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Abstract—This paper presents an online method that learns the
corresponding points of an object from un-annotated grayscale im-
ages containing instances of the object. In the first image being
processed, an ensemble of node points is automatically selected
which is matched in the subsequent images. A Bayesian posterior
distribution for the locations of the nodes in the images is formed.
The likelihood is formed from Gabor responses and the prior assumes
the mean shape of the node ensemble to be similar in a translation
and scale free space. An association model is applied for separating
the object nodes and background nodes. The posterior distribution is
sampled with Sequential Monte Carlo method. The matched object
nodes are inferred to be the corresponding points of the object
instances. The results show that our system matches the object nodes
as accurately as other methods that train the model with annotated
training images.

Keywords—Bayesian modeling, Gabor filters, Online learning,
Sequential Monte Carlo.

I. INTRODUCTION

Feature based object matching methods require typically
a large set of training images with manual annotations on
the corresponding points [1]-[4]. To learn the parameters of
the models, the images are processed simultaneously. The
computational requirements of such batch learning become
huge with large training sets. Also, annotating images by hand
is a time consuming job.

In this contribution a method is proposed for solving
both the above-mentioned problems. The method finds the
corresponding points in an image sequence without making
use of annotated feature locations, by matching the images
incrementally, one by one. In the algorithm, a set of node
points is positioned in the starting image of the sequence in
a somewhat regular grid. In the second image, a similarly
shaped node set having as much correspondence with the
first image as possible is located. This is realized within the
Bayesian framework; the Gabor filter response based local
appearance of the nodes and the shape of the node set are
combined into a posterior probability distribution of the node
locations, which is sampled using the Sequential Monte Carlo
(SMC) sampling method to find the most probable locations
for the nodes. SMC methods are usually applied in dynamic
problems where new data arrive online [5]. However, they can
also be used in our static setting by sampling the nodes from
conditional posterior distributions, conditioned on the already
sampled nodes. With some improvements on the basic SMC
scheme, it turns out to be an efficient method for locating the

main mode of the posterior distribution. The matching results
of the second image is exploited in matching the next image,
and hence the training set expands recursively as more images
are processed.

The node set probably contains object nodes and nodes
located in the background. Bayesian framework offers a nat-
ural way for inferring which of the matched nodes should be
associated with the object and which not. As more images are
processed, the uncertainty in associating the nodes decreases.
A feature point based representation of the object can be
formed from the object nodes by dropping the background
nodes from the node set. Unlike in batch methods, the number
of training images to be used for the representation can be
concluded online. In the experiments the presented model
demonstrates its promise by achieving a matching accuracy
for the object nodes comparable to methods that learn the
object model from an annotated training set. The proposed
method can also be used as a precursor to build a training set
for methods that require annotations on the feature points.

Slightly related with the presented model are the part based
models which also utilize a joint probability density for the
appearance and shape of the parts [6]-[11]. These batch
methods learn a representation of an object from un-annotated
training images containing instances of the object and use the
representation to classify test images. The learning is usually
implemented by selecting candidate parts from the training
images and applying the expectation maximization method to
learn the model parameters and finding the similar object parts.
Some batch methods classify test images by segmenting the
un-annotated training set [12]-[15]. Methods that learn the
object model online are very rare; to our best knowledge, the
only such method is the incremental part based method of Fei-
Fei et al. [16]. Hence, this paper has an important contribution
on the field.

II. THE BAYESIAN MODEL

Before going into details of the model, it is described here in
brief. The method is given images that all contain an instance
of one common object, but no further information is given. The
task is to find corresponding points of the object in the images,
which are processed one at the time, in random order. A set
of candidate corresponding points, called nodes, are placed in
the starting image of the sequence using a simple automatic
procedure, which aims to place the nodes in ’interesting’
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Fig. 1. An artificial example of the evaluation of a node set in a sequence of
three images. The dots mark the mean of the posterior distribution of the node
locations, and the size of the dots reveal the association probability (large dots
are associated with the object).

locations, approximately evenly in the image. In the following
images, nodes with similar appearance are searched while
keeping the shape of the node set approximately the same. For
this, a Bayesian approach is adopted: the likelihood function,
which is based on Gabor filter response based similarity, and
the prior part, which assumes the mean shape of the node set
to be similar in each image, are combined into the posterior
distribution for the location of the node set. The likelihood
is a mixture distribution, whose kernels are evaluated at each
matched image, thereby allowing multiple appearances to be
modeled for the nodes. In a successful case, the most probable
node combination has the corresponding nodes at correct
locations. The posterior distribution is sampled with SMC
methods. From the SMC samples, the posterior mean and
some integrals, needed in the computations, can be estimated.
Each matched node is assigned an association probability,
which reveals, how probably the node is associated with the
common object. For nodes with nearly constant appearance,
this probability increases to unity along the sequence. If a
node is located on an image detail whose appearance has many
modes, or which is occluded in some images, the increasing
of its association probability is slower. The image details of
the background nodes typically differ in each image, so their
association probability tends to zero along the sequence. A
representation of the object can be formed anytime as soon
as it becomes clear, which of the nodes are object nodes. In
figure 1, an illustrative example of matching incrementally a
set of six nodes in a sequence of three images is shown.

A. Node selection

A simple automatism is used to select the nodes in the
first image. The image is divided into small non-overlapping
rectangular windows. In each window, a pixel is chosen which
maximizes the sum of the magnitudes of the complex Gabor
filter responses [1], [17]. An example of the selected nodes in
the starting image is illustrated in figure 2. The gaps between
the windows prevent many nodes from being selected at the
same image detail (at neighboring pixels), which may happen
if the windows touch each other. The shape of the selected
node set is considered as the reference shape for the following
images. It should be noted that the rectangular windows are
used only for placing the nodes in the starting image and do
not set any limits for where to search for the nodes in the
upcoming images.

Fig. 2. An example of the automatically selected nodes in the starting image
of the sequence.

B. Posterior distribution of the node locations

Let I, denote the current test image, being image number
t > 1 in the sequence. If x; denotes the location of the node
set in image I;, a posterior distribution is

P(Xz|11:t7X1)NP(It|Xz,II:t71)P(Xt|X1) s (@Y

where p(I;|x;,I1,—1) is the likelihood - independent of x; -
and p(x;|x;) is the prior distribution for the location of the
node set.

C. Likelihood - appearance model

First, the joint likelihood of the node set is taken to be a
product of the independent node likelihoods (’naive Bayes’
assumption):

P(Iz|Xt,I1:t—1) = HP(It‘x;l,II:t—l) s 2)
n=1
where n indexes the nodes of the node set, whose size is d.
Let us next drop the node index n and concentrate on an
independent node likelihood. At this stage, the concept of
node association is adopted. Each node of the node set is
or is not associated with the common object. These cases are
denoted with A and 4, respectively. The level of the association
is naturally revealed with probabilities. The likelihood of an
individual node of the node set is yielded by summing out the
unknown association status:

P(It|xzallzt—1) :P(It|xz;Il:t—17Az)P(Az|I1:zfl)
+p(It‘xt7Il:l—lvzt)P(Zt“:l:t—l) ) 3)

where P(A;|Ij,—1) is a prior association probability for the
node, which is independent on the node location x;. This is
computed recursively as

1 t—2
P(Al|T1y—1) = 1 IP(At71|I1:t71) T IP(At71|I1:t72) ;
“4)

that is, it is a weighted mixture of posterior and prior as-
sociation probabilities of the previous image. To compute
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the posterior probability for associating the node in image ¢,

P(A;|I1y), the posterior association probability of the node at

image location x; is first presented, which is given by Bayes’

formula:

P(It|xz,Il:t—lyAz)P(At‘xt,Il:t—l)
p(It|xt7:[l:t—l) '

P(Atlxe, I1y) = Q)
This is integrated over the posterior distribution of x; to get
the posterior association probability in image ¢,

p(AT1) = / pAdu, Ti)p(x|Ti)dx . (6)

Note that the integration is performed over the posterior distri-
bution of the location of the whole node set. The posterior as-
sociation probability in the first image, P(A;|I;), is taken to be
half, and the prior probability for non-association is the com-
plement of the prior association probability: P(A,|I1,_1) =
1—=P(A/]T14-1)-

The associative likelihood model is based on Gabor filter
responses [1], [17]. The used filter bank consists of six
differently oriented Gabor filters (8 =0, /6, ...,57/6) at three
frequencies (f = n/4,m/8,m/16), with a Gaussian deviation
0, = 1. The images are filtered with the Gabor filters; thus,
the symbol I actually denotes an image, filtered with the
filter bank. The magnitudes and phases of the different filter
responses are denoted by a; and ¢@;. Let g’ = {a’, ¢’} be
reference Gabor responses and g(x;) = {a(x;),p(x;)} be the
Gabor responses at the test image location x;. A widely used
similarity measure between the two Gabor responses is [1]

S(g(x[)7g/) _ Ziai(xt)agcos(q)i(xt) — (le) 7 (7)
Yiai(n) Xia)’

where the summing is over the 18 filter responses.

Next, the associative likelihood term is integrated over the
distribution of g1, which denotes the Gabor responses of
the node in images 1,...,r — 1:

P(Iz|xz711:t717At) = /P(Ir|xt7Il:t—I,Angl:t—l)
xp(gru—1|Iti—1)dgri—1 = p(Ls|x:,Ar,814-1) ,  (8)

where the dependence on I, has been dropped and a point
estimate for gi.,—1 has been plugged in. This means that the
posterior distribution of g;,_; - which is independent of x;
and A; - is taken to be a delta function at the point estimate,
being for image k:

S &) p(Ak Xk Troa) p (X Ties X1 )Xy

Sk = )
S J P(Ak|xie, Tio) p(Xi| T 1., X1 )X

For the first image, the Gabor responses g; are naturally
evaluated at the selected nodes. The associative likelihood is
taken to be a mixture of likelihood kernels, which are one for
each processed image, so that the appearance of each matched
node is a reference appearance for the node in the test image:

t—1

p(It‘tht’gAl:z—l) = Zp(1t|xt7At»gk) : (10)
k=1

The likelihood kernels are heuristically built from the similar-
ity measures (7):

p(Il‘thlagAk):exp(ﬁs(g(xt)agAk)) ’ (1])

where the value of B controls the steepness of the (unnormal-
ized) likelihood. An example of a likelihood kernel, which
typically is multimodal, is illustrated in figure 3.

The non-associative likelihood, p(I;|x,I1,_1,4,), is diffi-
cult to compute. It is basically the probability of observing
certain image detail in a test image, given that the image detail
is not to be associated with the reference details. Looking at
formulas (5) and (3), it can be seen that this value, multi-
plied by P(A;|I1.,_1), sets a level for how similar the Gabor
responses have to be with the reference responses in order for
the node to receive a high association probability. With very
low value, each node is associated with the common object,
while in the other extreme none is associated. A constant
value is chosen for the non-associative likelihood. A heuristic
setting is utilized to find an optimal value, being such that the
association probabilities of the object nodes are as close to
unity as possible, and those of the background nodes as low
as possible. In [6]—[8] the distribution of the background parts
are also modeled with a uniform density. Adding a positive
constant with the associative likelihood ensures that the total
likelihood - being product of the individual likelihoods - is
always non-zero.

Finally, our likelihood model is condensed into a few words.
The likelihood for matching a new image is a product of
independent node likelihoods (equations (2) and (3)). The
non-associative part p(I,|x,I1,_1,4,) is a heuristically set
constant. The associative part p(I,|x;,I1,—1,4;) is computed
with (7), (10) and (11), where the reference Gabor responses
8y are computed with (9). The prior association probability
P(A;|I14—1) is computed with equations (4), (5) and (6).

Fig. 3. Small image: the starting image (same as in figure 2). Large image:
test image, with contours of the likelihood kernel distribution (f = 20) of
the reference node, marked with cross in the starting image, and manually
annotated correct node location.

D. Prior - shape model

The mean shape of the node set in a test image, a priori
to observing the image, is assumed to be the same as in
the starting image, after put into same location and scale,
with independent Gaussian deviations on the nodes. The
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prior distribution, p(x,|x;), is therefore defined as a Gaussian
distribution in a translation and scale free space:

i) =

X —Ex] o fE[xl],O'ZI) . (12)
s(x¢,X1)

where I denotes a unit matrix, E[x] is the mean value of x, o2
is the pre-fixed variance of the nodes and s(x;,x;) is the scale
of the node set x; w.r.t. the node set x;. The scale is computed
from the node locations:

0u(x1)? + 0,(x/)?
ou(x1)? + 0y (x1)?

s(x¢,X1) = , (13)
where 0,(x) is the standard deviation of the horizontal com-
ponents of the nodes in x, and 6,(x) is that of the vertical
components. Since the same Gabor filters are used with each
scale, the likelihood values change with large scales. Therefore
the performance of the system decreases if the size difference
between the object instances in different images is large (say,
more than one and half).

E. Sequential Monte Carlo sampling

The dimensionality of the posterior distribution is too huge
to let the posterior to be evaluated on a dense enough grid.
Also, the likelihood is such that it is difficult to approxi-
mate with any simpler function that could be integrated in
closed form. Sampling methods are therefore applied to obtain
weighted samples from the posterior distribution, and with
these samples, the required integrals are estimated. Sequential
Monte Carlo (SMC) methods are widely-used techniques for
estimating the posterior distribution in dynamic state-space
models [5], typical example being the tracking of a moving
object. SMC algorithms can also be applied in a static setting.
The static SMC scheme has the ability to handle multiple
hypotheses of the posterior at the same time, making it a
good choice to use for our problem as there are many possible
locations for the nodes.

In our SMC implementation, all the data are available
from the start, and the parameters (i.e. the coordinates of
the nodes) are updated sequentially. The posterior distribution
needs therefore to be defined in a conditional form so that
it is possible to sample the ith node, given the locations of
the already sampled nodes \i. Since the node likelihoods are
independent, it is enough to express the prior distribution in
a conditional form, which is straightforward for a Gaussian
distribution with a diagonal covariance matrix. For clarity, the
image number index is dropped, so x = x; and x’ = x; denote
the test and reference node sets:

Xi_E[X\i] , , )
/<m ‘xi‘E[X\fLGI) a4

The SMC implementation is illustrated in algorithm 1. Apart
from the first component, the sampling order of the particles
is sampled deterministically according to the prior association
probabilities, so that the nodes that probably associate with the
object tend to be matched first. Each particle thus samples the
nodes in different order. The first component of the particles is
matched from the likelihood. For the following components,

pxilx\;,x') =

1. Initialization, m = 1
for j=1to N do
- Assign indices of first component for each particle,
J (lj ) = j modd
- Sample x} ~ p(I;|x;, I14—1,A;) using i =
- Set 0 = x7 and w!’) = 1
end for
-Setm=2
2. Importance sampling
for j=1to N do
- Assign Jm from 1,...,d according to the prlor associ-
ation probabilities P(A,|11 4—1) so that Jn # J] 1

Jgj)

- Assign l—Jm> and X\ = 91(]:7)1 |
- Sample x ~ g(xx,;.X.T) =

P(Telxi,T1y 1) (x,\x\, x')
(pm +( *‘P)W , where

Xi€

XGR[P(II‘XIIH 1))
(pzl—exp 1—- ZR p(Telxi Iy 1, AD)P(Ai|T1—1)

i€
- Set 91(;91 = (O(j) 1X7)

1:m—
( |X\17X Iir)

() _ [0

- Setwin’ =\ /Wil (G, T

end for
3. Reducing the particle number

- Denote the current number of particles as N' = N
- Eliminate M particles with lowest weights, where

M/N < 1

- Set the new number of particles to be N=N'—M
4. Resampling with Langevin MOVE
step

- Resample with replacement N particles (91(1,21, j=1,..,N)

G(J ) ,j=1,...,N) according to the importance

from the set (
weights le:m
for j =1to N do )

- For [ =1,...,m, assign i = Jl(’) and set E; =

p(I)xi,I1,—1) with probability p(4, \Ol(j),Il;,), otherwise

set E; = p(xi|6, 1) LIt X))
- For n=1: Nyer, a551gn \i= (<1])
sample 6l(:n>1 el(m 82 8Ell~ , +£'/V 0 1)

end for
-If m<dsetm=m+1 and go to step 2

Algorithm 1: The Sequential Monte Carlo implementation.
The number of particles and nodes are N and d, and 6 denotes
the parameter vector. Also, following notation is adopted: x =
X;, X =X.

the proposal distribution is a mixture of likelihood and prior
terms, with the mixture coefficient ¢ heuristically determined
on the basis of the node association probability. The purpose
is that the associative nodes are sampled from the likelihood
and the non-associative nodes from the prior. In the algorithm,
only local area R around the prior mean is used. During the
process the particles containing high likelihood nodes will
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survive the resampling and thus the partially matched node
sets will contain different sets of nodes that probably associate
with the object.

As compared to the basic SMC algorithm, some modifica-
tions have been made that take into account the static nature
of our problem. The resampling scheme with square weights
is applied, which keeps the particle weights of the previous
nodes and decreases the variance of the importance weights.
After sampling each node, a Langevin Monte Carlo [18] step is
applied to improve the sampled parameter values. Also, it is
desired to save the computation time without impoverishing
the results. Since the hypothesis of the correct mode is
assumed to get stronger as more components are matched,
the particle number is reduced along the sampling procedure
by removing some proportion of particles with lowest weights
before resampling.

F. The incremental processing

1) Gabor transform the starting image I;

2) Select the nodes in the starting image and store the
Gabor responses at each node. Set t =2

3) Gabor transform the next image I,

4) Compute the likelihood with equation (2) and the suc-
ceeding equations

5) Sample the image with SMC algorithm 1

6) Estimate and store the posterior association probabilities
of the nodes with equations (5) and (6)

7) Compute the mean Gabor responses with equation (9)
and store them

8) Settr=1t+1 and go to step 3

Algorithm 2: The online algorithm for matching the corre-
sponding points in the images.

Finally, algorithm 2 shows our online method for learning
the corresponding points in an algorithmic form.

III. EXPERIMENTS

The method was tested on images of two databases, with
resolution 240 x 320 pixels. The first database contains 64 dig-
ital camera images of a dog. The second database is the DTU-
IMM database [19], containing 37 images of human faces, into
which random background using Caltech background images
(http://www.robots.ox.ac.uk/~vgg/data3.html) was added. For
both databases, the same parameter values were used. The
steepness parameter of the likelihood was set to § = 20, the
variance of the Gaussian prior was 62 = 20, and the number of
nodes was 20. The Langevin equation was iterated 10 times
with leapfrog stepsize € = 1. The number of SMC particles
was 400 in the beginning, and it was reduced by one fourth
at each iteration until it reached 50.

Figure 4 shows few sample runs. The object nodes seem
to be correctly located and are clearly associated with the
object, whereas the background nodes are clearly associated
with the background. The association probabilities of some
nodes, such as those near the ear of the dog or the hear nodes
of the faces, stay close to 0.5 since they contain multiple

different appearances. Note that some lines on the graphs
are superimposed because the prior association probabilities
of most of the object nodes similarly approach unity. It
should also be noted that although for a human observer
the added background textures of the face images form an
evident pattern, the proposed method is based only on the
node points with no segment analysis. Therefore, the regular
shaped background patterns give no advantage for the method;
in contrary, the background segment boundaries appearing in
the same locations in each image complicates the matching as
they produce false candidates for object nodes. An example
of an SMC particle set is shown in figure 5. Note how the
variance of the posterior seems to be less for the object nodes
than for the background nodes, as expected due to the peaked
nature of the likelihood.

Fig. 5. An example of SMC representation. Left: the first image. Right: the
second image, with SMC particles superimposed. The particle weights are not
shown.

Measuring the numerical performance of the proposed
method in finding the common corresponding points in the set
of images is not straightforward, as the resulting corresponding
points differ for each image set. A laborious solution would be
to manually annotate the locations of the object points found
by the method in all the test images, and repeated test runs.
An approximation of this error measure can be computed by
morphing the images according to pre-annotated points (12 in
the dogs images and 58 in the DTU database), and measuring
the distance between the reference location of the node in
the morphed image and the location set by the proposed
method. For each matched image the weighted Euclidean
distance between the object nodes in the starting image and the
matched object nodes is computed, weights being the posterior
association probabilities. To reduce the errors due to morphing,
the mean of the distances was computed in both directions
(the starting image morphed to match the test image and vice
versa), and an average of those was taken.

The errors were computed using sequences of 10 images. To
average over the influence of random processing order of the
images, and especially over the effect of the starting image,
the method was given multiple sequences, so that each image
of the database was three times as the starting image, and
the remaining images were chosen randomly. This resulted in
3.64 =192 test runs for the dog database and 3-37 =111
test runs for the DTU-IMM database. Nodes were classified
as object nodes if the prior association probability exceeded a
threshold of 0.85 in the end of the sequence. In the sample runs
of figure 4, these nodes are marked with crosses. The threshold
was merely chosen on the basis that it results in a reasonable
number of object nodes which in average was 7. The errors
are not very sensitive to the threshold since the distances are
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Fig. 4. Two examples of matching sequences of ten images. The dots depict the Monte Carlo estimate of the posterior mean of the node sets. The green values
of the dots are proportional to the posterior association probabilities of the nodes. The sizes of the dots are proportional to the prior association probabilities
of the nodes which are also shown on the graphs on the right. The nodes whose prior association probability exceeds 0.85 in the end of the sequence are
marked with plus signs in the images.

TABLE I
THE MATCHING ERRORS FOR THE TWO DATABASES. COLUMNS FROM LEFT THE RIGHT: MEAN ERROR AND STANDARD DEVIATION OF THE PROPOSED
METHOD; MEDIAN ERROR; AN ESTIMATE OF THE MEASURING ERROR; DOUBLED MEAN ERROR; DOUBLED ESTIMATE OF THE TRUE MEAN ERROR OF THE
MODEL; THE ERROR OF EBGM METHOD [1]; THE ERROR OF AAM METHOD [19]; THE ERROR OF THE BAYESIAN OBJECT MATCHING METHOD [3]. THE
CITED METHODS ARE BATCH METHODS AND USED DOUBLED IMAGE SIZES SO THE FIGURES IN THE FIVE RIGHTMOST COLUMNS, I.E. RIGHT TO THE
SECOND VERTICAL LINE, CAN BE COMPARED.

Database | M = std Med  Eporph | M £std) x2 Ex2 EBGM AAM BOM

Dogs 574 £ 479 447 457 +£205 | 11.5 £9.57 11.1 - - -
DTU-IMM | 625 £1.89 597 513 £1.72 | 12.4 £ 3.95 7.32 6.16 = 1.75 574 £ 1.18 552 £ 1.46

weighted with the posterior association probabilities.

The Euclidean node-to-node errors, averaged over all the
test runs, are tabulated in table I, together with the errors of
the DTU-IMM database of other published methods. These
batch methods are the Elastic Bunch Graph Matching (EBGM)
method [1], Active Appearance Model (AAM) implementation
of Stegmann [19] and the Bayesian Object Matching (BOM)
method [3]. As the image size in our experiments was half
of the original, doubled matching errors are also reported
for comparison. The DTU-IMM errors of our system exceeds
the errors of the other two methods for several reasons. The
other methods use leave-one-out cross-validation with a large
number (36) of manually annotated images in the training set,
while the proposed method uses only the information from the
images analyzed during the sequence. The manually annotated
feature points are likely to be more informative than those
automatically set in our system, there are more of them (58),
and they are all located on the object, whereas the proportion
of the object nodes in our node sets is typically less than half.

Finally, the measurement error caused by morphing the images
produces additional errors due to morphing defects. A rough
estimate for this error was formed in the following way. One
of the three series in which each of the images was once the
starting image was chosen. For each run, one of the remaining
nine images was randomly chosen. It was then morphed to
match the starting image, the nodes selected by the proposed
method were manually annotated in the morphed image and
the distance between the two was computed. Assuming that
the matching errors and morphing errors are uncorrelated (so
the mean squared errors are additive) a rough estimate of the
true model error £ is achieved. There are two obviously false
dog database matches whose contribution to the mean square
error is huge; by leaving these out, the figure drops from 11.1
to 7.17.

IV. DiscussioN

This paper has proposed an online method for learning the
corresponding points of an object, whose instances appear in
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un-annotated grayscale images in arbitrary location and scale.
This is a demanding task, compared to the task the existing
feature point based matching algorithms are trying to solve.
For instance, the batch method of [4] uses 600 annotated
training images to match test images, which are simpler (faces
with similar scale on a uniform background) than the ones
used here. In our system, a reference node set is automatically
located in the starting image. The node set is matched in the
subsequent images using Bayesian framework. The likelihood
is a mixture distribution whose kernels are evaluated at the
mean Gabor responses of each matched image. The prior
is a Gaussian distribution whose mean, after removing the
translation and scale effects, is the reference node set, and
whose covariance matrix is diagonal. Combining the likelihood
and prior results in the posterior distribution for the locations
of the nodes, which is sampled with SMC methods. Each node
is assigned a probability, with which the node is associated
with the object. Since the model contains parameters whose
values are set more or less heuristically the framework cannot
be considered as being "pure’ Bayesian.

Due to the loosely supervised nature of the problem, the
efficiency of the method for locating the corresponding points
in the images is difficult to measure. It was estimated by
morphing the images according to pre-annotated points. The
measuring error this analysis carries was estimated as well,
and assuming that the measuring errors and model errors
are uncorrelated, the model error of the DTU-IMM images
is on a par with those of other published methods that use
simultaneously 36 training images with 58 manually annotated
object features to train the model [1], [3], [19]. Taking into
account the incremental nature of our matching scheme and
the existence of nodes selected in the added background, the
results can be considered as surprisingly good. As to the
unsuccessful matches, two error sources may contribute on
these: either the posterior distribution is such that the strongest
mode is not the correct location, or the SMC algorithm fails
to converge to the strongest mode. Separation of these errors
is, in practice, impossible.

The used likelihood is not robust to large scale changes.
However, since scaling results in a linear shift of the response
pattern of the Gabor filter bank along the spatial frequencies,
scale invariance could be added at the cost of increased
computing time by finding the highest likelihood over dif-
ferent scales. Likewise, orientation invariance could be added.
Another (straightforward) improvement would be to update
the variances of the prior model. The method is also capable
of dealing with missing data, as the object instance lacking
in an image can be considered as being totally in occlusion.
However, the later such background images appear in the
sequence, the easier it is for the method to match upcoming
images, as the object representation is then stronger than at
the beginning. Especially, it is desired that the instance in the
starting image is a typical representative of the object, as the
node appearances are initialized based on that.

The computational complexity of the proposed method is
currently rather high. With unoptimized Matlab code, process-
ing one image takes about one minute on a latest desktop
computer. As the SMC particle number is proportional to

the number of nodes d, the sampling is &'(d?) complex (not
taking into account the decreasing of the particle size), and
the computation of the likelihood fields is &'(dt) complex,
since the likelihoods contain one kernel for each of the
t processed images. These - especially the sampling - are
the two computational bottlenecks of the method. Luckily,
the SMC algorithm is parallel by nature, as the particles
are independent on each other, apart from the resampling
step. Also, instead of carrying the likelihood kernels of all
the matched images, some kernel selection method could be
applied to select only the most informative kernels. The used
likelihood could also be replaced by simpler models. Thus,
with an efficient implementation, the processing time of an
image could be dropped to a fraction.
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