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Abstract—Medical applications are among the most impactful 

areas of microrobotics. The ultimate goal of medical microrobots is 

to reach currently inaccessible areas of the human body and carry out 

a host of complex operations such as minimally invasive surgery 

(MIS), highly localized drug delivery, and screening for diseases at 

their very early stages. Miniature, safe and efficient propulsion 

systems hold the key to maturing this technology but they pose 

significant challenges. A new type of propulsion developed recently, 

uses multi-flagella architecture inspired by the motility mechanism of 

prokaryotic microorganisms. There is a lack of efficient methods for 

designing this type of propulsion system. The goal of this paper is to 

overcome the lack and this way, a numerical strategy is proposed to 

design multi-flagella propulsion systems. The strategy is based on the 

implementation of the regularized stokeslet and rotlet theory, RFT 

theory and new approach of “local corrected velocity”. The effects of 

shape parameters and angular velocities of each flagellum on overall 

flow field and on the robot net forces and moments are considered. 

Then a multi-layer perceptron artificial neural network is designed 

and employed to adjust the angular velocities of the motors for 

propulsion control. The proposed method applied successfully on a 

sample configuration and useful demonstrative results is obtained.

Keywords—Artificial Neural Network, Biomimetic Microrobots, 

Flagellar Propulsion, Swimming Robots. 

I. INTRODUCTION

INIATURE swimming robots could be greatly 

beneficial for screening and treatment of many diseases. 

Due to their small size, micro swimming robots operate 

in very small Reynolds (Re) number. A low Reynolds number 

infers that inertial forces are less significant or even negligible 

compared to viscous forces. Therefore, microscale swimmers 

in general experience drastically different hydro-dynamics 

compared to conventional swimming robots. Thus, propulsion 

mechanisms generally used in macroscale swimming robots 

may fail in micro scales. This problem motivates researchers 

to develop new concepts and design efficient systems for the 

propulsion of swimming microrobots. Following on, some of 

the important related works are reviewed and discussed.  
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There are few biomimetic swimming robot, mostly fin-

driven, developed [1]-[4]. Since fish-like biomimetic robots 

rely on inertial forces for propulsion, miniaturization will 

make them ineffective [1]. Another design was introduced by 

Honda, Arai and Ishiyama [4]. In this method an external 

magnetic field is used to rotate a small ferromagnetic screw in 

liquid. The advantages of this machine are that it does not 

require any power source or controller on the machine and it 

is not tethered which makes it very attractive for medical 

purposes. It has been demonstrated that this spiral type 

machine can swim in liquids of various viscosities in a broad 

range of Re numbers. However, speed limitation is the main 

disadvantage of this machine. For the frequency higher than 

the frequency which corresponds to the maximum acquirable 

speed, the rotation of the machine could not synchronize to 

the rotational frequency of the external field and the velocity 

decreased. Besides the speed limitation issue, there are other 

issues associated with the usage of a magnetic field: (1) 

Patients with pacemakers, metal implants and bullet wounds 

can not be subjected to magnetic fields. Magnetic force can 

pull on these objects, cutting and compressing healthy tissue. 

(2) Considering the low speed of the robot, the patient may be 

required to stay in the magnetic field for longer than the time 

allowed by FDA regulations. (3) Gradient fields can produce 

eddy currents in the patient and cause heating. This is not 

usually a concern in Magnetic Resonance Imaging (MRI), but 

it might become an issue if the robot is moving inside the 

body. In 2006 Behkam and sitti [5] proposed a novel safe, 

miniature and energy efficient propulsion system potentially 

used for all patients with no restriction. Also, the proposed 

method does not subject the patients to the discomfort of 

staying in magnetic field for an extended period of time. Their 

proposed biomimetic propulsion concept is inspired by the 

peritrichous flagellation used by bacteria such as E. Coli, 

depicted in Fig. 1. The flagella of these cells are randomly 

distributed over the cell surface and each flagellar motor 

rotates independently of the others. Hydrodynamic 

interactions among flagella cause them to coordinate, 

coalescing and bundling behind the cell during swimming [6]. 

The flagellum is a propulsive organelle that includes a 

reversible rotary motor embedded in the cell wall, and a 

filament that extends into the external medium [7]. The 

filament is a long (~10 µm), thin (~20nm) helix (2.5 µm pitch, 

0.5 µm diameter) that turns at speed of ~100 Hz. This 
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propulsion system can perform effectively even at very small 

scale and low Re numbers. 

Fig. 1 Transmission electron microscopy (TEM) image of E. Coli

On the other hand, the Behkam and sitti’s model is a 

theoretical approach and is only applicable to single flagellum 

architecture [5]. For multi-flagella concept that is presented 

and examined by Taheri and Mohammadi-Amin [8], the 

numerical approach should be used. This propulsion method is 

suitable for the swimming robots which are intended to swim 

in low velocity biofluids. Potential target regions to use these 

robots include eyeball cavity, cerebrospinal fluid and the 

urinary system. In this paper, we present a novel concept and 

numerical strategy to design multi-flagella architecture of 

swimming robots. This architecture has some important 

advantages with respect to single flagellum architecture: more 

propulsion, enhancement of maneuverability, better capability 

to optimum design (more design parameters) and last but not 

least, it’s a natural rule! 

II. LOW REYNOLDS NUMBER FLOW MODELING

Reynolds number is defined as vl/ , where  and µ are 

density and dynamic viscosity of the fluid, respectively, v is 

the flow velocity and l is the characteristic dimension of the 

object. Reynolds number is defined as the ratio of inertia 

forces to viscous forces and characterizes the fluid flow. For 

the micro scale objects moving in water, due to the size of the 

object and fluid properties, Re<<1, that means viscous effects 

are dominant and inertial forces are insignificant. For this type 

of flow Navier-Stokes equations reduces. So fluid dynamics in 

problems of microorganism motion and microrobots, where 

length and velocity scales are very small, is well-modeled by 

the Stokes equations for incompressible flows, 

0 , 0 .P U f U (1)

III. NUMERICAL STRATEGY

In this research, the multi-flagella propulsion system with 

separate motor for each flagellum (Fig.2) is investigated using 

regularized 3D stokeslet and rotlet theory. The rigid (not 

flexible) multi-flagella dynamic is modeled by forces applied 

on the flagella points and by a torque at the base of each using 

regularized stokeslet and rotlet theory [6], [9]. 

A. Solution of Stokes Equations  

The fluid velocity field due to the forces is described by 

regularized stokeslets and the velocity due to the torques by 

the associated regularized rotlets. In the typical stokeslet & 

rotlet theory, singularities in the velocity expression are due to 

the assumption of having point-forces and point-torques. 

However, by regularized approach, the singularities can be 

eliminated through the systematic regularization of the flows 

described above by considering forces and torques that are 

applied not at single points but within small spheres centered 

at those points. In this way, the forces and torques are highly 

concentrated but are spread over a small neighborhood of the 

application points. The regularized 3D stokeslet and rotlet 

solution is given by [6], 
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Notice that as  approaches zero, we recover the original 

stokeslet/rotlet expression. This formula expresses analytical 

solutions to a regularized version of the Stokes equations in 

which the forces and torques are not applied at single points, 

but are distributed over a small neighborhood of the 

application point [6]. This closed form solutions give us a 

velocity field that can be used to track moving particles in the 

fluid. In our numerical approach, for flow field simulation by 

stokeslet and rotlet, all flagella are divided to finite number of 

nodes and forces on these nodes are estimated by Resistance 

Force Theory and new approach of “local corrected velocity” 

which uses the velocity field of previous iteration to calculate 

the local normal and tangential velocities when the helical 

structure rotates. This way considers the effects of neighbor 

flagella in calculations [8]. The geometrical parameters of a 

flagellum are shown in the figure (3). 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:6, 2009

726

Fig. 2 A typical multi-flagella architecture for swimming robot in 

micro-scale (N=50 flagella) 

Fig. 3 Schematic of the microscale swimming robot with helical 

wave propulsion (single flagellum) 

B. RFT Theory 

Hancock developed very useful relationships for calculating 

the normal and tangential coefficients of viscous resistance 

acting on the surface of a long thin cylindrical filament 

moving through a viscous fluid. This is known as resistive 

force theory (RFT).The tangential and normal forces acting on 

a cylindrical element of length S according to RFT (coupled 

with local corrected velocity approach) are in the following 

form, 

,

,

old

n n helix n

old

l l helix l

F C V S

F C V S
                                              (5)

where Vn and Vl are the normal and tangential velocities at the 

flagellum node at previous time respectively, and Cn,helix and 

Cl,helix are the corresponding coefficients of resistance driven 

empirically by Johnson & Brokaw [10] for a flagellum with 

both free ends, 
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After forces calculation at all flagella nodes in each time 

step, we simulate the overall flow field around the robot. By 

considering a cylindrical control volume just around the 

propulsion system and applying the Newton’s second law to 

it, we calculate the net propulsion (forces & moments) 

produced by the multi-flagella system. By this approach, we 

investigate the effects of flagella shape parameters such as 

flagella thickness and angular velocities (with its direction) of 

each flagellum on overall flow field around the robot and on 

the robot net forces and net moments. As it is clear, a designer 

has more parameters to reach optimum design for a specific 

mission in this kind of multi-flagella microrobots. 

C. ANN for Propulsion Control 

For trajectory control of the swiming robot, firstly, designer 

should know the relation between the forces and moments and 

angular velocities of the flagella to adjust the rotation rate of 

the motors for a given required loading (fx, fy, fz, Mx, My, Mz).

By our numerical strategy, we can set the rotation rates of 

flagella and calculate the forces and moments on the robot but 

now we have an inverse problem. In general, the relation 

between these loading and angular velocities is complex and 

fully nonlinear in nature, so we should treat a careful trend.
In terms of new methodologies for multi-dimensional 

estimation, neural networks are promising technology because 

of their ability to be trained and used for investigation of 

systems that involve nonlinear dynamics. Because of this 

proven capacity, neural networks have been applied in system 

identification. An artificial neural network (ANN) is a 

massively parallel distributed processor made up of 

interconnected processing units. The fundamental information 

processing unit is called as neuron or node, which is the 

mathematical abstraction of the neuron in the biological 

science [11]. One popular and successfully applied ANN 

model is the multi-layer perceptron (MLP). The MLP has a 

multilayer feed-forward configuration, and it is trained in a 

supervised (target-oriented) manner with the highly popular 

error back-propagation learning algorithm. Typically the MLP 

has input, hidden, and output layers. Note that a synaptic 

weight is associated with each connection. Error back-

propagation learning consists of two passes through the 

network on a layer-by-layer basis: a forward pass and a 

backward pass. During the forward pass the synaptic weights 

of the network are all fixed. 

In this research, we have designed a multi-layer perceptron 

neural network (MLPR) with one hidden layer. For example, 

for a robot with N=3 flagella the MLPR has the 6-50-3 

architecture. This ANN is employed to estimate the angular 

velocities of the motors for a given (fx, fy, fz, Mx, My, Mz)

(fig.4). For ANN training, the results of the computational 

code (based on stokeslet & rotlet theory) for different angular 

velocity combinations include positive and negative directions 

of rotation are used. After training, the ANN learns the 

relation between inputs and outputs and is used to adjust 

flagella angular velocities. 
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Fig. 4 Schematic of the ANN Architecture (6-50-3) for propulsion 

control, N=3 flagella 

To have optimum accuracy and computational cost, it is 

necessary to examine different learning rates in neural 

network training. Figure 5 shows the convergence history of 

the problem for the best results base on solution accuracy and 

computational effort which are obtained for learning rate 

equals to 0.005. As it is clear, for greater learning rate values, 

we have less accuracy but more convergence rate. As is 

shown in the figure 6, by selection of the learning rate greater 

than 0.006, one can see more serious oscillations in 

convergence history and faster error increase. The activation 

functions in ANN should be continuous, in this research the 

activation functions in hidden and output layers are the 

tangent hyperbolic and linear function respectively. The ANN 

has been tested for some test cases and results indicate good 

agreement between the ANN predictions and the 

computational code. For instance, the below table shows a 

comparison between ANN predictions for the case with given 

(fx, fy, fz, Mx, My, Mz) and the exact values with the same 

loading (generated by code). So the trained ANN can be used 

to adjust the angular velocities of the flagella of the robot to 

achieve the required forces/moments for tracking a trajectory. 

TABLE I

ANN RESULT FOR AN EXAMPLE CASE

Angular velocities 1 (Hz) 2 (Hz) 3 (Hz) 

Computational code -800 -800 +800 

ANN results -801.13 -799.83 799.89 

Fig. 5 Learning history diagram for the best learning rate = 0.005

for N=3 flagella 

Fig. 6 Learning history diagram in unstable region for             

learning rate = 0.008 for N = 3 flagella 

IV. RESULTS

The figure 7 indicates a comparison between the results of 

our numerical approach and behkam’s theoretical model for 

the single flagellum case that are in good agreement and 

validates our approach. Figures 8 and 9 shows the flow field 

produced by three-flagella propulsion system (two clockwise 

and one counterclockwise) with rotation rates of 800 Hz. 

As you see the axial velocity in this manner produces the 

effective thrust force and moments for the microrobot to 

change its heading but single flagellum microrobot is weak in 

this action. This fact is compatible with the experimental 

observations conducted using a small three-flagellar 

swimming robot (fig. 10). So as it’s clear, the multi-flagellar 

based robots are more maneuverable and they just need an 

efficient control system such as an ANN-based electrical chip.

Fig. 7 Comparison between the numerical and theoretical results for 

robot velocity for single flagellum case 
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Fig. 8 Computed flow field (view from behind the robot)

Fig. 9 Axial velocity viewed from behind the robot for N=3 flagella 

Fig. 10 testing model for multi-flagella propulsion concept

V. CONCLUSION

In this paper, a numerical strategy is proposed to design 

multi-flagella propulsion systems. The strategy is based on the 

implementation of the regularized stokeslet and rotlet theory, 

RFT theory and new approach of “local corrected velocity”. 

Then a multi-layer perceptron artificial neural network is 

designed and employed to adjust the angular velocities of the 

motors for propulsion control. The proposed method applied 

successfully on a sample configuration with three flagella. 

Microrobots with this kind of propulsion system can be used 

in the human body regions with low flow inertia like eyeball 

cavity, cerebrospinal fluid and urinary system. 
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