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The Game of Synchronized Quadromineering
Alessandro Cincotti

Abstract—In synchronized games players make their moves simul-
taneously rather than alternately. Synchronized Quadromineering is
the synchronized version of Quadromineering, a variants of a classical
two-player combinatorial game called Domineering. Experimental
results for small m × n boards (with m + n < 15) and some
theoretical results for general k × n boards (with k = 4, 5, 6) are
presented. Moreover, some Synchronized Quadromineering variants
are also investigated.

Keywords—Combinatorial games, Synchronized games, Quadrom-
ineering.

I. INTRODUCTION

THE game of Domineering is a typical two-player game
with perfect information, proposed around 1973 by Göran

Andersson [2], [10], [11]. The two players, usually denoted
by Vertical and Horizontal, take turns in placing dominoes
(2 × 1 tile) on a checkerboard. Vertical is only allowed to
place its dominoes vertically and Horizontal is only allowed
to place its dominoes horizontally on the board. Dominoes
are not allowed to overlap and the first player that cannot
find a place for one of its triominoes loses. After a time
the remaining space may separate into several disconnected
regions, and each player must choose into which region to
place a domino. Berlekamp [1] solved the general problem
for 2 × n board for odd n. The 8 × 8 board and many other
small boards were recently solved by Breuker, Uiterwijk and
van den Herik [4] using a computer search with a good system
of transposition tables. Subsequently, Lachmann, Moore, and
Rapaport solved the problem for boards of width 2, 3, 5, and
7 and other specific cases [12]. Finally, Bullock solved the
10 × 10 board [5].

The game of Triomineering was proposed in 2004 by Blanco
and Fraenkel [3]. In Triomineering Vertical and Horizontal
alternate in tiling with a straight triomino (3 × 1 tile) on a
checkerboard. Blanco and Fraenkel calculated Triomineering
and values for boards up to 6 squares and small rectangular
boards.

The game of Quadromineering is a further extension of
Domineering where Vertical and Horizontal alternate in tiling
with a straight quadromino (4 × 1 tile) on a checkerboard.

II. SYNCHRONIZED GAMES

For the sake of self containment, we recall the previous
results concerning synchronized games. Initially, the concept
of synchronism was introduced in the games of Cutcake [6],
Maundy Cake [7], Domineering [8], and Triomineering [9] in
order to study combinatorial games where players make their
moves simultaneously.
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TABLE I
THE POSSIBLE OUTCOMES IN SYNCHRONIZED QUADROMINEERING.

Horizontal ls Horizontal ds Horizontal ws

Vertical ls G = V HD G = HD G = H

Vertical ds G = V D G = D -
Vertical ws G = V - -

As a result, in the synchronized versions of these games
there exist no zero-games (fuzzy-games), i.e., games where
the winner depends exclusively on the player that makes the
second (first) move. Moreover, there exists the possibility of a
draw, which is impossible in a typical combinatorial game. In
this work, we continue to investigate synchronized combina-
torial games by focusing our attention on Quadromineering.

In the game of Synchronized Quadromineering, a general
instance and the legal moves for Vertical and Horizontal are
defined exactly in the same way as defined for the game of
Quadromineering. There is only one difference: Vertical and
Horizontal make their legal moves simultaneously, therefore,
quadrominoes are allowed to overlap if they have a 1× 1 tile
in common. We note that 1×1 overlap is only possible within
a simultaneous move. At the end, if both players cannot make
a move, then the game ends in a draw, else if only one player
can still make a move, then he/she is the winner.

For each player there exist 3 possible outcomes:
1) The player has a winning strategy (ws) independently

of the opponent’s strategy, or
2) The player has a drawing strategy (ds), i.e., he/she can

always get a draw in the worst case, or
3) The player has a losing strategy (ls), i.e., he/she does

not have a strategy for winning or for drawing.
Table I shows all the possible cases. It is clear that if one
player has a winning strategy, then the other player has neither
a winning strategy nor a drawing strategy. Therefore, the cases
ws−ws, ws−ds, and ds−ws never happen. As a consequence,
if G is an instance of Synchronized Quadromineering, then we
have 6 possible legal cases:

1) G = D if both players have a drawing strategy, and the
game will always end in a draw under perfect play, or

2) G = V if Vertical has a winning strategy, or
3) G = H if Horizontal has a winning strategy, or
4) G = V D if Vertical can always get a draw in the worst

case, but he/she could be able to win if Horizontal makes
a wrong move, or

5) G = HD if Horizontal can always get a draw in the
worst case, but he/she could be able to win if Vertical
makes a wrong move, or

6) G = V HD if both players have a losing strategy and
the outcome is totally unpredictable.
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III. EXAMPLES OF SYNCHRONIZED QUADROMINEERING

The game

always ends in a draw, therefore G = D.
In the game

Vertical has a winning strategy moving in the central column,
therefore G = V .

In the game

if Vertical moves in the first column we have two possibilities

or

therefore, either Vertical wins or the game ends in a draw.
Symmetrically, if Vertical moves in the third column we have
two possibilities

or

therefore, either Vertical wins or the game ends in a draw. It
follows G = V D.

In the game

each player has 4 possible moves. For every move of Vertical,
Horizontal can win or draw (and sometimes lose); likewise,
for every move by Horizontal, Vertical can win or draw (and
sometimes lose). As a result it follows that G = V HD.

IV. RESULTS FOR SYNCHRONIZED QUADROMINEERING

Table II shows the results obtained using an exhaustive
search algorithm for n×m boards with n+m ≤ 14.

Theorem 1: Let G = [n, 5] be a rectangle of Synchronized
Quadromineering with n ≥ 20. Then Vertical has a winning
strategy.

TABLE II
OUTCOMES FOR RECTANGLES IN SYNCHRONIZED QUADROMINEERING.

4 5 6 7 8 9 10

4 D V V V D V V

5 H D V V H H

6 H H D V H

7 H H H D

8 D V V

9 H V

10 H
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Fig. 1. Synchronized Quadromineering played on n× 5 rectangular board.

Proof: In the beginning, Vertical will always move into
the central column of the board, i.e., (k, c), (k + 1, c), (k +
2, c), (k + 3, c) where k ≡ 1 (mod 4), as shown in Fig. 1.
When Vertical cannot move anymore into the central column,
let us imagine that we divide the main rectangle into 4 × 5
sub-rectangles starting from the top of the board (by using
horizontal cuts). Of course, if n �≡ 0 (mod 4), then the last
sub-rectangle will be of size 1×5, 2×5 or 3×5, and Horizontal
will be able to make respectively one more move, two more
moves or three more moves. We can classify all these sub-
rectangles into 6 different classes:

• Class A. Vertical is able to make four more moves in
each sub-rectangle of this class.

• Class B. Vertical is able to make one more move in each
sub-rectangle of this class. For example

• Class C. Horizontal is able to make three more moves in
each sub-rectangle and Vertical is able to make at least
�|C|/2� moves where |C| is the number of sub-rectangles
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belonging to this class. The last statement is true under
the assumption that Vertical moves into the sub-rectangles
of this class as long as they exist before to move into the
sub-rectangles of the other classes. For example

• Class D. Horizontal is able to make two more moves in
each sub-rectangle of this class. For example

• Class E. Horizontal is able to make one more move in
each sub-rectangle of this class. For example

• Class F . Neither Vertical nor Horizontal are able to make
a move in the sub-rectangles of this class. For example

We show that when Vertical cannot move anymore in the
central column, he/she can make a greater number of moves
than Horizontal, i.e., moves(H) < moves(V ). We denote
with |A| the number of sub-rectangles in the A class, with
|B| the number of sub-rectangles in the B class, and so on.
Both Vertical and Horizontal have placed the same number of
quadrominoes, therefore

|A| = |C| + 2|D| + 3|E| + 4|F |
It follows that

moves(H) ≤ 3|C| + 2|D| + |E| + 3
= 3|A| − 4|D| − 8|E| − 12|F | + 3
< 4|A| + |B| + �|C|/2�
≤ moves(V )

The condition

3|A| − 4|D| − 8|E| − 12|F | + 3 < 4|A| + |B| + �|C|/2�
is always true, as shown below:

• If |A| = 0 then |C| = 0, |D| = 0, |E| = 0, |F | = 0 and
|B| ≥ 5 because by hypothesis n ≥ 20,

• If |A| = 1 then |C| = 1, |D| = 0, |E| = 0, |F | = 0 and
|B| ≥ 3 because by hypothesis n ≥ 20,

• If |A| = 2 then either |B| ≥ 1, |C| = 2, |D| = 0,
|E| = 0, and |F | = 0 or |B| ≥ 2, |C| = 0, |D| = 1,
|E| = 0, and |F | = 0,

• If |A| = 3 then either |C| = 3, |D| = 0, |E| = 0, and
|F | = 0 or |C| = 1, |D| = 1, |E| = 0, and |F | = 0,
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Fig. 2. Synchronized Quadromineering played on n× 6 rectangular board.

• If |A| ≥ 4 then 3|A| + 3 < 4|A|.

Theorem 2: Let G = [n, 6] be a rectangle of Synchronized
Quadromineering with n ≥ 12. Then Vertical has a winning
strategy.

Proof: In the beginning, Vertical will always move into
the third column of the board, i.e., (k, c), (k+ 1, c),(k+ 2, c)
and (k + 3, c) where k ≡ 1 (mod 4), as shown in Fig. 2.
When Vertical cannot move anymore into the third column,
let us imagine that we divide the main rectangle into 4 × 6
sub-rectangles starting from the top of the board (by using
horizontal cuts). Of course, if n �≡ 0 (mod 4), then the last
sub-rectangle will be of size either 1× 6, 2× 6 or 3× 6, and
Horizontal will be able to make respectively one more move,
two more moves, or three more moves.

We can classify all these sub-rectangles into 6 different
classes according to:

• The number of vertical quadrominoes already placed in
the sub-rectangle (vq),

• The number of horizontal quadrominoes already placed
in the sub-rectangle (hq),

• The number of moves that Vertical is able to make in the
worst case, in all the sub-rectangles of that class (vm),

• The number of moves that Horizontal is able to make in
the best case, in all the sub-rectangles of that class (hm),

as shown in Table III. We denote with |A| the number of
sub-rectangles in the A class, with |B| the number of sub-
rectangles in the B class, and so on. In the C class, Vertical
is able to make |C| moves under the assumption that he/she
moves into the sub-rectangles of this class as long as they exist
before to move into the sub-rectangles of the other classes.

When Vertical cannot move anymore into the third column,
both Vertical and Horizontal have placed the same number of
quadrominoes, therefore

|A| = |C| + 2|D| + 3|E| + 4|F | (1)

Let us prove by contradiction that Vertical can make a
larger number of moves than Horizontal. Assume therefore
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TABLE III
THE 6 CLASSES FOR 4 × 6 SUB-RECTANGLES.

Class vq hq vm hm Example

A 1 0 5|A| 0

B 1 1 2|B| 0

C 0 1 |C| 3|C|

D 0 2 0 2|D|

E 0 3 0 |E|

F 0 4 0 0

moves(V ) ≤ moves(H) using the data in Table III

5|A| + 2|B| + |C| ≤ 3|C| + 2|D| + |E| + 3

and applying Equation 1

3|A| + 2|B| + 2|D| + 5|E| + 8|F | ≤ 3

which is false because

|A| + |B| + |C| + |D| + |E| + |F | = �n/4	
and by hypothesis n ≥ 12. We note that if |A| = 0 then
|C| = 0, |D| = 0, |E| = 0, |F | = 0, and |B| ≥ 3. Moreover, if
|A| = 1 then |C| = 1, |D| = 0, |E| = 0, |F | = 0, and |B| ≥ 1.
So moves(V ) ≤ moves(H) does not hold and consequently
moves(V ) > moves(H).

By symmetry the following two theorems hold.
Theorem 3: Let G = [5, n] be a rectangle of Synchronized

Quadromineering with n ≥ 20. Then Horizontal has a winning
strategy.

Theorem 4: Let G = [6, n] be a rectangle of Synchronized
Quadromineering with n ≥ 12. Then Horizontal has a winning
strategy.
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Fig. 3. Synchronized Quadromineering played on n× 4 rectangular board.

Theorem 5: Let G = [n, 4] be a rectangle of Synchronized
Quadromineering. If n ≡ 0 (mod 4), then Vertical has a
drawing strategy.

Proof: In the beginning, Vertical will always move into
the first column of the board, i.e., (k, b), (k+1, b), (k+2, b),
and (k + 3, b) where k ≡ 1 (mod 4), as shown in Fig. 3.
When Vertical cannot move anymore into the central column,
let us imagine that we divide the main rectangle into 4 × 4
sub-rectangles starting from the top of the board (by using
horizontal cuts). We can classify all these sub-rectangles into
6 different classes:

• Class A. Vertical is able to make three more moves in
each sub-rectangle of this class.

• Class B. Neither Vertical nor Horizontal are able to make
another move in the sub-rectangles of this class. For
example

• Class C. Horizontal is able to make three more moves in
each sub-rectangle of this class. For example

• Class D. Horizontal is able to make two more moves in
each sub-rectangle of this class. For example

• Class E. Horizontal is able to make one more move in
each sub-rectangle of this class. For example
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• Class F . In each sub-rectangle of this class Horizontal
has already made four moves.

We show that when Vertical cannot move anymore into the
first column, he/she can make a number of moves greater or
equal to Horizontal, i.e., moves(H) ≤ moves(V ). We denote
with |A| the number of sub-rectangles in the class A, with
|B| the number of sub-rectangles in the class B, and so on
We observe that |A| = |C| + 2|D| + 3|E| + 4|F | because
both Vertical and Horizontal have placed the same number of
triominoes.

moves(H) = 3|C| + 2|D| + |E|
= 3|A| − 4|D| − 8|E| − 12|F |
≤ 3|A|
= moves(V )

By symmetry the following theorem holds.
Theorem 6: Let G = [4, n] be a rectangle of Synchronized

Quadromineering. If n ≡ 0 (mod 4), then Horizontal has a
drawing strategy.

V. SYNCHRONIZED QUADROMINEERING VARIANTS

In this section, we present results obtained using an exhaus-
tive search algorithm for two Synchronized Quadromineering
variants where quadrominoes have different shape from 1× 4
and 4 × 1 tile.

A. First variant

In this variant, Vertical can place

or

and Horizontal can place

or

Table IV shows the results for n×m boards with n+m ≤ 12.

B. Second variant

In this variant, Vertical can place

or

and Horizontal can place

TABLE IV
OUTCOMES FOR RECTANGLES IN SYNCHRONIZED QUADROMINEERING

(FIRST VARIANT).

3 4 5 6 7 8 9

3 D D D V D D D D

4 D V HD D HD HD HD

5 D D V HD HD HD

6 HD V D V D V HD

7 D V D V D

8 D V D

9 D

TABLE V
OUTCOMES FOR RECTANGLES IN SYNCHRONIZED QUADROMINEERING

(SECOND VARIANT).

3 4 5 6 7 8 9

3 D D D D D D D

4 D V HD D HD HD HD

5 D D D HD HD

6 D V D V D D

7 D V D V D

8 D V D

9 D

or

Table V shows the results for n×m boards with n+m ≤ 12.
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