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Abstract—We present a hybrid architecture of recurrent neural 

networks (RNNs) inspired by hidden Markov models (HMMs). We 
train the hybrid architecture using genetic algorithms to learn and 
represent dynamical systems.   We train the hybrid architecture on a 
set of deterministic finite-state automata strings and observe the 
generalization performance of the hybrid architecture when presented 
with a new set of strings which were not present in the training data 
set. In this way, we show that the hybrid system of HMM and RNN 
can learn and represent deterministic finite-state automata. We ran 
experiments with different sets of population sizes in the genetic 
algorithm; we also ran experiments to find out which weight 
initializations were best for training the hybrid architecture. The 
results show that the hybrid architecture of recurrent neural networks 
inspired by hidden Markov models can train and represent dynamical 
systems. The best training and generalization performance is 
achieved when the hybrid architecture is initialized with random real 
weight values of range -15 to 15.  
 

Keywords—Deterministic finite-state automata, genetic 
algorithm, hidden Markov models, hybrid systems and recurrent 
neural networks.  

I. INTRODUCTION 
ECURRENT  neural networks have been an important 
focus of research as they can be applied to difficult 

problems involving time-varying patterns. Their applications 
range from speech recognition and financial prediction to 
gesture recognition [1]-[3]. They have the ability to provide 
good generalization performance on unseen data but are 
difficult to train. Hidden Markov models, on the other hand, 
have also been applied to solve difficult real world problems 
[4],[5]; for decades, they have been very popular in areas of 
speech recognition [6]. Training hidden Markov models is 
easy but their generalization performance may not perform 
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satisfactorily when compared to the performance of recurrent 
neural networks. 

The structural similarities between hidden Markov models 
and recurrent neural networks is the basis for mapping HMMs 
into RNNs. The recurrence equation in the recurrent neural 
network resembles the equation in the forward algorithm in 
the hidden Markov models [7]. The combination of the two 
paradigms into a hybrid system may provide better 
generalization and training performance which would be a 
useful contribution to the field of machine learning and 
pattern recognition ; in this paper, however we are only going 
to show that the hybrid system of RNN/HMM can learn and 
represent deterministic finite-state automata. We will show 
that the hybrid system may obtain better generalization or 
training performance in future research studies.  

Evolutionary training methods like genetic algorithms have 
been popular for training neural networks other than gradient 
decent learning [8]. It has been observed that genetic 
algorithms overcome the problem of local minima whereas in 
gradient descent search for the optimal solution, it may be 
difficult to drive the network out of the local minima which in 
turn prove costly in terms of training time.  Evolutionary 
neural learning has been successfully applied to many real 
world problems (e.g. [9]). In the neural network training 
process, genetic algorithms are used to optimize the weights 
which represent the knowledge learnt in the training process. 
Usually, the crossover and the mutation operators are altered 
in genetic algorithms to represent real numbered weight 
values of the network. In this paper, we are going to show 
how genetic algorithms can be applied to training hybrid 
systems of hidden Markov models and recurrent neural 
networks.  

Recurrent neural networks are dynamical systems and it has 
shown been that they can represent deterministic finite-state 
automata in their internal weight representations [10]. In this 
paper we are also going to show that deterministic finite-state 
automata can be also be trained and represented by hybrid 
system of RNN / HMM.   

II. DEFINITIONS AND METHODS 
A. Recurrent Neural Networks 
Recurrent neural networks contain feedback connections. 

They are composed of an input layer, a context layer which 
provides state information, a hidden layer and an output layer. 
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Each layer contains one or more processing units called 
neurons which propagate information from one layer to the 
next by computing a non-linear function of their weighted 
sum of inputs. Recurrent neural networks maintain 
information about their past states for the computation of 
future states and outputs. They are nonlinear dynamical 
systems and it has been previously shown that RNN’s can 
represent DFA states [10]. Popular architectures of recurrent 
neural networks include first-order recurrent networks [11], 
second-order recurrent networks [12], NARX networks [13] 
and LSTM recurrent networks [14]. A detailed study about the 
vast variety of recurrent neural networks is beyond the scope 
of this paper. We will map hidden Markov models into first –
order recurrent neural networks and show that the hybrid 
architecture can learn deterministic finite-state automata. Fig. 
1 is a diagram for first order recurrent neural networks 
showing the recurrence from the hidden to the context layer. 

 
Fig. 1 Recurrent neural network architecture 

 

B. Hidden Markov Models 
In a first order Markov model, the state at time t+1 depends 

only on state at time t, regardless of the states in the previous 
times [15].  Fig. 2 shows an example of a Markov model 
containing three states in a stochastic automaton. Пi  is the 
probability that the system will start in state Si and   aij  is the 
probability that the system will move from state Si   to state  Sj. 
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Fig. 2 A Markov model 

 

 

A hidden Markov model (HMM) describes a process which 
goes through a finite number of non-observable states whilst 

generating a signal of either discrete or continuous in nature. 
The model probabilistically links the observed signal to the 
state transitions in the system. The theory provides a means by 
which: 
 

• the probability P(O|λ) can be calculated for a HMM 
with parameter set λ, generating a particular 
observation sequence O, through what is called the 
Forward algorithm. 

 
• the most likely state sequence the system went 

through in generating the observed signal through the 
Viterbi algorithm. 

 
• a set of re-estimation for iteratively updating the 

HMM parameters given an observation sequence as 
training data. These formulas strive to maximize the 
probability of the sequence being generated by the 
model. The algorithm is known as the Baum-Welch 
of Forward- backward procedure. 

 
The term “hidden” hints at the process’ state transition 

sequence which is hidden from the observer. The process 
reveals itself to the observer only through the generated 
observable signal. A HMM is parameterized through a matrix 
of transition probabilities between states and output 
probability distributions for observed signal frames given the 
internal process state. The probabilities are used in the 
mentioned algorithm for achieving the desired results.  

 

C. Finite-State Automata as Test Beds for Training 
A finite-state automaton is a device that can be in one of a 
finite number of states. In certain conditions, it can switch to 
another state; this is called a transition. When the automaton 
starts processing input, it can be in one of its initial states. 
There is also another important subset of states of the 
automaton: the final states. If the automaton is in a final state 
after processing an input sequence, it is said to accept its 
input. Finite-state automata are used as test beds for training 
recurrent neural networks. Presumably, strings used for 
training do not need to undergo any feature extraction. They 
are used to show that recurrent neural networks can represent 
dynamical systems. 

 

D. Deterministic Finite-State Automata 
A language is a set of strings over a finite alphabet 

{ }1 2 | |, , ....,σ σ σ ∑∑ = .  The length of a string ω will be 

denoted |ω|. A deterministic finite-state automata (DFA) is 
defined as a 5-tuple M = (Q, ∑, δ, q1 ,F ), where Q is a finite 
number of states, ∑ is the input alphabet, δ is the next state 
function δ  : Q × ∑ →Q which defines which state q’ =  δ(q,σ) 
is reached by an automaton after reading symbol σ when in 
state q, q1 Є Q is the initial state of the automaton (before 
reading any string) and F ⊆  Q is the set of accepting states of 
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the automaton. The language L(M) accepted by the automaton 
contains all the strings that bring the automaton to an 
accepting state. The languages accepted by DFAs are called 
regular languages. Fig. 3 shows the DFA which will be used 
for training the hybrid system of RNN and HMM.   State 1 is 
the automaton’s start state; accepting states are drawn with 
double circles.   
 

 
Fig. 3   Deterministic finite-state automata 

 

E. Evolutionary Training of Recurrent Neural Networks   
Recurrent neural networks have been trained by 

evolutionary computation methods such as genetic algorithms 
which optimize the weights in the network architecture for a 
particular problem. Compared to gradient descent learning, 
genetic algorithms can help the network to escape from the 
local minima. Genetic algorithms rely on the reproduction 
heuristic of crossover operator which forms offspring’s by 
recombining representational components of two members of 
the population without regard to their content [16]. This 
approach of creating population members assumes that 
components of all parent representations may be freely 
exchanged without altering the search process.  Usually, the 
crossover and mutation operators are altered in genetic 
algorithm for training neural networks; this is done to 
represent the real number values of the weights in the 
network.   
 

F. Mapping Hidden Markov Models into Recurrent Neural 
Networks 

As stated earlier, the structural similarities of hidden 
Markov models and recurrent neural networks form the basis 
for combining the two paradigms in a hybrid architecture. 
Why is it a good idea? Most often, first order HMMs are 
deployed in practice which means that state transition 
probabilities are dependent only on the previous state. This 
assumption is unrealistic for many real world applications of 
HMMs. It has been shown that RNNs can learn higher-order 
dependencies from training data [17]. Furthermore, the 
number of states in the HMM needs to be fixed beforehand for 
a particular application. In the past, artificial neural networks 
have been pruned or extended during training to achieve 

higher discriminative and training performance [18]. The 
theory on RNNs and HMMs suggest that the combination of 
the two paradigms may provide better generalization and 
training performance. The hybrid system may also have the 
capability of learning higher order dependencies. In the hybrid 
system, there may not be any requirements of fixing the 
number of states for HMM prior to training in a real world 
application. Next we will study the structural similarities of 
the two paradigms and design a hybrid architecture. 
 

Consider the equation of the forward algorithm for the 
calculation of  P(O|λ) in  “equation (1)”. 
 

( )1 1
N

t t t
j i ij j

i

a b O j Nα α −⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠
∑              (1) 

 
where N is the number of hidden states in the HMM, ija  is the 

probability of making a transition from state i to j and  

( )t
jb O is the probability of generating symbol tO  when in 

state i. The calculation in “equation (2)” is inherently 
recurrent and bares resemblance to the recursion of RNN 
shown in Fig. 1. 

1 1
N

t t
j i ij

i

x f x w i N−⎛ ⎞
= ≤ ≤⎜ ⎟

⎝ ⎠
∑               (2) 

 
where f() is a non-linearity as sigmoid, N the number of 
hidden neurons and wij the weights connecting the neurons 
with each other and with the input nodes.  
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Fig. 4 The hybrid recurrent neural network architecture inspired 

by hidden Markov models 
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Fig. 4 shows how HMM is mapped into the RNN by tying 
the output of the HMM, P(O|λ) together by means of a 
trainable weight leading to an output layer. 

The output of the Gaussian function solely depends on the  
two input parameters which are the mean and  the  variance. 
These are parameters that observe the sequence of the input 
data in the hybrid architecture which may be DFA strings or 
data from any real-world time series. These parameters will 
also be represented in the chromosomes together with the 
weights and biases and will be trained by genetic algorithm. 
We used a univariate Gaussian for one dimensional input of 
DFA training strings. For real world applications where 
multiple dimensions are involved, multivariate Gaussian 
function would be used instead. The univariate Gaussian 
function used in this hybrid architecture is given by “equation 
(3)”. 
 

( ) ( )2

2

1 1e x p 22

t
it

i
ii

O
b O

μ

σπ σ

⎡ ⎤−
⎢ ⎥= −
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⎣ ⎦

   (3) 

   
where ( )t

ib O is the Gaussian function, tO is the observation at 

time t, μ is the mean and 2
iσ  is the variance.  The 

observation sequences for training a DFA are the DFA strings 
which are the inputs to the hybrid architecture. 
 

G. Evolutionary Training of the Hybrid System   
In the hybrid system of hidden Markov models and 

recurrent neural networks, the neurons in the hidden layer 
compute the weighted sum of their inputs only without further 
computing the nonlinear sigmoidal function of the output. The 
outputs of the corresponding neurons in the hidden layer are 
further multiplied with the output of the corresponding 
Gaussian function. The product of the neuron and the output 
of the Gaussian function are then propagated from the hidden 
layer to the output layer as shown in Fig. 4.  

We altered the crossover and mutation operators in genetic 
algorithms so that the genes could represent real numbered 
weight values in the hybrid architecture. Prior to the training 
process, a population size is defined and then the algorithm 
randomly chooses two parent chromosomes; they are 
combined into a child chromosome using the crossover 
operator. The child chromosome is further mutated according 
to a mutation probability. The mutation operator adds a small 
real random number to a random gene in the child 
chromosome. The child chromosome then becomes part of the 
new generation. A chromosome represents the weights, biases, 
mean and variance as parameters of the hybrid system of 
HMM and RNN. The fitness function computes the reciprocal 
of the squared error for each chromosome; thus, genetic 
algorithm is used for reducing the squared error. The 
chromosome with the least squared error from the hybrid 
architecture then slowly begins to affect the entire population 
until a solution is reached. Evolutionary computation such as 
genetic algorithm thus finds the best chromosomes 

representing the weights, biases and other parameters of the 
hybrid system.  

 

H. Experimentation 
We generated a training set of strings from the DFA shown 

in Fig. 2 consisting of all strings of lengths 1-10 and a testing 
set of 1-15.  We ran experiments of the evolutionary processes 
of training genetic algorithms with population sizes of 60, 80 
and 100 chromosomes. We used the crossover operator 
probability as 0.7 and mutation probability as 0.01. We used 
different weight initialization ranges to observe which weight 
initialization ranges are best for training the hybrid 
architecture. We used a training bound of 50 generations; if 
the hybrid system could be trained within 50 generations, we 
stopped.  We ran two major experiments as follows: 
 
Experiment 1:  We trained all the parameters of the hybrid 
architecture, i.e. the weights connecting input to hidden layer, 
weights connecting hidden to output layer and weights 
connecting the context to hidden layer. We also trained the 
bias weights and the mean and the variance as parameters of 
the univariate Gaussian function along the hidden layer. The 
network topology used for this experiment was as follows: we 
used one neuron in the input layer for string input, 5 neurons 
in the context and hidden layer and one output neuron in the 
output layer.  
 
Experiment 2:  We trained only the weights connecting the 
context layer to the hidden layer and used a constant value of 
1 for the weights that connected the input layer to the hidden 
layer and those weights that connected the hidden to the 
output layer. We did not train the latter weights to investigate 
if deterministic finite-state automata can be represented by the 
context and hidden weight layers alone.  We trained the mean 
and variance as parameters of the univariate Gaussian function 
in the hidden layer. The network topology used for this 
experiment is as follows: we used one neuron in the input 
layer for string input, 10 neurons in the context and hidden 
layer and one output neuron in the output layer. The results of 
these experiments are shown in the following section. 

III. RESULTS AND DISCUSSION 
The results for both experiments show that evolutionary 

training for hybrid system of RNN and HMM can be difficult 
if the weights, biases, and parameters of the Gaussian are 
initialized with random real number values from -1 to 1. Both 
experiments reveal that deterministic finite-state can be 
learned and be represented by the hybrid system of HMM and 
RNN.  Table I shows the results for experiment 1, where all 
parameters in the hybrid system are trained. 
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TABLE  I 
RESULTS FOR EXPERIMENT 1 

Population 
size 

Weight 
range 

Training 
performance 

Generalization 
performance 

training 
time 

60 -1 to 1 0.05% 0.05% max 
80 -1 to 1 0.05% 0.05% max 

100 -1 to 1 0.05% 0.05% max 
60 -3 to 3 100% 100% 3 
80 -3 to 3 100% 100% 2 

100 -3 to 3 100% 100% 2 
60 -15to 15 100% 100% 2 
80 -15to 15 100% 100% 2 

100 -15to 15 100% 100% 2 
60 -30 to 30 100% 100% 2 
80 -30 to 30 100% 100% 2 

100 -30 to 30 100% 100% 2 
 

The training and generalization performance show the percentage of strings 
correctly classified by the hybrid system of HMM and RNN. The training time 
is given by ‘generations’. The maximum training time used was 50 
generations which is denoted by the word ‘max’ in the table.  
 

It can be seen from Table I that deterministic finite-state 
automata can be trained and represented by the hybrid 
architecture; the results show 100% training and 
generalization performance. There is no significant difference 
for different population sizes. The best weight value 
initializations for faster training performance are real weight 
values within a range of -15 to 15. Other weight initializations 
also show satisfactorily performance except for small random 
values for weight initializations. 
 

TABLE  II 
RESULTS FOR EXPERIMENT 2 

 
The training and generalization performance show the percentage of strings 
correctly classified by the hybrid system of HMM and RNN. The training time 
is given by ‘generations’. The maximum training time used was 50 
generations which is denoted by the word ‘max’ in the table. 
 

Table II shows the results for experiment 2 which reveal 
that deterministic finite-state can be represented by only 
training the context weights and Gaussian parameters of the 
hybrid architecture. The experiment shows a 100% training 
and generalization performance. The system does not perform 
satisfactorily when initialized with small random weights.  
 

IV. CONCLUSION 
We have successfully mapped hidden Markov models into 

recurrent neural networks. The structural similarities between 
hidden Markov models and recurrent neural networks have 
been the basis for the successful mapping in the hybrid 
architecture. We have used genetic algorithms to train the 
hybrid system of hidden Markov models and recurrent neural 
networks. We altered the crossover and mutation operators in 
genetic algorithms to represent real numbered weight values 
of the hybrid architecture. We used genetic algorithms to train 
the parameters in the hybrid architecture which were the 
weights, biases, the mean and the variance of the univariate 
Gaussian function. We used deterministic finite state automata 
for training to show that the hybrid architecture can represent 
dynamical systems. We ran two major experiments which 
show that deterministic finite automata can be trained and 
represented by hybrid systems of HMM and RNN.  Both 
experiments had a difficulty in training when initialized with 
small random weight values. It is shown that the hybrid 
architecture can train and represent dynamical systems with 
one dimensional input. In the future, we will investigate if 
successful training can be done for real world application 
problems where the data sets are multi-dimensional.   
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