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Species spreading due to environmental hostility,
dispersal adaptation and Allee effects

Sanjeeva Balasuriya

Abstract—A phenomenological model for species spreading which
incorporates the Allee effect, a species’ maximum attainable growth
rate, collective dispersal rate and dispersal adaptability is presented.
This builds on a well-established reaction-diffusion model for spatial
spreading of invading organisms. The model is phrased in terms
of the “hostility” (which quantifies the Allee threshold in relation
to environmental sustainability) and dispersal adaptability (which
measures how a species is able to adapt its migratory response to
environmental conditions). The species’ invading/retreating speed and
the sharpness of the invading boundary are explicitly characterised
in terms of the fundamental parameters, and analysed in detail.

Keywords—Allee effect, dispersal, migration speed, diffusion, in-
vasion

I. INTRODUCTION

THE speed and the structure of population dispersal is an
important area of study, in particular in the protection

of native fauna and flora from invasive species. Factors in-
fluencing this include the species’ range, density-dependence
in its growth, dispersal rate, dependence of the dispersal rate
on environmental conditions and density, habitat variation, and
collective behaviour. Many types of mathematical models have
been used to understand the ecology of spatial spreading,
including partial differential equations [1]–[7], discrete models
[4], [8], integro-differential equations [9], and neural nets [10].
Different models offer successes in different situations.

One factor influencing population spreading is whether
the population is growing at a sufficient rate. The standard
measure of this is the per capita growth rate (pgr), which is
the rate of increase of the population per individual. The pgr is
density-dependent in many relevant situations. The most com-
mon density-dependence expresses pgr as a linear decreasing
function of the density, modelling the fact that an environment
has limited resources. This simple pgr curve does not take into
account an important phenomenon postulated by Warder Allee
[11], in which the pgr curve increases at small densities [11]–
[14]. Among many explanations for this phenomenon are the
inability to find mates successfully, diminished anti-predator
vigilance and reduction of genetic diversity [13]. If the pgr is
actually negative at small densities, this is called the strong
Allee effect, which has been demonstrated in gypsy moths
[15], bighorn sheep [16], African wild dogs [17] and annual
plants [18], [19]. The weak Allee effect (the pgr does not
become negative) has been exhibited in flour beetles [11], the
California channel island fox [20] and smooth cordgrass [21].
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Assuming that a population is increasing sufficiently, its
spatial spreading is measured by a dispersal rate. This relates
to how individuals move around: their typical range, the shape
of the probability distribution of the range, the speed at which
they move, etc. The density profile of the population as a
whole moves according to how all the individuals move. For
plants, the spatial probability distribution of the progeny of a
plant and the frequency of seeds (and seasonality) contribute
to the dispersal rate. Commonly used models for dispersal
are neural-net simulations which populate a spatial grid based
on a probabilistic dispersal [10], [21], or diffusion equations
which incorporate the randomised individual motions into a
deterministic model for the collective density [1]–[3], [5], [6],
[22].

In this article, an extension to a well-established model [3],
[4] which includes both Allee dynamics and diffusive spread
is examined. The goal is to determine the spreading rate and
the shape of the density profile, in terms of parameters funda-
mental to the species and the environment. As a first step, this
is done in terms of the species’ maximum attainable per capita
growth rate, natural dispersal rate, and the hostility (a newly
defined parameter which incorporates the Allee threshold and
the environmental carrying capacity). As a second step, the
fact that a species will change its dispersal rate depending
on environmental conditions is considered, as suggested by
Fretwell in his ideal free distribution hypothesis [23]. This can
be incorporated in different ways, most of them mathemati-
cally difficult: density-dependent diffusion [6], [7], [22], [24],
[25], discrete resource-dependent dispersal models [8], [9], and
a host of habitat selection models (see the introduction of [26]
for a review). Here, a simpler implementation of Fretwell’s
hypothesis through the definition of a new parameter, the
species’ dispersal adaptability, is formulated. This measures
a species’ ability to change its dispersal rate depending on
resources and intra-species competition. The dependence of
the spreading rate and density profile on these fundamental
parameters is examined in detail, and ecological implications
discussed.

II. PER CAPITA GROWTH RATE

The model for the pgr, ignoring dispersal, is first presented.
The important parameters which are used in the model are
summarised in Table I, for quick reference. If u is the
population density (population per unit habitat length) of a
species, the pgr in the presence of Allee effects could be
modelled by [4], [14]

pgr = L
(
1 − u

K

)(u
α
− 1

)
, (1)
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TABLE I
LIST OF PARAMETERS AND VARIABLES USED IN THIS ARTICLE.

Quantity Name Dimensions

α Allee threshold Individuals
c Spreading rate Length/Time
h Environmental hostility, h = α/K Dimensionless
K Carrying capacity Individuals
n Dispersal adaptability Dimensionless
Φ Natural dispersal rate Length2 / Time
r Maximum per capita growth rate Time−1

u Population density Individuals/Length

K
u

pgr

(a) α = K

K Α

u

pgr

(b) α > K

Fig. 1. Ecologically meaningless choices for pgr: (a) α = K , and (b)
α > K .

is used, in which L is a positive normalizing constant, K is
the carrying capacity, and α is the Allee threshold. While K
needs to be non-negative to be ecologically meaningful, it is
first argued that α needs to be less than K . Firstly, α = K
is not a legitimate choice, since pgr is negative even for any
u < K , any population below the carrying capacity will decay
to zero (see Figure 1(a)). Secondly, α > K would result
in Figure 1(b), in which α would be a stable equilibrium,
while K would be unstable. The population density would
therefore approach a value greater than the environmental
carrying capacity K . Thus, α < K .

The normalizing factor L in (1) modifies the height of the
curve, and can be chosen in many ways (see [5] for a dis-
cussion). Following Lewis and Kareiva [5], it shall be chosen

to relate to a parameter of potential ecological significance:
the species’ maximum attainable per capita growth rate r.
Elementary calculus reveals that the maximum value is seen
to occur at u = (α+K)/2, and hence

L =
4Kα

(K − α)2
r . (2)

By replacing L with the above, the pgr can be expressed by

pgr =
4K α

(K − α)2
r
(
1 − u

K

)(u
α
− 1

)

=
4 r

(K − α)2
(K − u) (u− α) , (3)

The graph of the pgr in (3) is shown in Figure 2. There
are two qualitatively different possibilities for α which model
ecological situations: −K < α ≤ 0 and 0 < α < K . As
a special case of the former, suppose α = 0, meaning that
the organism does not encounter negative pgr. This is the
weak Allee effect, whose graph is shown in Figure 2(a). This
same qualitative increase in pgr at small densities occurs if
−K < α < 0, whose graph can be obtained by shifting the
zero at u = 0 in Figure 2(a) to the left by the appropriate
amount. As long as −K < α, the peak of the graph occurs
at positive u, leaving a region at small densities in which
pgr initially increases with u. (If α ≤ −K , pgr is strictly
decreasing for positive u, and hence qualitatively similar to
standard logistic growth.) Weak Allee effects have been shown
to exist in nature in both animals [11], [20] and plants [10],
[21]. The strong Allee effect relates to 0 < α < K , and
is shown in Figure 2(b). The strong Allee effect has been
exhibited in animals [15]–[17], and in plants [18], [19].

The environmental hostility parameter h is now defined by

h =
α

K
. (4)

For a particular species, the carrying capacity K is highly
susceptible to the environment, for example through habitat
destruction or resource depletion. The Allee threshold α is
less influenced by environmental conditions. Thus, if a given
species is considered in different environments, those which
are most conducive to the species’ survival have a higher K
value, and therefore an h closer to zero. In contrast, in harsh
environments with limited resources, K will be small, and in
the worst case will approach α, meaning that h will be close
to one. Thus, h represents the hostility of the environment
in relation to the species, with h nearing 1 implying an
environment highly hostile to the species, in which growth
can occur only in a tiny density range α < u < K . Since
−K < α < K , h satisfies −1 < h < 1, with −1 < h ≤ 0
representing the weak Allee effect. If h = 0, the environment
is friendly enough so that no negative growth occurs, with
more negative h implying that the species has a better growth
rate at small densities.

III. SPATIAL DISPERSAL

Let Φ be the natural dispersal rate constant; species which
have greater speeds of motion, or which typically move over
longer distances, have a larger value of Φ. For animal species,
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Fig. 2. Graph of the pgr in (3) illustrating the two possible Allee effects: (a)
α = 0 (a weak Allee effect scenario), and (b) α > 0 (strong Allee effect).
The normalisation chosen is such that r is the maximum value of the pgr.

Φ can be thought of as the typical speed of an individual,
multiplied by the typical distance the individual travels during
a typical excursion. For plant species, Φ can be the typical
inter-generational time multiplied by the square of the distance
away from a plant that its seedling hatches. This situation
is analogous to Brownian motion, in which particles (say,
perfume particles in air) move randomly at a typical speed,
over a typical distance. A statistical averaging of the motions
of all particles leads to the fact that the particle concentration at
a position x at time t would be given by the standard (Fickian)
diffusion equation [3], [4]

∂u

∂t
= Φ

∂2u

∂x2
. (5)

If population motion is viewed in this same way, equation (5)
can be used to model how a population spreads spatially, by
averaging random motions of individuals [24].

Including growth as in (3) and spatial motion as in (5), the
governing equations become

∂u

∂t
= Φ

∂2u

∂x2
+

4 r

(K − α)2
u (K − u) (u− α) . (6)

The last term takes this form since the pgr is defined by
(1/u)(∂u/∂t). Equation (6) is a dimensional equation for the
population density u(x, t), in which all ecological parameters
are maintained. This is advantageous since, for example, by
non-dimensionalising the density by the carrying capacity K ,
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Fig. 3. The density profile in (7) at times t = 0 (solid), t = 1 (dotted) and
t = 2 (dashed). Both figures use r = 1 and Φ = 1. A spreading population
is shown in (a), with h = 0.2, while a shrinking (retreating) one is shown in
(b), with h = 0.8.

the direct influence of K on assorted properties of interest
remains hidden. A solution to a standard non-dimensional ver-
sion of this equation, the Fisher-KPP equation with Nagumo’s
bistable reaction term, is well-known [4]. An exact solution to
(6) was determined by scaling arguments, and verified using
the symbolic computational software package Mathematica
[27]. The population density evolves according to

u(x, t) =
K

1 + exp
[

K
K−α

√
2r
Φ (x− c t)

] (7)

in which exp[z] is used for ez for improved readability, and
the new parameter c is given by

c =
K − 2α
K − α

√
2Φr . (8)

The spatial variable x and the time t appear together in (7) in
the combination ξ = x−ct, enabling u(x, t) to be written as a
function of one variable u(ξ). This special feature represents a
density profile which remains fixed (with ξ being the variable
along the profile), but which moves to the right at speed c.
Thus, c is the migration speed of the population as a whole. It
is important to observe the distinction between the dispersal
rate constant Φ (which is the product of a typical speed
and distance travelled by an individual) and the migration
speed c (which is the end result of how fast the species as
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Fig. 4. The speed (10) at which the profile moves, as a function of h. The
values r = 1 and Φ = 1 are used in this graph.

a whole spreads, having averaged over the random motions of
individuals).

The role of the parameters Φ and r will not be extensively
analysed, since their effects in (8) and (7) are straightforward.
The population density can be rewritten in terms of h as

u(x, t)
K

=
1

1 + exp
[

1
1−h

√
2r
Φ (x− c t)

] (9)

with the speed

c =
1 − 2h
1 − h

√
2Φr . (10)

Both u/K and c can be written in terms of only three
fundamental parameters r, Φ and h. The carrying capacity K
only plays the role of stretching the density profile vertically.
A graph of the normalised density u/K at several different
times with r = 1, Φ = 1 and h = 0.2 appears in
Figure 3(a). The front maintains its shape, while moving to the
right. Therefore, the population spreads to uninhabited regions,
gradually approaching carrying capacity everywhere in the
domain. Figure 3(b) also shows u/K , but now with h = 0.8.
This front moves to the left, resulting in a shrinking population
which fails to colonise the region. By examining (10), the
transition from a spreading to a shrinking population occurs
when h drops below 1/2. If the hostility is exactly 1/2, the so-
called Maxwell point [4], the profile remains stationary, with
diffusive dispersal exactly counteracting population growth.
While h is 0.3 away from the Maxwell point in either direction
in Figure 3, the shrinking population profile moves much
faster, as can be obtained by analysing (10) and Figure 4. The
fastest spreading rate of

√
2Φr occurs when the hostility is

least, as can be seen from (10). For hostilities approaching 1 in
(10), c becomes increasingly negative, indicating a population
shrinking so rapidly to be almost instantaneously disappearing.
The limit h→ 1 applied to (10) verifies that c→ −∞ in this
situation. The ecological implication is that for highly hostile
environments, a tiny increase in hostility (through habitat
destruction, say) has an inordinate effect on the population
shrinking rate. Such situations are particularly vulnerable to
rapid extinctions. In contrast, small modifications in hostility
for less hostile environments have only marginal effects on
population spreading.
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Fig. 5. Density profile u/K at time zero with r = 1 and Φ = 1, at different
hostilities: h = 0.02 (dashed), h = 0.5 (solid), and h = 0.9 (dot-dash).
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Fig. 6. A cartoon explaining the sharpness of the density profile in relation
to hostility. The arrows indicate the direction and size of population growth
at that location, due to the Allee effect.

The effect of the hostility on the shape of the population
density front (9) is shown in Figure 5. The front gets steeper as
the hostility increases, irrespective of whether it is an invading
or a retreating front. That is, the boundary between highly
populated and sparse regions gets sharper. As h → 1, the
profile approaches the abrupt situation in which the population
is at the carrying capacity for x < 0, and at zero for x > 0.
Friendly environments have a slow transition between high
density regions to the left, and low density ones to the right,
whereas hostile environments possess a stronger clumping of
population.

The reason for this is the interaction between the Allee
effect and dispersal rate. Figure 6 is a sketch of any one
of the curves in Figure 5. The location on the vertical axis
labelled as h corresponds to the value u = α. If dispersal
is ignored, the direction and size of population growth, as
obtained from Figure 2(b), is indicated by the arrows in
Figure 6. For example, the maximum per capita growth of
r occurs at (1 + h)/2, which corresponds to the midpoint
between α and K in Figure 2(b). There is negative growth
when the density is below h. Thus densities to the right
of the critical value h exhibit decay, with smaller densities
decaying faster, leading to a sharpening of the drop. A similar
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Fig. 7. Dispersal rate as a function of hostility, with the choice r = 1, and
the axis labelled in factors of the natural dispersal rate Φ. The curves are
n = 0 (solid), n = 1 (dotted), n = 2 (dashed) and n = 3 (dot-dash).

sharpening occurs near the maximum growth value (1+h)/2.
Hence the profile continues to sharpen. If h is larger, this
sharpening is more pronounced, since as h gets pushed up
towards 1, the spatial region corresponding to positive growth
gets smaller. Now dispersal causes the profile to disperse in
the horizontal direction, lessening the sharpening. That is, the
Allee effect stretches the profile vertically, while dispersal
stretches it horizontally. In this particular solution is that these
two effects balance such that the profile maintains its shape.

Recall also that the profile moves to the right (that is, the
population spreads) if h < 1/2, but moves to the left (retreats)
if h > 1/2. A plausible explanation for this is also obtainable
from Figure 6. If h < 1/2, the region of negative growth
is “small” in comparison to positive growth. Since dispersal
occurs indiscriminately in either direction, more population
would venture into regions of positive growth than negative.
The profile would then “move up” because of this positive
growth, which exhibits itself as the profile moving to the right.
To see this, notice that the dotted curve in Figure 3(a) is higher
than the solid curve; making the density larger is relatively the
same as moving the curve to the right. The opposite occurs if
h > 1/2.

The above arguments are based on the fact that the dispersal
rate Φ is assumed constant. In reality, of course, a species will
change its dispersal rate Φ depending on the environmental
conditions, as will be examined in the next section.

IV. HOSTILITY-DEPENDENT DISPERSAL

Assuming that the dispersal rate Φ remains constant is an
oversimplification, since species will move more when food
is in short supply. The standard method of modelling this
issue of population pressure is to have the dispersal be a
linearly increasing function of u [6], [7], [22], [24], [25], but
this leads to considerable mathematical difficulties. A more
tractable scenario is presented in this article, in which the
species moves more in highly hostile environments. As the
hostility approaches 1 (that is, in environments in which the
carrying capacity is approximately the same as the number
of individuals needed to ensure a positive pgr), individuals
are likely to venture far and wide in search of food and
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c

Fig. 8. Spreading speed in the presence of a hostility-influenced dispersal
rate, as given in (12). The values r = 1 and Φ = 1 are used, and the curves
are drawn for n = 1 (solid), n = 2 (dotted), and n = 3 (dashed).

mates, since remaining in one location is not sustainable. As
a phenomenological model of this, the dispersal rate will be
expressed by

Dispersal rate =
Φ

(1 − h)n , (11)

in which n is a non-negative number. Thus, Φ is the dispersal
rate the species will use as h → 0, that is, in the absence of
environmental pressure. This is the species’ natural dispersal
rate. The dispersal rate in (11) increases with h, but very
slowly in good conditions. As h approaches 1, the disper-
sal rate increases without bound, as individuals desperately
attempt to escape a hopeless environment. This mimics the be-
haviour suggested by Dwyer and Morris [9], who imputed its
necessity having numerically analysed a complicated integro-
difference model. Figure 7 shows graphs of the dispersal rate
as a function of the hostility, for different values of n. Larger
values of n have a dispersal rate which changes more rapidly
with h. Putting n = 0 in (11) recovers a constant value Φ
for the dispersal rate, as was previously studied. Thus, n can
be thought of as quantifying the hostility’s influence on the
dispersal. Species which adapt their motion strongly to the
environmental conditions have a larger n, which shall be called
the dispersal adaptability.

Now, if the dispersal rate is as in (11), the spreading speed
(10) becomes

c =
1 − 2h

(1 − h)1+n/2

√
2Φr . (12)

Graphs of the spreading speed c as a function of the hostility
appears in Figure 8. Larger values of n produce a larger speed,
which is consistent with the fact that individuals are moving
more. This behaviour mimics density-dependent diffusion:
Almeida et al [7] show in their numerically generated Figure 8
that larger dependence on density increases the wavespeed, and
thus the current parameter n has qualitatively the same effect.
However, this movement is in different directions depending
on h. In the population spreading situation (h < 1/2), the
population invades new territory more rapidly. In the shrinking
situation (h > 1/2), the species withdraws from currently
populated regions more quickly. In the latter situation, α is
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Fig. 9. Density profile u/K under hostility-influenced dispersal, at time zero
with r = 1 and Φ = 1. The four different hostilities shown are h = 0.01
(dashed), h = 0.2 (solid), h = 0.49 (dot-dash), and h = 0.8 (dotted). In (a),
n = 1 is shown, in which higher hostilities sharpen the profile. In (b), n = 3
is shown, and here higher hostilities spread out the profile.

relatively large. Individuals who moved too far to the right
encountered regions with population density below the Allee
threshold and hence suffered from negative growth, whereas
those who moved to the left fell into positive pgr territory. The
end result is that the population profile as a whole moves to
the left.

The qualitative migration speeds obtained with this model
agree with those of Dwyer and Morris [9], who formulated
a discrete time resource-consumer Beverton-Holt model in
which resources were density-dependent. While the numerical
solutions from their model initially exhibited pulsing of the
wavefront, it gradually settled (though never actually becom-
ing constant). Their Figure 3 indicates that the wavespeed
increases with the consumer growth rate, consistent with (12).

The density profile with hostility-dependent dispersal is
given by

u(x, t)
K

=
1

1 + exp
[

1
(1−h)1−n/2

√
2r
Φ (x− c t)

] (13)

If n = 2, the profile u/K no longer depends on the hostility.
This is a marginal situation, in which the hostility’s influence
on the dispersal rate counteracts the hostility’s direct effect
on the shape of the density profile. If n is less than this
marginal value of 2 (that is, if the influence of the hostility

on the dispersal rate is fairly small), then the property that
smaller hostilities possess a more spread-out density profile is
preserved. This is shown in Figure 9(a), where n = 1, whose
qualitative structure is similar to Figure 5. On the other hand,
if n > 2, then precisely the opposite occurs; higher hostilities
imply a more spread out density profile. This is illustrated in
Figure 9(b), where n = 3. The reason for this reversal is since
the dispersal rate, which causes a horizontal stretching of the
profile as shown in Figure 6, is now large enough to counteract
the vertical stretching resulting from the Allee effect. Since
the dispersal rate increases with h, higher hostilities spread
the profile out more.

The ecological implication is that if a species is highly
adaptable in its dispersal, it will spread out more in hostile
environments. Its invasion pattern will possess a gradual tran-
sition between the highly populated region behind the “front
boundary” and the sparser region in front of it. On the other
hand, if the species is less able to adapt its dispersal rate, the
more hostile the environment, the sharper the front boundary
would be. This observation may be new to the literature on
dispersal modelling.

V. CONCLUSIONS

The model that has been considered builds on standard
reaction-diffusion models for population spread, but highlights
the role of the Allee effect and dispersal rate. The initial results
are obtained in terms of the species’ maximum attainable per
capita growth rate r, natural dispersal rate Φ, Allee threshold
α and the environmental carrying capacity K . Most properties
could be expressed in terms of three parameters only, by
defining the hostility h = α/K . Permitting the dispersal
rate to be influenced by the environmental hostility leads
to an additional fundamental parameter, n, which quantifies
the species’ ability to adapt its dispersal due to environmen-
tal conditions. If so, species invade faster than would have
been predicted using a constant dispersal rate, and retreating
populations also retreat substantially faster. The relation of
the hostility to the sharpness of the density profile as also
examined. The increasing of sharpness with hostility (with
individuals banding closer together) is a property that reverses
if the organism can disperse strongly enough in response to
environmental hostility.

This is a simple phenomenological model, whose major ad-
vantage is the possibility of obtaining explicit expressions for
both the spreading speed and the profile shape. The model does
not take into account heterogeneous environmental conditions
and habitat selection, or density-dependent diffusion. Never-
theless, some understanding of these issues can be obtained
from the model. For example, an invading species spreading
into a region whose resources diminish would be expected
to slow down, since this is effectively a situation in which
h increases, and Figure 4 predicts exactly that. Similarly, the
density-dependent pressure faced by a species venturing into a
resource-depleted region is related to a greater drive to leave,
that is, a dispersal rate which increases with hostility. The
model also captures this. The presence of an explicit solution
also permits a detailed analysis of the sharpness of the invading
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boundary, which is difficult to obtain in more complicated
models.
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