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Abstract⎯This paper proposes fractal patterns for power quality 

(PQ) detection using color relational analysis (CRA) based classifier. 
Iterated function system (IFS) uses the non-linear interpolation in the 
map and uses similarity maps to construct various fractal patterns of 
power quality disturbances, including harmonics, voltage sag, voltage 
swell, voltage sag involving harmonics, voltage swell involving 
harmonics, and voltage interruption. The non-linear interpolation 
functions (NIFs) with fractal dimension (FD) make fractal patterns 
more distinguishing between normal and abnormal voltage signals. 
The classifier based on CRA discriminates the disturbance events in a 
power system. Compared with the wavelet neural networks, the test 
results will show accurate discrimination, good robustness, and faster 
processing time for detecting disturbing events. 

 
Keywords⎯Power Quality (PQ), Color Relational Analysis 

(CRA), Iterated Function System (IFS), Non-linear Interpolation 
Function (NIF), Fractal Dimension (FD).  

 
I. INTRODUCTION 

 
OWER quality (PQ) disturbances could cause distorted 
waves and degrade the voltage quality to impair the 
operation of electrical apparatus. These disturbances cause 

problems, such as overheating, motor failures, inaccurate 
metering, and mis-operation of protective equipment, which 
can be affected by harmonics, voltage sag, voltage swell, and 
momentary interruptions. Voltage disturbances and harmonic 
sources could affect the branch currents and node voltages, 
and could downgrade the service quality. PQ detection is 
essential for the reliable distribution of electric energy. To 
ensure the PQ, power disturbances detection becomes 
important as well to further detect the location and disturbance 
types. This study provides a classifier for detection with 
limited partially observable measurement for part of the 
networks. 
  In literatures [1]-[10], many techniques have been able to 
monitor, locate, and identify disturbances by measurement 
instruments and automatic detection approaches. Measurement 
instruments could collect large amounts of measured data such 
as voltage waveforms, current waveforms, complete harmonic 
spectrum, total harmonic distortion, and occurrence times. 
These data are applied for signal processing and analysis. With 
the frequency-domain techniques [3]-[10],Fast Fourier 
Transformation (FFT), Short-time Fourier Transformer 
(STFT),and wavelet transformation (WT) for power quality 
analysis has been presented.    
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However, the choices for size of the time window affect both 
the frequency and time resolution when using FFT and STFT. 
WT functions cascaded low-pass or high-pass filters and 
down/up-sampling operations to generalize several frequency 
bands. This analysis is robust to time-varying signal analysis 
and it can point out occurrence time. A signal is described in a 
time-scale domain, and analogous to a time-frequency domain. 
Significant features are suited to classify different patterns at 
specific dilation and translation coefficients, which are 
obtained at specific coefficients with a trial procedure of 
wavelet decomposition. Then artificial neural networks (ANN) 
are designed to classify different types of disturbances, such as 
multilayer neural networks and wavelet neural networks 
(WNNs) [5]-[10]. 

The above literatures concerning the frequency- domain 
features contain valuable information for PQ detection, and 
ANN proposes a classifier for signal analysis and pattern 
recognition. The ANN method can allow non-linear 
classification, but the local minimum problem, slow learning 
speed, architecture determination, and the weight interferences 
between different patterns are the major limitations. To 
overcome the drawbacks, fractal analysis is an approach with 
fractal dimensions (FDs) and results the data self-similarity 
[11]. Fractal patterns are used to construct the information 
from time-series signals. Iterated function system (IFS) is 
proposed for modeling the non-linear interpolation functions 
(NIFs) [12]-[15], which require fewer map parameters for 
constructing fractal patterns of normal and abnormal signals 
[16]. For pattern recognition, color relational analysis (CRA) 
is applied to develop a classifier for PQ detection. It has a 
flexible pattern mechanism with add-in and delete-off features 
without parameter adjustment, and does not demand strict 
statistical methods and inference rules. For a sample power 
system, computer simulations will show computational 
efficiency, accurate discrimination, and good robustness for 
different tests. 

 
II. MATHEMATICAL METHOD 

A. Fractal Dimension Transformation (FDT) 
The fractal method of modeling data is based on selecting 

interpolation points from the sampling data and creating IFS 
maps to interpolate between these points. An IFS has been 
proposed for image compression and signal modeling, and can 
produce family functions with different fractal dimensions 
(FDs). It is a finite set for contraction patterns, and has been 
used to create images, various waveforms and geometric 
patterns for image classification and signal analysis [11]-[12]. 
IFS is implemented with similarity maps, and the resulting 
data are self-similar. Apply a function or data sequence x[t], 
t=1, 2, 3, …, N, the pth interpolation map Wp, p=1, 2, 3, …, P, 
IFS model can be presented as 

 

P
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where Wp(•) maps the data sequence xp[t] onto the 
subsequences with Np sampling data in the interval [Np1,Np2], 
the so-called non-linear interpolation function (NIF). The 
integrated map can be constructed side by side. The fractal 
method includes two stages: first to determine the 
interpolation points and FDs, and second to determine the best 
remaining map parameters, such as ap, bp, cp, dp, ep, and fp. 
These parameters can be solved by minimizing the sum of 
squared errors between the transformed data and the original 
data in the pth map, and can be justified by the Collage 
Theorem [13]-[15]: 
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N1+N2+N3+⋯+Np+⋯+NP. To improve the constraint, 
non-linear terms as sinusoidal functions can be added to Wp(•), 
which makes the signal modeling more flexible for processing 
non-linear or irregular signals. The NIF can be represented as 
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The model projects the mapped data onto a sinusoidal 
interpolation. In this study, a fractal pattern of voltage or 
current signal can be adjoined with positive-half and 
negative-half cycles. The NIF with FDs will change the 
signals into fractal patterns at different scale parameters. 
Voltage and current are one-dimension time-varying signals in 
the time-domain. FD must be a parameter between 1 and 2 for 
processing one-dimensional signals. The NIF can be modified 
as [16] 
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where D is the FD, Δxp[t]=xp[t]-xp

nor[t], xp
nor[t] is the sequence 

of samples obtained from fundamental wave in the 
time-domain. Equation (5) is called the fractal dimension 
transformation (FDT). The Katz’s algorithm is used to 
estimate the FD [12], as 
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where Np is the number of sampling points in the pth segment; 
N is the total number of sampling points (N= 
N1+N2+N3+L+Np); Nd is the maximum number of sampling 
points among the P segments. The remaining map parameters 
cp, dp, fp, and gp can be solved by 
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Apply sequence data Δxp[t] are the sampling data from the 
voltage and current signals. The fractal patterns can be 
reconstructed as  
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The pattern Φ can be also represented as Φ=[ϕ11,ϕ12,ϕ13,  
… ,ϕ1N1|ϕ21,ϕ22,ϕ23, …,ϕ2N2|…|ϕP1,ϕP2,ϕP3, …,ϕPNP]= 
[φ1,φ2,φ3, …,φi, …,φN], i=1, 2, 3, …, N. Equations (5) and (6) 
are used to extract the features, and (11) is utilized to construct 
the fractal patterns of disturbances, including harmonics (h), 
voltage sags (sa), voltage swells (sw), sags or swells involving 
harmonics (hsa/hsw), and voltage interruptions (int).  

 
B. Color Relational Analysis (CRA) 

 
Pattern recognition is a research that aims to classify 

data/patterns based on behavioral characteristics, or on 
statistical information extracted from the patterns. These 
patterns to be classified are usually groups of measurements or 
observations, defining finite points in an appropriate 
multi-dimensional space. Artificial intelligence methods have 
concerned with the classification or description of 
observations. Based on similarity and dissimilarity, relational 
measurement is a method for determining the relationship 
between reference pattern and other comparative patterns. 
Color relation analysis (CRA) is conducted to classify patterns. 
Assume a reference pattern Φr= [φ1(0), φ2(0), φ3(0), …, 
φ i(0), …, φN(0)],and K comparative patterns Φc(k)= 
[φ1(k), φ2(k), φ3(k), …, φi(k), …, φN(k)], k=1, 2, 3, …, K, can be 
represented as [17]  
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where N is the dimensional space in one pattern; K is the 
number of comparative pattern. Compute the absolute 
deviation of reference pattern Φr and k comparative pattern 
Φc(k) by 

 
|)()0(|)( kk iii φφφ −=Δ                      (14) 
 

Compute the index ED(k), as  
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where ED(k) is the Euclidean distance (ED) between two 
patterns Φr and Φc(k). If the pattern Φr is similar to any 
comparative pattern Φc(k), the index ED(k) will be small 
values. These indexes are used to measure the relationship 
between the reference and comparative patterns that can be 
used for pattern relation analysis. 

In this study, CRA is designed to detect power quality 
problems, including harmonics, voltage sag, voltage swell, and 
voltage interruption. Overall indexes ED(k), k=1, 2, 3, …, K, 
are converted to gray grade ρ(k) by non-linear transformation, 
as 

 
)](exp[)( kEDk ξξρ −=                    (16) 

 
where ξ is the recognition coefficient with interval (0,∞).  
Equation (16) is used to enhance the contrast in indexes ED(k). 
Intensity adjustment is a technique for mapping an original 
intensity value to a new specific range. The range of the gray 
grade ρ(k) is in the interval [0, ξ] as shown in Fig. 1. The 
coefficient ξ is selected to >>1 in order to make gray grades 
more distinguishable [16], ξ=5 is chosen in this study. These 
gray grades can be separated into seven classes: normal (nor), 
harmonic (h),  swell (sw), sag (sa), voltage interruption (int), 
swell involving harmonic (hsw), and sag involving harmonic 
(hsa), and can be represented as  

 

  Γ=[ρnor(1), …, ρnor(Nnor)|ρh(1), …, ρh(Nh)|ρsw(1), …, 

 ρsw(Nsw)|ρsa(1), …, ρsa(Nsa)|ρ int(1), …, ρ int(Nint)| 

 
 ρhsw(1), …, ρhsw(Nhsw)|ρhsa(1), …, ρhsa(Nhsa)].  (17) 

 
Compute the average grade for each class, as 
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where class∈[nor, h, sw, sa, int, hsw, hsa]; Nclass is the number 
of each class. Then find the minimum and maximum average 
grades, as  
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Fig. 1 Euclidean distances versus gray grades 

 
where ρmin≠ρmax. According to HSV color model, CRA is 
defined mathematically by transformations between the RGB 
color space and the HSV color space. Find the hue angle 
H∈[0,360] for HSV color space, as  
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Find saturation S and value V are defined as 
maxρ=V                                (22) 

)0(1 max
min ≠−= ρρ
V

S                      (23) 

The value of H is generally normalized to lie between 0° and 
360°, and hue H has no geometric meaning when ρmin=ρmax 
and saturation S is zero. For PQ detection, parameter H is 
employed to identify the seven classes as angle points for nor, 
h, sw, sa, int, hsw, and hsa, as shown in Fig. 2.  

The concept of proposed CRA is derived from HSV color 
model, which attempts to describe perceptual color 
relationships for PQ disturbances. Its model is commonly used 
in computer graphics applications, and stands for hue (H), 
saturation (S), and value (V), with H depicting as a 
three-dimensional conical formation of the color wheel as 
shown in Fig. 2. The S is represented by the distance from the 
center of a circular cross-section of the cone, and V is adjusted 
with brightness bar between black and white [18]-[19]. 
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Fig. 2 HSV color space model 

 
In this study, H is employed to identify the grade of disease, 

and S and V are the confidence index for recognition results. 
These two parameters could enhance the reliability of 
diagnostic results. Its value is great than 0.5 and approach to 
1.0, and we will have high confidence to confirm the possible 
grade. 

 
III. FEATURE EXTRACTION AND FRACTAL PATTERN CREATION 

The simulation studies of power quality variations are 
considered including harmonics and voltage fluctuation 
phenomena. Harmonic events are periodic voltage variations 
and do not involve variations in the fundamental frequency 
(60Hz) voltage, which are mostly caused by electronic 
equipment and nonlinear loads. These events may occur with a 
long duration (greater than 1 minute), and distortion level is 
accomplished to characterization with long duration recording 
and statistics. Voltage fluctuation phenomena, such as voltage 
swell, voltage sag, and voltage interruption, could occur due to 
lightning, capacitor switching, large motor starting, nearby 
circuit faults (short circuit and single-line-to-ground fault), or 
accidents, and can also lead to power interruptions. These 
voltage variations are momentary low voltage, high voltage, or 
voltage interruption in the fundamental frequency voltage that 
last less than 1 minute. Voltage sag is a sudden voltage drop 
between 10%~90% in magnitude. It often lasts for 0.5 cycles 
to 1 minute. When the voltage drops 30% or more, we 
consider the system status are severe. Voltage swell is a 
voltage rise above 110% of the normal voltage. Voltage 
interruption is defined voltage magnitude is less than 10% of 
nominal lasting for 0.5 cycles to 5 minutes. In a power system, 
each bus may have disturbances involving harmonics (h), 
voltage sags (sa), voltage swells (sw), sags or swells involving 
harmonics (hsa/hsw), and voltage interruptions (int).   

A 14-bus system is used for test example as shown in Fig. 3 
[9]-[10]. The system has 5 generator buses, 15 lines, 5 
transformers, and 8 non-linear devices. There are 8 
observation locations in this system. Table I shows the 
harmonic current components of each harmonic source by 
field test. At each observation location, harmonic and voltage 
fluctuation phenomena are considered, as well as the harmonic 
source causing voltage distortion for neighboring buses. With 
harmonic power flow, we can simulate harmonic voltages at 
selected observation locations. We can also consider various 

harmonic load combinations and work durations at each 
observation location, i.e. load combinations {Bus13}, {Bus13, 
Bus6}, {Bus13, Bus11}, {Bus13, Bus12}, {Bus13, Bus6, 
Bus11}, {Bus13, Bus6, Bus12}, {Bus13, Bus11, Bus12} at 
Bus13. Comparative patterns can be systematically collected 
at Bus13 with fractal patterns as (13). Each pattern is 
conducted within the period of sampling data from distorted 
waves. The sample rate we consider is 1.44kHz, and the 
number of sample points is 24 (N=24). Equations (5), (6), and 
(11) with sequencing preprocess is applied on various 
distorted waves for extraction features. 

~ ~ ~Gen1 Gen2 Gen3

Bus1 Bus2 Bus3
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Gen5

Harmonic Source Observation Location

 

  
Fig. 3 One-line diagram of the 14-bus power system 

 
TABLE I  

HARMONIC CURRENT COMPONENTS AT EACH OBSERVATION LOCATION 
Bus No. Non-linear Device Harmonic Components 
7, 11, 13 6-pulse Rectifier 5, 7, 11, 13, 17, 19, … 

4, 6 12-pulse Rectifier 11, 13, 23, 25, … 

9 Static Frequency 
Converter 5, 7, 11, 13, 17, 19, 23, 25, … 

10 Thyristor-controlled 
Reactor 3, 5, 7, 9, 11, 13, … 

12 DC Motor 5, 7, 13, 17, 19, 23, … 
 

For a normal voltage signal, one cycle waveform can be 
divided into two segments, such as positive half-cycle (PHC) 
and negative half-cycle (NHC), segment number p=1, 2, and 
sampling points Np=12 (N=N1+N2=24) in each segment. The 
F D  i s  c o m p u t e d  u s i n g  ( 7 )  a s  
D=1og10(N)/1og10(Nd)=1.2789, where N=24 and Nd=12. D is a 
parameter between 1 and 2 for processing one-dimensional 
signals. The remaining map parameters cp, dp, fp, and gp can be 
solved by (9) and (10) with 24 sampling points as shown in 
Table II. Fractal patterns are constructed by using 24 NIFs 
with the same remaining map parameters in each segment. 
These fractal patterns have various morphologies that could be 
used for PQ detection as shown in Fig. 4. For a normal voltage 
signal, a straight line that passes through the interpolation 
fractal values and is linear on each segment, respectively. The 
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patterns reveal the curves for voltage fluctuations, and the 
saw-tooth lines for harmonic and harmonic involving voltage 
fluctuations.  
 

TABLE II 
THE REMAINING MAP PARAMETERS OF NIF 

FD The Number  
of NIF 

Remaining Map Parameter 
cp dp fp gp 

1.2789 
PHC ϕ1t 12 0.6605 2.9926 3.9972 1.5551
NHC ϕ2t 12 -0.6081 3.0360 -4.0610 -1.4390

Note: PHC: positive half-cycle; NHC: negative half-cycle; Np: the number of 
sampling points in each segment, t=1, 2, 3, …, Np (Np=12).  

 
According to the various fractal patterns, these patterns can 

be divided into seven groups, and the numbers of patterns 
from the same groups are 1-set (Nnor=1), 1-set (Nh=1), 6-set 
(Nsa=1), 6-set (Nsw=1), 6-set (Nhsa=6), 6-set (Nhsw=6), and 2-set 
(Nint=2) data, respectively. The number of comparative 
patterns is equal to 28-set data (K=28). Overall fractal patterns 
are shown in Fig. 5, and fractal values are inside the interval 
[1.5 6.0]. Then CRA is used to identify the grade of PQ 
disturbances, and the possible grade can be presented as an 
angle point H by (21). Matlab colormap function is used to 
display the results in the HSV color space. It converts the 
HSV image to the equivalent RGB image whose three planes 
contain the red, green, and blue components for the image. 
The colormap for angle point H could be displayed as an 
image form 0° to 360° and used in computer graphics 
application. The values of S and V are in the interval [0,1] as 
(22) and (23). A threshold value 0.5 is designed for parameter 
S to separate normal from abnormal values, where a value 
close to 1 means “Abnormal”, and 0 means “Normal”, and 
indicates the possible disturbing events at observation location. 
This confirms that results have higher confidence value in the 
tests. 

 
 

Fig. 4 Various fractal patterns for PQ disturbances 

IV. SIMULATION RESULTS AND DISCUSSION 
The proposed detection method was designed on a PC 
Pentium-IV 2.4GHz with 480MB RAM and Matlab software. 
To show the effectiveness of the proposed method, multiple 
harmonics and voltage sag involving harmonics were chosen 
for demonstration. In a 14-bus system, most harmonics are 
related to power rectifiers or converters, as shown in Fig. 3. 
With fundamental and harmonic power flow for various 
loading combinations, bus voltages can be calculated at eight 
observation locations [20]. At each observing location, we 
have 28-set of comparative patterns for the NIFs and CRA 
with following events: normal (nor), h, sa, sw, hsa, hsw, and 
int. Time-domain analysis was conducted to detect the 
distorted waves with 50 cycles. 

 
Fig. 5 Various fractal patterns for PQ disturbances 

 
Periodic sampling was done with sampling rate f=1.44kHz 

and sample points N=24. With multiple harmonic sources at 
Bus6, Bus9, Bus12, and Bus13, sampled data were then 
applied to each classifier for detection disturbances. For 
comparison purposes, we have also applied the AWN 
composed of 24 Morlet wavelets in the wavelet layer and 
ANN [9]-[10] Tests will show accurate discrimination, for 
detecting disturbing events. 

 
A. Voltage Sag involving Harmonics  

Harmonic measuring should be performed from time 
to time at selected observation locations. THD is used to 
define the total harmonic voltage distortion. It is commonly 
used in low, medium, and high voltage power systems. When 
the periodic sampling data are provided, find the buses with 
VTHD≥2.5%. Then each classifier at an observation location 
will act to detect the disturbances. Voltage sag (sa) may be 
caused by the switching operations, starting of large motor 
loads, and nearby circuit faults. Long duration voltage sags 
down to 80% are caused by heavy loads or faults, with a 
typical duration up to 10sec. The voltage sags down to 70% 
are caused by heavy load switching or faults, with a typical 
duration up to 30 cycles. Let the voltage sags caused by heavy 
motor loads at Bus13, and multiple harmonic sources are at 
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the Bus6, Bus9, and Bus12. Using 50 cycle voltage signals, 
the harmonics involving voltage sag as drop 14% and 
detection results are shown in Fig. 6. Results show the times 
for starting and ending of harmonics in work duration and 
voltage sag about 30 cycles. The Matlab colormap function 
presents the hue angles H as colors. The results confirm the 
events are “harmonics (h)” and “harmonics involving voltage 
sag (hsa)”, and the colormap function presents the average hue 
angle Have= 199.47° (cyanine series) for “event h” and Have= 

60.98° (yellow series) for “event has”, respectively. The 
a v e r a g e  c o n f i d e n c e  v a l u e  i s  g r e a t e r 
than 0.5 means agree to certain PQ disturbances. This 
confirms that the proposed classifier has a higher confidence 
value of detection results in the tests. 
 

 
  

 
Fig. 6 Time-domain voltage signals and detection results 

 
 

B. Comparison of CRA with WNN 
For classification applications, wavelet neural network 

(WNN) has also presented for this study. Table III shows the 
related data and comparison of CRA classifier with WNN 
classifier. The architecture of WNN is 24-55-5-4, including 24 
wavelet nodes, 55 hidden nodes, 5 summation nodes, and 4 
output nodes [9]-[10]. The methods CRA and WNN have the 
promising results for PQ detection. However, steepest descent 
algorithm was used to adjust the network parameters to 
enhance detection accuracy. As the number of training data 
increases, training process and classification efficiency 
become a main problem. Wavelet transformation (WT) 
cascades filters (low-pass or high-pass filters) and 
down/up-sampling operations to generalize several frequency 
bands. Significant features are suited to classify different 
signals at specific dilation and translation parameters. It is 
decomposed into several components using dilated (scale) and  

translated (time) version of prototype wavelet. The WT 
could affect reconstructed signal quality, the wavelet 
coefficients need to be chosen. Significant features are suited 

to classify different patterns with a trial procedure of wavelet 
decomposition and experiences. The CRA classifier has the 
straightforward mathematical operation to process numerical 
computation, the flexible pattern mechanism with add-in or 
delete-off the comparative patterns without any retraining 
process. It is a dynamical modeling system, and the database 
is continually formed for comparative patterns added or 
deleted to the current comparative matrix, as can be seen in 
(13). The outcomes of the proposed classifier are better than 
WNN-based classifier. 

 
V. CONCLUSION 

CRA classifiers have been proposed to detect PQ 
disturbances in a power system. NIFs act to extract and 
enhance the features from voltage signal in the time-domain, 
including harmonics and voltage fluctuation phenomena. The 
process results in data self-similarity, thus reducing the 
amount of datasets required. A GRA classifier uses these 
distinctive features to classify PQ disturbances. It has a 
flexible pattern mechanism with add-in and delete-off features 
without adjusting many parameters. The results can be 
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presented in colors in computer graphics application. The 
saturation parameter is a confidence degree used to confirm 
the possible event. The proposed classifier provides a 
promising way for further using in a real-time and an off-line 
analysis tool, and SCADA/EMS will be integrated without 
extra devices. 

 
TABLE III 

THE RELATED DATA OF CRA AND WNN CLASSIFIER 
Method 

Task 
CRA 

Classifier 
WNN  

Classifier 

Network Architecture No 

According to 
Input-Output and 

Training Data 
Note (1) 

Database 
28 

Comparative 
Patterns 

55 
Input-Output Pairs 

Training Data 

Activation Function Equation (16) 

Morlet Wavelet 
and Gaussian 

Activation Function  
[9], [10] 

Learning Algorithm No Steepest Descent 
Algorithm 

Parameter Assignment 
Minor 

Recognition 
Coefficient (0,∞) 

Major 
Dilation, Translation, 

and Smoothing 
Parameters 

Learning Rate (0,1) 

Parameter Adjustment No Training Iteration 
Note (2) 

Adaptation Capability 
Good 

Expandable or 
Reducible Patterns 

Moderate 
Retrain with New 
Training Patterns 

Note: (1) Wavelet–Hidden-Summation-Output Node: 24-55-5-4; (2) 
Convergent Conditions: (a) the objective function is less than the pre-specified 
value; (b) the number of iterations achieve the maximum allowable number. 
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