
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1689

Abstract—Fault tree analysis is a well-known method for
reliability and safety assessment of engineering systems. In the last 3
decades, a number of methods have been introduced, in the literature,
for automatic construction of fault trees. The main difference
between these methods is the starting model from which the tree is
constructed. This paper presents a new methodology for the
construction of static and dynamic fault trees from a system Simulink
model. The method is introduced and explained in detail, and its
correctness and completeness is experimentally validated by using an
example, taken from literature. Advantages of the method are also
mentioned.

Keywords—Fault tree, Simulink, Standby Sparing and
Redundancy.

I. INTRODUCTION

AULT tree is widely used in the reliability and safety
assessment of engineering systems for over 40 years. The

fault tree forms a basis for the analysis of a system primary
design, and assuring system non-functional requirements
(such as reliability, availability and safety). A fault tree is a
graphical representation of the relations between basic failures
and a specific undesired system failure (Top event). The main
result of a fault tree analysis is the probability of occurrence
of the Top event. The procedure consists of two steps;
construction of the fault tree, and analysis of the tree. In the
first step the tree is constructed from a model of real system,
automatically, or manually. In the next step, the constructed
fault tree is analyzed, qualitatively or quantitatively.

A. Fault Tree Construction Methods
Taking into account the high complexity of today’s

technical systems, manual construction of fault trees is, in
many cases, not possible within the limits of existing time and
budget constraints. Manual construction is a time-intensive,
costly, laborious, usually incomplete, and prone to errors-of-
omission and inaccuracies. Automatic generation of fault tree
permits saving time and effort, and increases the quality of
results. Completeness, correctness, and consistency of the
generated fault tree are also guaranteed [1] Automatic fault
tree generation allows the analyst to concentrate on system
definition, speeds up the analysis and verification of complex
systems [2], and provides faster risk analysis [3]. It ensures

Manuscript received April 28, 2008.
F. Tajarrod and G. Latif-Shabgahi are with the Computer group, Electrical

Engineering Department, Power and Water University of Technology, Tehran,
Iran (e-mail: f.tajarod@Gmail.com).

the uniform handling of the different system variants, and thus
it makes the exhaustive analysis of the system within a short
period of time leading to reduce costs associated with manual
fault tree analysis. So, in the design phase the system plan can
be modified based on the on-line results of the safety analysis.

A variety of construction techniques have been introduced
in the literature; each has some strong and some weakness
points. Reference [4] developed a fault tree construction
methodology for electrical systems from the failure transfer
function of system components. This method was later
modified by a number of authors. Reference [5] improved the
method to deal with control loops in the system by using state-
transition table of system. The authors of [6] used digraphs
with operators to cope with control loops. Decomposition of a
plant into a set of control loops to construct fault trees was
then presented in [7]. The fault tree synthesis algorithm of [8]
was based on a mini-fault tree. These mini-fault trees are
generated from propagation equation, event statements, and
decision tables. The ‘relations’ between process variables and
component states to model the fault propagation in the system
has been used in [9]. Reference [10] developed a quantitative
procedure to build fault tree from a schematic diagram of
electrical systems. In [11] another methodology based on
extended decision tables of system components was presented.
Reference [12] presented a rule-based approach to construct a
system fault tree from its reliability block diagrams. In the last
decade, some useful methods have been introduced to the
construction of fault trees from a system topology diagrams.
This type of methods avoid the tedious work of generating
decision tables, failure transfer functions, state transition
tables, diagraphs, bigraphs and etc. The works explained in
[13] and [14] are example of this type of methods. The main
advantage of these approaches is that the established models
within the library can be reused in different applications and
can be easily modified or extended to new component models.

This paper introduces a novel methodology for the
construction of a system fault tree. The starting model is the
Simulink-model of the real system. The main advantage of
Simulink representation of a system topology is its widely
application in the modeling and simulation of engineering
systems. The construction of Simulink-based fault tree has not
been addressed in the literature; however, some useful
comments and ideas have been explained in [15]. The
construction method will be adequately explained and the
procedure will be introduced through examples. Of the
advantages of our methodology are: the flexibility, scalability,
and its modularity to other popular methods; all of these are

A Novel Methodology for Synthesis of Fault
Trees from MATLAB-Simulink Model

F. Tajarrod, and G. Latif-Shabgahi

F

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 631 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1690

explained in section V. The organization of this paper is as
follows. In section II the novel construction methodology is
introduced. Section 3 gives an example for the proposed
method. Section IV lists the advantages of our methodology.
Finally, some concluding remarks are given in section V.

ABBREVIATIONS

CSP: Cold Spare gate
DFTA-code: The name of our dynamic fault tree analysis
program
FDEP: Functional Dependency gate
FTC-code: The name of our fault tree construction program
HSP: Hot Spare
MAS: Mission Avionics System
MofN: M out of N gate
PAND: Priority-And gate
SFTA-code: The name of our static fault tree analysis program
VM: Vehicle Management

II. THE NOVEL METHOD

A. System Topology
In this method, the system is first defined in the Simulink

environment. There is no limitation for a user in the designing
of system model. The user can take benefit all of the
capabilities of Simulink. Two points should be considered in
the implementation of the model:

Each component and sub-system should have a unique
name.
Components or sub-systems performing N distinct functions
(multi-function components), are considered as N virtual
separate components. This enables the user to define the
whole system as a collection of single-failure components.
For example, the failing of a component with two functions
A and B, might be the result of the failure of either A or B
or both. It is obvious that failure impact of A is different
from that of the B.
Multi-function components are identified by counting the

number or variety of their inputs or outputs. A component
with 2 distinct outputs or 2 distinct inputs is a double-function
component.

Once the Simulink model is constructed, the system
description (defined below) and the user-defined Top event
are taken for building the Extended model of the system.

The Extended model is then used to generate the FAULT
TREE diagram of the system. The tree is then analyzed by
using the failure probability (P) or failure-rate probability ()
of basic events.

Fig. 1 illustrates the flow-chart of the method. In section II-
A the detailed description of segment A (of the Fig. 1), and
the detailed explanation of segment B will be presented in
other paper of these authors, elsewhere.

Fig. 1 Flow-chart of the method

B. Fault Tree Construction
Having constructed the system topology in Simulink, the

user defines the top event, and enters the functional and
behavioral information of the system to build its Extended
model. The Extended model determines that i) which
components have no impact on the occurrence of Top event,
ii) which set of components or subsystems co-operate toward
a special aim, and iii) which components or subsystems
support each other toward a specific goal. The following steps
are used to the construction of the Extended model.

FIRST STEP: IDENTIFICATION OF COMPONENTS
Once the Top event is specified, the type of all system

components must be identified. We have classified
components into 7 groups; “no-affected”, “affected”,
“effected”, “primary”, “alternative”, “priority”, and “usual”
components. Components that their failures have not impact
on the failing of the whole system or the failure of other
components are considered as “no-affected” type components.
A component, for which there is no interest for its impact on
the Top event, is also considered as “no-affected” component.
A component that its failure impacts another component (and
makes it failed or unusable) is called “affected” component.
For example, the trigger component of a FDEP gate of
dynamic fault trees [16] is of this type. Components that their
failure is occurred due to the failure of another component are

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 632 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1691

considered as “effected” components. For example, the
dependent component of a FDEP gate is of this type. A basic
component with cold-sparing gate is labeled as “primary”
component. And the other non-primary components of a cold-
sparing gate are labeled as “alternative” components. A
component with ith “priority” in a subsystem consisting of i
components is the one whose failure after the occurrence of (i-
1) failures will cause the whole subsystem failures. Other
effective components on the Top event are labeled “usual”
components.

SECOND STEP: IDENTIFICATION OF SUBSYSTEMS
Once the components are labeled, the subsystems should be

determined. A subsystem is a group of components to perform
a specific task. Two types of subsystems are defined:
“redundant” and “usual”. A “usual” subsystem consists of co-
operating components toward a common function (e.g. Trip
Valve). And a “redundant” subsystem is the one consists of
replicated or supporting components. ”Redundant”
subsystems are classified into 3 groups: “M-of-N”, “CSP” and
“PAND”.

After the identification of components and subsystems, the
Extended model is constructed. This model is now ready to be
delivered to our program to generate the fault tree model of
the system in the Simulink window. The generated tree can be
resized, moved and reshaped based on the user’s wish. It can
be also copied and used as a sub-tree in another tree. The tree
can also be edited directly from MATLAB command line.

These steps are shown for a simple mechanical system in
Fig. 2.a. The Top event, here, is “no-fuel into barrel E”. Fig.
2.b indicates the block diagram of this system in the Simulink
environment. Fig. 2.c shows the Extended model of this
system, constructed by using the above-mentioned steps. The
generated fault tree is indicated in Fig. 2.d.

(a)

(b)

(c)

(d)

Fig. 2 a) A mechanical system. b) System Simulink model. c)
Extended model d) Constructed fault tree

III. A CASE STUDY

In this section, the “Mission Avionics System” taken
from [17] is studied for presenting and illustrating our
methodology. Fig. 3 shows the original system model of
MAS. The fault tree of the system will be a dynamic fault tree
and hence this is a good example for presenting the purposed
methodology.

The main components of this system are:
vehicle management component,
crew station control & display,
mission & systems management (mgmt),
local path generation,
Scene & obstacle control.
One processing unit is required for the crew station

functions, mission and system management, and local path
generation. Each of these units is supplied with a HSP back-
up to take over control to detect an error. For example,
mission & system management has a primary unit, called
system mgmt a, and an active HSP back-up, called system
mgmt b. The scene and obstacle and VM units both require
more functionality than 1 processing units, each of which also
has an active back-up.

In addition to the HSP backups, two additional pools of
spares are provided, each containing two CSP processing
units. Spare1 and Spare2 can be used to cover the failure of
the first

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 633 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1692

Fig. 3 Mission Avionics System

2 processors in the units other than the VM.VM Spare1 & VM
Spare2 cover the failures in the VM unit. The units are
connected by 2 triplicated bus systems; the first is the data bus
and the second is the mission management bus. The VM has
an additional duplicated bus, the vehicle management bus.
The system fails in the following three cases:

any of the systems cannot perform the functions, or
both the memories fail, or
all the busses in any one type fail.

MATLAB-Simulink model of MAS system is shown in
Fig. 4.

To construct the dynamic fault tree model of this system the
above mentioned steps are performed. All Buses and
Memories are labeled as usual components. ‘vehicle
management component’, ‘crew station control & display’,
‘mission & systems management’, ‘local path generation’ and
‘scene & obstacle control’ are the primary components of CSP
gate, thus they are labeled as ‘Primary’ components.

Fig. 4 MATLAB-Simulink model of MAS system

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 634 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1693

The remaining components are of type ‘alternative’; ‘VM
spare1’ and ‘spare1’ are named alternative1, and ‘VM spare2’
and ‘spare2’ are named alternative2 in this modeling. Next,
we should built subsystems. ‘Memory1’ and ‘Memory2’ are
assumed as a redundant subsystem of type MofN.
‘Background data buses’ build the next subsystem, ‘Mission
management buses’ make another subsystem, and ‘vehicle
management buses’ build the next subsystem. These three
subsystems are redundant of type MofN. Any primary
component along with the two alternative components built a
unique CSP subsystem. These two alternative components are

copied and build another CSP subsystem with the next
primary component. This is done for all of the existing
primary components. Two consecutive CSP subsystems are
labeled as a redundant subsystem of type MofN.

Fig. 5 clarifies the construction method of the Extended
model. Two CSP subsystems that construct a MofN subsystem
are shown in the right hand side of the Fig. 5. Other parts of
the system are obvious. Fig. 6 shows the Extended model of
the system. The fault tree model of the system which has been
constructed from Fig. 6 is shown in Fig. 7.

Fig. 5 Construction of subsystems to build Extended model

Fig. 6 Extended model of the MAS

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 635 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1694

Fig. 7 The fault tree model of the MAS

IV. ADVANTAGES OF THE NOVEL METHOD

In this section the advantages of the purposed
methodology are listed.

Widely used MATLAB-Simulink software for modeling
and simulation of engineering systems, makes it a good choice
for defining system topology in our methodology.

The use of Simulink and its powerful user-interface gives us
some useful graphical capabilities for copying, resizing,
scaling, moving, printing, and favorite changing by user.

The generated fault tree can be copied and used as a sub-
tree in other fault trees constructed by our tool.

Analysis the static fault tree can perform in two ways; static
and dynamic analysis.

The results of fault tree analysis can be exported to other
application softwares such as Word, Excel, Access, etc for the
evaluation of the tree.

Direct using of the system diagram, avoids the tedious
working of generating digraphs, transition table, decision
tables, and knowledge-based rules.

The proposed methodology is simple and fast.

V. CONCLUSION

A new methodology to the automatically construction of
fault trees has been proposed in this paper. System block
diagram is modeled in MATLAB-Simulink and then an
“Extended model”, that contains functional (or failure) and
behavioral information of the system, is built manually by the
user. Fault tree model of the system is then constructed
automatically from this model. This methodology can analyze

inferred static fault tree in two ways; static and dynamic
method. The construction method was adequately explained
and the potential of this approach is demonstrated by an
example. We showed that the constructed fault tree from our
method is identical with that of [18] which validates the
correctness of our proposed methodology. Some of the
advantages of our method were also mentioned.

REFERENCES

[1] P. Liggesmeyer, and M. Rothfelder, “Improving System Reliability with
Automatic Fault Tree Generation”, Poc. of the FTCS’28: IEEE 28th
Ann. Int. Symp. on Fault Tolerant Computing Systems, Munich, 1998,
pp. 90-99.

[2] P. Gaspar, and G. Szabo, “On-Line System Verification Applying an
Automated Fault Tree Generation Method Integrated into Development
Tools”, In the Proc. of ESREL ‘90; Ann. European Safety and
Reliability Conf., Germany, 1999.

[3] E. Bourgade, N. Villatte, S. Humbert, P. Mouttapa, M. Pillière, and I.
Renault, “Facilitating Risk and Dependability Analysis – A Computer
Program for Automatic Fault Tree Generation: KB3”, In the Proc. of 4th
Int. Conf. on Probabilistic Safety Assessment and Management, Vol. 2,
New York, 1998, pp. 617-622.

[4] J. B. Fussel, “A Formal Methodology for Fault Tree Construction”,
Nuclear Science and Engineering, vol. 52, 1973, 421-432.

[5] J. R. Taylor, “An Algorithm for Fault Tree Construction”, IEEE
Transactions on Reliability, R-31, 1982, pp.137-146.

[6] S. A. Lapp, G. J. Powers, “Computer-Aided Synthesis of Fault-Trees”,
IEEE Trans. on Reliability, R-26, 1977, pp. 2-13.

[7] A. Shafaghi, P. K. Andow, F. P. Lees, “Fault Tree Synthesis Based on
Control Loop Structure”, Trans.I Chem. E, 62, 1984, pp.101.

[8] B. E. Kelly, and F. L. Lee, “The Propagation of Faults in Process Plants.
Modeling of Fault Propagation”, Reliability Engineering, Vol. 16, 1986,
pp.3-38.

[9] A. Bossche, “Computer-Aided Fault Tree Synthesis. System Modeling
and Causal Trees.”, Reliab. Eng. Vol. 32, 1991, pp.217-241.

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 636 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1695

[10] R. C. De Vries, “An Automated Methodology for Generating a Fault
Tree”, IEEE Trans. on Reliability, Vol. 39, No. 1, 1990, pp.76-86.

[11] J. D. Wang, and T. S Liu, “A Component Behavioral Model for
Automatic Fault Tree Construction”, Reliability Engineering and System
Safety, Vol. 42, 1993, pp.87-100.

[12] M. S. Elliot, “Computer Assisted Fault Tree Construction Using a
Knowledge-Based Approach”, IEEE Transactions on Reliability, Vol.
43, 1994, pp. 112-120.

[13] Y. Wang, T. Teague, H. West, S. Mannan, “A New Algorithm for
Computer-Aided Fault Tree Synthesis”, Journal of Prevention in the
Process Industries, Vol. 15, 2002, pp. 265-277.

[14] K. K. Vemuri, J. B. Dugan, “Automatic Synthesis of Fault Trees for
Computer-Based Systems”, IEEE Transactions on Reliability, Vol. 48,
No. 4, 1999, pp. 394-402.

[15] Y. Papadopoulos, M. Maruhn, ”Model-Based Synthesis of Fault Trees
from Matlab-Simulink models”, Proceeding International Conference on
Dependable Systems and Networks (DSN-2001), Göteberg, Sweden,
June 30th-July 4th. 2001.

[16] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Fault Trees and Sequence
Dependencies”, Proc. of the Ann. Reliability and Maintainability Symp.,
1990, pp. 286-293.

[17] S. W. Behnen, W. A. Whitehouse, R. J. Farrell, “Advanced System
Integration Demonstrations (ASID) System Definition”, Tech. Report;
USAF Wright Aeronautical Labs. 1984.

[18] J. B. Dugan, S. J. Bavuso and M. A. Boyd, “Dynamic Fault-Tree Models
for Fault-Tolerant Computer Systems”, IEEE Transactions on
Reliability, Vol. 41, No.3. 1992.

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 637 © 2008 WASET.ORG

