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Abstract— This paper analyses the performance of a genetic 

algorithm using a new concept, namely a fractional-order dynamic 

fitness function, for the synthesis of combinational logic circuits. The 

experiments reveal superior results in terms of speed and 

convergence to achieve a solution. 

Keywords— Circuit Design, Fractional-Order Systems, Genetic 

Algorithms, Logic Circuits.

I. INTRODUCTION

n the last decade genetic algorithms (GAs) have been 

applied in the design of electronic circuits, leading to a 

novel area of research called Evolutionary Electronics (EE) 

or Evolvable Hardware (EH) [1]. EE considers the concept for 

automatic design of electronic systems, employing search 

algorithms to develop good designs. 

One decade ago Sushil and Rawlins [2] applied GAs to the 

combinational circuit design problem. In the sequence of this 

work, Coello, Christiansen and Aguirre [3] presented a 

computer program that automatically generates high-quality 

circuit designs. Miller, Thompson and Fogarty [4] applied 

evolutionary algorithms for the design of arithmetic circuits. 

Kalganova, Miller and Lipnitskaya [5] proposed a new 

technique for designing multiple-valued circuits. 

In order to solve complex systems, Torresen [6] proposed 

the method of increased complexity evolution. The idea is to 

evolve a system gradually as a kind of divide-and-conquer 

method. The evolved functions are the basic blocks adopted in 

further evolution of a larger and more complex system. 

A major bottleneck in the evolutionary design of electronic 

circuits is the problem of scale. This refers to the very fast 

growth of the number of gates, used in the target circuit, as the 

number of inputs of the evolved logic function increases. This 

results in a huge search space that is difficult to explore even 

with evolutionary techniques. Another related obstacle is the 

time required to calculate the fitness value of a circuit [7]. A 

possible method to solve this problem is to use building 

blocks either than simple gates.  
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The idea of using memory to achieve better fitness function 

performances was first introduced by Sano and Kita [8]. Their 

goal was the optimization of systems with randomly 

fluctuating fitness function and they developed a Genetic 

Algorithm with Memory-based Fitness Evaluation (MFEGA). 

The key ideas of the MFEGA are based on storing the 

sampled fitness values into memory as a search history, 

introducing a simple stochastic model of fitness values to be 

able to estimate fitness values of points of interest using the 

history for selection operation of the GA. 

Following this line of research, and looking for better 

performance GAs, this paper proposes a GA for the design of 

combinational logic circuits using fractional-order dynamic 

fitness functions. 

The area of Fractional Calculus (FC) deals with the 

operators of integration and differentiation to an arbitrary 

(including noninteger) order and is as old as the theory of 

classical differential calculus [11-12]. The theory of FC is a 

well-adapted tool to the modeling of many physical 

phenomena, allowing the description to take into account 

some peculiarities that classical integer-order models simply 

neglect. Nevertheless, the application of FC has been scarce 

until recently, but the advances on the theory of chaos 

motivated a renewed interest in this field.  

Bearing these ideas in mind this article is organized as 

follows. Section 2 describes the adopted GA as well as the 

fractional-order dynamic fitness functions. Section 3 presents 

the simulation results and finally, section 4 outlines the main 

conclusions and addresses perspectives towards future 

developments. 

II. THE ADOPTED GENETIC ALGORITHM

In this section we present the GA developed in the study, in 

terms of the circuit encoding as a chromosome, the genetic 

operators and the static and dynamic fitness functions. 

A. Problem Definition 

To design combinational logic circuits a GA strategy is 

adopted. The circuits are specified by a truth table and the 

goal is to implement a functional circuit with the least possible 

complexity. Two sets of logic gates have been defined, as 

shown in Table 1, being Gset a the simplest one (i.e., a RISC-

like set) and Gset b a more complex gate set (i.e., a CISC-like 

set).  

For each gate set the GA searches the solution space, based 

on a simulated evolution aiming the survival of the fittest 

strategy. In general, the best individuals of any population 

tend to reproduce and survive, thus improving successive 

generations. However, inferior individuals can, by chance, 
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survive and also reproduce. In our case, the individuals are 

digital circuits, which can evolve until the solution is reached 

(in terms of functionality and complexity). 

Table 1 Gate sets

Gate Set Logic gates 

Gset a {AND,XOR,WIRE} 

Gset b {AND,OR,XOR,NOT,WIRE} 

B. Circuit Enconding 

In the GA scheme the circuits are encoded as a rectangular 

matrix A of logic cells as represented in figure 1. 

Each cell is represented by three genes: 

<input1><input2><gate type>, where input1 and input2 are 

one of the circuit inputs, if they are in the first column, or, one 

of the previous outputs, if they are in other columns. The gate 

type is one of the elements adopted in the gate set. The 

chromosome is formed by as many triplets of this kind as the 

matrix size demands. For example, the chromosome that 

represents a 3  3 matrix is depicted in figure 2. 

Figure 1: A 3  3 matrix A representing a circuit with input 

X and output Y.

0 1 2 … 24 25 26 Genes 

Input Input Gate … Input Input Gate 

a11 a33 matrix 

element 

Figure 2: Chromosome for the 3  3 matrix of figure 1. 

C. The Genetic Operators 

The initial population of circuits (strings) is generated at 

random. The search is then carried out among this 

population. The population is evolved through the operators 

reproduction, crossover and mutation described in the 

sequel. 

In what concern the reproduction operator, the successive 

generations of new strings are reproduced on the basis of 

their fitness function. In this case, it is used a tournament 

selection to select the strings from the old population, up to 

the new population. 

For the crossover operator, the strings in the new 

population are grouped together into pairs at random. Single 

point crossover is then performed among pairs. The 

crossover point is only allowed between cells to maintain 

the chromosome integrity. 

The mutation operator changes the characteristics of a 

given cell in the matrix. Therefore, it modifies the gate type 

and the two inputs, meaning that a completely new cell can 

appear in the chromosome. Moreover, it is applied an elitist 

algorithm and, consequently, the best solutions are always 

kept for the next generation. 

To run the GA we have to define the number of 

individuals to create the initial population P. This population 

is always the same size across the generations, until the 

solution is reached. 

The crossover rate CR represents the percentage of the 

population P that reproduces in each generation. Likewise 

the mutation rate MR is the percentage of the population P

that can mutates in each generation. 

D. The Static and the Dynamic Fitness Functions 

The goal of this study is to find new ways of evaluating 

the individuals of the population in order to achieve better 

performance GAs. 

In this paper we propose two concepts for the fitness 

functions, namely the static fitness function Fs and the 

dynamic fitness function Fd.

The calculation of Fs in (1) is divided in two parts, f1 and 

f2, where f1 measures the functionality and f2 measures the 

simplicity. In a first phase, we compare the output Y

produced by the GA-generated circuit with the required 

values YR, according with the truth table, on a bit-per-bit 

basis. By other words, f10 is incremented by one for each 

correct bit of the output until f1 reaches the maximum value 

f10, which occurs, when we have a functional circuit. Once 

the circuit is functional, in a second phase, the GA tries to 

generate circuits with the least number of gates. This means 

that the resulting circuit must have as much genes <gate

type>  <wire> as possible. Therefore, the index f2, that 

measures the simplicity (the number of null operations), is 

increased by one (zero) for each wire (gate) of the generated 

circuit, yielding: 

f10 = 2ni no (1a) 

f1 = f1 + 1 if {bit i of Y} = {bit i of YR} , i = 1, …, f10 (1b) 

f2 = f2 + 1 if gate type = wire (1c) 

1 10

1 2 10

,

,

s

s

s

f F f
F

f f F f
(1d) 

where ni and no represent the number of inputs and outputs 

of the circuit. 

The concept of dynamic fitness function Fd results from an 

analogy with control systems where we have a variable to be 

controlled similarly with the GA case where we master the 

population through the fitness function. The simplest control 

system is the proportional algorithm; nevertheless, there can 

be other control algorithms, like the differential and the 

integral schemes. Therefore, applying the static fitness 

function corresponds to using a kind of proportional 

algorithm. If we want to implement a proportional-

derivative or a proportional-integrative evolution the fitness 

function needs a scheme of the type: 

X Y
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d s I s D sF F K I F K D F (2) 

where 0  1 is the integral fractional-order parameter,
0  1 is the differential fractional-order parameter, , and 

KI, KD are the integral and the differential ‘gains’ of the 

dynamical term, respectively. 

The mathematical definition of a derivative of fractional 

order  has been the subject of several different approaches. 

For example, (3) represents the Grünwald-Letnikov 

definition of the fractional derivative of order  of the signal 

x(t)

0
0

11
lim 1

1 1

k

k
h

D x t x t kh
k kh

(3) 

where  is the gamma function and h is the time increment. 

This formulation [13] inspired a discrete-time calculation 

algorithm, based on the approximation of the time increment h

through the sampling period T and a r-term truncated series 

yielding the equation: 

0

1 11

! 1

kr

k

D x t x t kT
k kT

(4) 

III. EXPERIMENTS AND SIMULATION RESULTS

Reliable execution and analysis of a GA usually requires a 

large number of simulations to provide a reasonable 

assurance that stochastic effects have been properly 

considered. Therefore, in this study are developed n = 1000 

simulations for each case under analysis. 

The experiments consist on running the GA to generate a 

typical combinational logic circuit, namely a 2-to-1 

multiplexer (M2-1) and a 4-bit parity checker (PC4), using 

the fitness scheme described previously. The circuits are 

generated with the gate sets presented in Table 1 for 

CR = 95%, MR = 20% and P = 100 and implementation of 

the differential/integral fractional order operator adopts Eq. 

(5) with a series truncation r = 50 terms. 

Having a superior GA performance means achieving 

solutions with a smaller number N of generations and a 

smaller standard deviation in order to reduce the stochastic 

nature of the algorithm. 

The first set of simulations investigate a differential 

scheme ( {0, 0.25, 0.5, 0.75, 1}) and an integral scheme 

( {0, 0.25, 0.5, 0.75, 1}) in Fd for gains 10 3 KD 102

and 10 3 KI 102, respectively.  

Figures 5 to 8 show the average number of generations to 

achieve a solution AV(N) and the standard deviation SD(N)

for the differential PD  (i.e., KI = 0) and integral schemes 

PI (i.e., KD = 0), for the M2-1 and PC4 circuits, using Gset 

a and Gset b, respectively. The charts include the plots for 

 = 0 and  = 0, that is without dynamics, in order to ease 

the comparison. 

Since we achieved better and more stable results for 

 = 0.25 and  = 0.25, we have investigated the combination 

of these parameters. Therefore, the second set of simulations 

investigates a proportional-integral-differential PI D

scheme. Due to the large number of possible combinations 

of { , , KI, KD} we establish  =  = 0.25 and 

10 3 KD = KI 102.
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Figure 5: M2-1 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for the PD  and 

PI   schemes with Gset a. 
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Figure 6: PC4 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for the PD  and 

PI   schemes with Gset a. 

Figures 9 and 10 show the average number of generations  

to achieve a solution AV(N) and the standard deviation 

SD(N) for the proportional-integral-differential PI D

scheme, for the M2-1 and PC4 circuits, using Gset a and 

Gset b, respectively.  
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Figure 7: M2-1 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for the PD  and 

PI   schemes with Gset b. 

Comparing the previous PD  and PI  schemes with the 

PI D  case, we verify that the inclusion of both 

differential and integral actions improves slightly the results. 
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Figure 8: PC4 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for the PD  and 

PI   schemes with Gset b. 

We conclude that the Fd concept produces better results 

than the classical Fs. Moreover, the results reveal that, as it 

was expected from previous studies [9,10], the RISC-like set 

Gset a presents better performance than the CISC-like gate 

set Gset b for all values of ( , , KI, KD ). 
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Figure 9: M2-1 and PC4 average number of generations to 

achieve a solution AV(N) and standard deviation SD(N) for 

the PI D   scheme with Gset a. 

IV. CONCLUSION

The new concept of fractional-order dynamic fitness 

function of the GA, demonstrates to be an important method 

that outperforms the traditional static fitness function 
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approach. The tuning of the ‘optimal’ parameters ( , , KI,

KD) was established by numerical evaluation; therefore, 

future research will address the problem of having a more 

systematic design method. These conclusions encourage 

further studies using fractional order dynamical schemes. 
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Figure 10: M2-1 and PC4 average number of generations to 

achieve a solution AV(N) and standard deviation SD(N) for 

the PI D   scheme with Gset b. 
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