by
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e p)  0*(a,p) -

y= da? Oa o
| %Uap) e p)
aﬂaa aﬁz [(a:&MLvﬁ:BML)]
B Var(a) Cov(a, ) (14)
- Cov(fp,a) VNar(p)
With
_M:_ﬂ 15
da? a? =
_5%(0"/’7):_”] R. 1M 16
T A )1+(xi2/,8) (49
e p) M 1
2 P 2
aﬂ I:lﬂ+Xi
a5 o X2 1B
- “(R +1 ! - 17
52 R oy e i) @

The asymptotic normality of the MLE can be used to
compute the approximate confidence intervals for the
parameters « and 8. Thel00(1- y) approximate confidence

intervals for « and g are, respectively
and BML tz, 1Nar (7)) (18)

am izZ,Nar () v

2 2

where z y is a standard normal variate.
2

I1l. BAYES ESTIMATION
In this section, we deal with the problem of Bayes
estimation for the parameters «, greliability and hazard
functions under squared error loss (SEL) function. For the
prior believes about the scale and shape parameters of the
model we consider two cases. The first is the informative
continues bivariate prior for the two parameters and the
second is the continuous-discrete prior for the two parameters.

A. Informative Continues Bivariate Prior

The prior distribution for the parameters of the model has
been taken as a natural conjugate prior. Since the parameter
« and g are assumed to be unknown, we suggested a bivariate

prior density as the following forms

m (e, f) = 91(a| B) . 91(P) (19)

where

B a*Lexp(-al p)
')

is a gamma prior density function when g is known and

91(a|p) =

, a, f,¢>0

gz(ﬂ)=§exp(—ﬂ/5>,ﬁ,5>o

is an exponential density function. Here, £ and & are assumed

to be known and are chosen to reflect prior knowledge about
aand S. Therefore, the bivariate prior density function of

a and S in (19) can be written as
mie )= A el L1, (20)
where A*=1/0T'(¢)

It follows from (6) and (20) that the joint posterior density
function of @ and S given x is proportion to

71 (e, A< L (@, AX) - m (@, B)
wcuB ™ o ™)L exp[—a(T +%)—§], (21)
where T and U are given in (7).

Under the squared error loss function (SEL), the Bayes
estimate of a function g =g(a,f)denoted by §gs is the

posterior mean of g given by
o I 9(e. f)L(ev, B|X) - 71 (@, B)dedB
o 1o W, BIX) - w1 (e, PYdadps
In general, the ratio of integrals in (22) can be written in
another form as follows
Io’ o 9(a. B)expll(a, B) + p(e, B)ldadp
I’ o expll (@, B) + ple, A)lded g

where I(a,ﬁ):ln[L(5|a,,8)] and p(a, B) = In(z1(a, B)).
The ratio of the two integrals given by (23) cannot be
obtained in a closed form. Therefore, we resort to use of a
numeric  integration  technique such as Lindley's
approximation. Reference [10] developed approximate
procedures for the evaluation of the ratio such that (23). For
the two-parameter case («, /) Lindley's approximation form

can be written as
A O
g(a, p) = g(a,ﬁ)+§[\/ + LW +L21745

+L19Zp1 +LogWor ]+ p1Vag + o2V (24)
where

des = E(g[0 (22)

E(gx) = (23)

2 2 adJrS I a,
V=% ¥ 6joij, Las :%1
i=1i=1 oa” of

d,s=0123,d+s=3

_op p _ 09 a9
P1 o | P2 _8/3’ 01 0 92 B

_d%g _d%g _ %
g11_aa2 ! gzz_aﬁz ! glz_gﬂ_@a@ﬂ

Vij =gioii +9joji, Wij =(gioii +9j0ij)Tii,

i=j, i,j=12
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and

Zij:39i0'iiUij+gj(0'ii0'jj+25ijz)f iij, i,j=1,2.

where oj; is the (i, j)th element of the inverse of the Fisher

information matrix. Moreover, aand ,Bare the MLEs of
aand £ and all of the quantities in (24) are evaluated at

(é,/}).Therefore, the elements ojj can be obtained as

following
O
oy op] |12 =L
o= _| ¥V (25)
- B Ol m/a
on 2] |y "y
where
2 m 2
m=—0-0z mp=am -5, ¥=—7m-0,
B a
m 2
Xi m
@i=2 — 0 0 =Y (1+R) @,
i=L B(B+X) i=1
m 2 m 3
Oy =X (A+R) @i, O3=X(1+R)ay,
i-1 i=1
m m
S1 !

=Y—— S2=Y ———+

i1 (B+x2)? i=1 (B+x2)3
In our case of CRD («, ) using the prior density (20), we
obtain
pla, B) =

In(z1 (@, B)) = In(A*) = ¢ In()
B (26)

+(¢-1In (a)—%—E
and then we get

c-1

1 a
pr=2—"-Tand pp =S
a p B
(e, B)
da0B¢
n+¢ =3, can be obtained as follows

2m 20
L30 = —3, L21 = O and L]_2 = 02
o

Also, the values of Ly = , 1,6=0123,

L03 :6_02t 1——02+20603—282
B B
It follows from (24) that the Bayes estimate of g(«, 5)
relative to the SEL is
=E(g(@ f))=9(@ )+ 0+ +Qp (27)
Where

1 m
D= +20019 + % gy ],
o 72911 7201012 e 9221

M= [p(n29,+019,) +p2 (010, + 2g )}

1
7

1 2m
Q= —5[=5 0 91+12010,) -3 ((20f

2Y
m 3m m m
+—12)91+—0102) +74 (— 019, +(—2)2 g,)]
a a a

and

6 6
73 :—2 Ol__ O2 +203,
B B
All of the functions of the right-hand side of Eq. (24) are to
be evaluated at (é,ﬁ). From Eqg. (24), we can deduce the

values of the Bayes estimates under SEL of various
parameters in what follows.

(M If g(a, B) =, then

N4 =ang =2S;.

N 1
g = O + —— I:(77zp1

v +01,02)]

L
2y°?
(1 If g(a, ) = B, then

m 2 2a°
[ = i+ Oy m, —n,(—— - O] +7,))] (28)

ﬂBs—ﬂ+— [01,0 +— /32)]
1 2 (29)
ozl (%m + =0y, ~30ym))]
(04 o

2
() if g(a,ﬂ):S(t):(l+tE)_“, then
- 1 m
Sps =S (1) {1+ ¢[,01 (@Orwy —mp01) + p2 (ng
~Ogy)] + o (@ ~1) 0F ~2505) +17; @1 + Oy wy (L-acw )]

1
T ow?
2Y¥Y

-m ,m 2m
[ o (awz_o1a)1)774+

3m

(@O, w,—n,w)n, —mn {7

0, o - (30)

ﬂznz)wl}]}

(V) If g(a,B)=H(t)= , then
ﬂ+t

(207 -

- 1 O m
Has =H () +{L+ [ (72 -0y @5) + pp (G2 - 03)]
b 4 a a g
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1 -m m m
+ _3(_0)3 O )+ [ 3)(01——(03)774——3(01603
a 20 a a
m, 3m 1 . M
__)772 +771{_201w3 -—(20; +—1, )}
a 2a 2a a

(31)
where
18)? 1
= log[L+ (t2/ BY], WA and poo_ L .
giL+ (/B @ 1+ 12/ 9) 2] Gt
B. Continuous-Discrete Prior

It is clear from the previous section that specifying a
general joint prior for « and S leads to computational

complexities. In trying to solve this problem and simplify the
Bayesian analysis, we assume that the scale parameter £ has

a discrete prior, while the conditional distribution of « given
B = pjhas a conjugate gamma prior. Now, we suppose that

the parameter is S restricted to a .finite number of values, say

BriBar Py ie.,
Pr(B=p)=n(B)=lk, k=12..v
where > I, =1,0<I <1.
Further, suppose that conditional upon EN

k=12,...v, « hasa natural conjugate gamma (ay by ) prior,
with density
bak
7o (efay ,by) = ﬁaarl exp[-byal,a >0 (32)

Combining the likelihood function in (6), and prior density
(32), we obtain the marginal posterior probability of «

conditional on 8 = S
ﬁz(a|ak,bk) L@, Bk)

73 (@] = Bi)=—
o 72 (g by) - L(a, Sy )der 33)
B A
= F(Ak) exp[-aBy 1, a>0
where

2

m X
Bk :bk +Tk, Ak =ag +m, Tk = Z(l+ R.)In[1+—ﬂ' ]
i=1 k

On applying the discrete version of Bayes theorem, the
marginal posterior probability distribution of £ is given by

be* §
P =~ (B[T) oI5 I €2 s ™™™ expl-atey
k

+T)de

then

ay
Pl :M(czm)uklk o (34)
Bk r(ak)

where

_ b2 (A
w -T2, @ = 32T epmyyg,
i=1 ﬂk +Xj k=lB€kr(ak)

The joint posterior density of « and g is
ak

7*(a, flX) = Py —5— F(A) a™Lexp[-aB,], a>0  (35)

Using the fact that the Bayes estimate of the parameter
relative to SEL function (-)gg is the posterior mean, we

obtain the Bayes estimates for different parameters as follows:

ps =Ele)= 3 5 P (el = i)
S A
= Z:‘,l % F(Ak)JO a’* exp[-eBy]da
- YR, (36)
k=1 Bk
fes = TR S, 37)
v BAk
Ras (1) = > P, —K— [* a1
Bs (t) k§1 K T(a) o a
2
xexp[-a(By +In(L+-—))]de
2 |
In(1+—)
v B
= 2P |1+ (38)
k=1 B
and
A

3 v B 2t
Hes(t)= X P k ( o a’ exp[-aBy Jda

k=1 T(A¢ +t2) Jin +12
= % pkm;"‘kz (39)
k=1 Bk(ﬂk +t )

IV. DATA ANALYSIS AND DISCUSSION

To illustrate and to compare the above different estimation
procedures, we present the analysis of one real data set
represent the survival times of a group of patients given
chemotherapy treatments. The computations are performed
using Mathematica (ver. 8.0).

Example: In this example, the original data is a subset of
data which was reported by [8] and represents the survival
times in years of a group of patients given chemotherapy
treatment. The data consisting of 46 survival times (in years)
for 46 patients are: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197,
0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466,
0.501,0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696,
0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553,
1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578,
3.658, 3.743, 3.978, 4.003, 4.033.

636



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:4, 2013

Reference [8] shows that the Compound Rayleigh model is
acceptable for these data. To illustrate the use of the proposed
methods, we have a previous data consisting of 46 survival
times from the Compound Rayleigh distribution. Suppose that
the predetermined progressively type-Il censoring scheme is
given by(R;y =20, R, =R3 =...=Ry5 =0), for simplicity
we denoted to this censoring scheme (C.S) by (20,24%).
Then a progressively type-11 censored sample of size 25 out of
46 survival times is obtained as (Xq,...., Xo5) =0.047, 0.121,

0.132, 0.260, 0.282, 0.334, 0.395, 0.458, 0.540, 0.570, 0.641,
0.644, 0.863, 1.099, 1.326, 1.485, 1.553, 2.178, 2.343, 2.416,
3.578, 3.658, 3.743, 3.978, 4.033. For this example, 21
patient’s survival times are censored, and 25 times are
observed.

Maximum likelihood estimates: The MLE’s &y , B Of
the parameters « and f using the Newton-Raphson method
when solving (11) and (12) are obtained. The MLE’s

IiML (t) and H mL (1) of the reliability and hazard functions are

obtained at (t =1.5) by substituted the resulting MLE’s of

the parameters into (3) and (4). We also compute the local
estimate of the variance-covariance matrix by inverting the
observed Fisher information matrix (14), and used that to
construct two-sided approximate 95% confidence intervals
(C.1) for the parameters using (17). The results are obtained to
be:

Gy =0.563, 95%C.| = (0.334,0829); Sy = 0.266,
950%C.1 =(0.114,0.428), Ry (t)=0.282, Hyy () =0.672

Bayes estimates: For the Bayesian approach we consider
two case:

(i) Informative continuous bivariate prior. We assume that
¢=1 and o6=2The Bayes point estimates under
SEL ()gsof a,f,S(t) andH(t)are calculated using

Lindley’s approximation forms in (28-31) and to be.

t2 o
In(l+— )+b
n(+ﬂk)+ k)

= —% |, k=12..v 40
b, (40)

Now, suppose that prior beliefs about the lifetime
distribution enable one to specify values (S(t;),t;), (S(t2),t5) .

Thus, for the two prior values S(t=t;)and S(t=t,)the
values of agand by for each value B, can be obtained

numerically from (51). If there is no prior beliefs, a
nonparametric procedure can be use to estimate the
corresponding two different values of S(t), see [11]. In this

example, a nonparametric procedure can be used as follows
1. based on the above 46 survival times, we estimate two
values of the reliability function using a nonparametric
procedure S(t;)=1-i/(n+1), i=12,..46,as follows,
see [11].
S(ty =0.047)=1-i/(n+1) =1-(1/47)=0.979, and
S(t, =1.219) =1—-(27/47) = 0.426. (41)

2. concerning the value of the MLE of the parameter
B, (ﬁML =0.266), , we assume that
Pr(k=12,..5) takes the values, 0.1, 0.2, 0.28, 0.35,
0.40, with equal probability (0.2) for each.

3. the two prior values obtained in step 1 are substituted into
(40), where ay and by are solved numerically for each
givenk,k =1,2,...5, using the Newton-Raphson method.
Table | gives the values of the hyperparameters and the
posterior probabilities derived for each g, .The Bayes
estimators under SEL (.)gg for the parameters « and g
reliability function S(t)and hazard function H (t) are

computed using results outlined in subsection (4.2). The
results are

aps =0.638, ,BBS =0.322, éBS (t) =0.271, H gs () =0.743 &BS =0.612, fgg =0.306, Rgg(t)=0.289, Hpg(t) =0.717

(ii)  Continuous-discrete prior. To implement the
calculations in this case, it is first necessary to elicit the values
of the hyperparameters (ay,bc) in the prior (32), for

k=12,..,v, It is necessary to condition prior beliefs about
a on each g, inturn, and this can be difficult in practice. An
alternative method for obtaining the values (a,,by,) can be

based on the expected value of the reliability
function S(t) conditional on g = g, k=12,.v, which is
given using (3) and (32) by

2
Elp-p, = ASOI=F W4 ma elag by)der

ay 2
_ 'k o g -1 t
= a exp[-a(Inl+—) +by )]dx
T(a) ° B

TABLE |
PRIOR INFORMATION, HYPER PARAMETER VALUES AND THE POSTERIOR
PROBABILITIES

k 1 2 3 4 5

| 0.2 0.2 0.2 0.2 0.2

k

ﬁk 0.10 0.20 0.28 0.35 0.40

ak 6.536 2.881 6.032 5.094 5.637

bk 5.536 2.221 6.835 5.447 5.447

Tk 102.175 80.456 70.581 65.117 61.762

ug | 66 4.8 1.7 2.9 2.3
x107° | x107% | x10 | x 10 x10714

Pk 0.012 0.309 0.309 0.281 0.289
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V. SIMULATION STUDY

To see how the MLEs and the Bayes estimators compare,
we carried out a Monte Carlo simulation. We compared the
Bayes estimators to the MLEs in terms of bias and means
squared error (MSE), for different sample sizes and censoring
schemes. For a particular n,mand a censoring scheme R , we
generate a progressively censored sample from the C.R
distribution with ¢ =000 and £ =000 using the algorithm

presented in [4] according to the following steps:
1. Generate m independent Uniform (0,1) observations

Wi, Wo,...,. W, .

2. Determine the values of the censored scheme R; for
i=12,.,m.

3. Set E; :1/(i+ZrJT‘:m_i+le) for i=12,..,m.

SsetV; =W.5 for i=12,..,m.
Set Uimn =Ui =1-V ¥V 1..Vosia for
i=12..m Then, U, U,.U,. required
progressively type-ll right censored sample from the
Uniform (0,1) distribution.

6. Finally, for (=3, f=0.5),.we set Xi’mnzxizF‘l(Ui)

1

“[AL-A-UY YR, for i =12,..,m.

The resulting sample X4, X5,...,X\,is the required

progressively type-II right censored sample from the CRD.
Using the algorithm described above, random progressively
type-1l censored samples of various sizes & censoring
schemes are generated from the CRD with (a =2.5, #=0.5).
In each case, we compute the MLEs and the Bayes estimators
of the parameters « and g reliability function S(t) and hazard

function H(t) . We replicate the process 1000 times and

is the

compute the estimated risks (ER) computed by averaging the

squared deviations over the repetitions. The results, up to
three decimal places, are reported in Tables Il and I11.

20 0.137 | 0.129 | 0.117 | 0.112 | 0.106 | 0.091

10 ,309)

TABLE 11l
THE ER OF THE ESTIMATES FOR S(t) AnD H () wiTH T=1.5 AND N=50

m Scheme s@ | HO [ s | HO | s [ HO
ML Bayes

Lindley Continuous-

discrete prior

30 %0 0.088 | 0.012 | 0.007 | 0.009 | 0.007 | 0.008
(20,29™)

30 %0 0.016 | 0.024 | 0.022 | 0.013 | 0.021 | 0.011
(297" ,20)

30 0.021 | 0.046 | 0.031 | 0.018 | 0.028 | 0.012

%0
(15 ,20140)

20 «0 0.025 | 0.110 | 0.017 | 0.018 | 0.014 | 0.016
(3019™)

20 %0 0.041 | 0.121 | 0.024 | 0.027 | 0.020 | 0.021
19" ,30)

20 0.059 | 0.129 | 0.036 | 0.040 | 0.031 | 0.035

10 ,309)

TABLE Il
THE ER OF THE ESTIMATESFOR @ AND fF wiTH N = 50
m Scheme a | Jii a | i | a | F;
ML Bayes
Lindley Continuous-
discrete prior
30 0 0.089 | 0.082 | 0.051 | 0.044 | 0.037 | 0.022
(20,29 )
30 %0 0.100 | 0.094 | 0.077 | 0.056 | 0.042 | 0.036
(29 ,20)
30 %0 *0 0.101 | 0.096 | 0.083 | 0.066 | 0.063 | 0.054
(15 ,20147)
20 0 0.118 | 0.110 | 0.104 | 0.095 | 0.078 | 0.066
(30,19 )
20 0 0.126 | 0.121 | 0.111 | 0.100 | 0.096 | 0.072
(19 ,30)

VI. CONCLUSIONS

Censoring is a common phenomenon in life-testing, and
reliability studies. The subject of progressive censoring has
received considerable attention in the past few years, due in
part to the availability of high speed computing resources,
which make it both a feasible topic for simulation studies for
researchers, and a feasible method of gathering lifetime data
for practitioners. It has been illustrated by [13], that the
inference is feasible, and practical when the sample data are
gathered according to a type-ll progressively censored
experimental scheme. In this article, we have considered the
maximum likelihood (ML), and Bayes estimates for some
survival time parameters, reliability function, and hazard
function, as well as the parameters of the CRD using
progressively type-1l censored data. MLEs, and the
corresponding variance-covariance matrix, are obtained. We
have also proposed a Bayesian approach to estimating the
model parameters. Compared the MLEs and Bayes estimates
obtained by numerical simulation in terms of the estimated
risks (ER) for different censoring schemes. It is observed that
overall, the Bayes estimators perform better, when compared
with the MLEs. From the results, we observe the following:

i. All of the results obtained in this article can be
specialized to both the complete sample case by taking
(m=n,r=0,i=123,..m), and the type-ll right

censored sample  for (;=0,i=123,..,m-1,

My =N—m).

ii. The use of a discrete distribution for parameter C
resulted in a closed form expression for the posterior
pdf, and the equal probabilities in the discrete

distribution cased an element of uncertainly, which can
be desirable in some cases.
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From Tables Il and Ill, as the effective sample
proportion m/n increases, the estimated risk of the
estimators, reduce significantly. For a fixed n and
m, we can determine the censoring scheme which is

most efficient; for example, we observe that the
censoring scheme rp=n-m, r, =..=r, =0, seems
to provide the smallest variance for the estimate of the
reliability, and hazard functions.

The type-1l progressive censoring scheme described in
this paper can be generalized to accommodate censoring
on the left as well. We may assume that the observation
of failures begins at the time of the (s+1)th failure, at

which time rgqsurviving units are removed from the

sample. The exact failure times of the S units which are
known to have failed before this starting time are
unknown.
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