International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:6, 2011

On the Fp-Normal Subgroups of Finite Groups

Shitian Liu, and Degin Chen

Abstract—Let G beafinite group, and let F be aformation of
finite group. We say that asubgroup H of G is Fp-normal inGif

there exists a normal subgroup T of G such that HT is a permutable
Hall subgroup of G and (H MT)H / Hy is contained in the

F-hypercenter Z- (G/H ) of G/H, .

some results about the Fp -normal subgroups and then use them to

In this note, we get

study the structure of finite groups.
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|. INTRODUCTION

LL groups considered in this paper are finite, and G
denotes a finite group. The notation and terminology are
standard, asin [1].Recall that, for aclass F of groups, a chief
factor H /K of a group G is called F -central (see [2]) if

[G/K](G/C,(H/K))eF . The symbol ZF(G)

denotes the F -hypercenter of agroup G, that is, the product
of all such normal subgroups H of G whose G -chief factors
ae F - centra. A subgroup H of G is said to be
F -hypercenter [3] in G if H<Z'(G) A class F of
groupsiscalled aformation if it is closed under ahomomorphic
image and a subdirect product. It is clear that every group G
has a smallest normal subgroup (called F -residua of G and
denoted by G™ ) with quotient in F . A formation F is said
to be saturated if it contains every group G with
G/¢(G) e F.weuse U and S to denotethe formations of
all supersoluble groups and soluble groups, respectively. Recall
that a subgroup H of G issaid to be complemented in G if
G has a subgroup B such that G=AB and AnB=1
(see[4]). A subgroup H of G issaidtobe F, -normal [5] (or

c-normal [6], F_-normal [7] or F, -supplemented [8] ) in G
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if there exists a normal subgroup T of G suchthat HT isa
normal Hall subgroup of G , and

(HNAT)H /H, <ZF(G/H,). By using the above

subgroups, people have obtained some interesting results (see
[5,7,8,9]}). As a development of this topic, we now introduce
the following new concept.

Definition 1.1 Let F be aclass of groups. A subgroup H of
$G issaidtobe F,-normal in G if there exists anormal
subgroup T of G suchthat HT isapermutable Hall
subgroup of G ,and (H " T)H,/H, <ZF (G/H,)
Obviously, al normal subgroups, C-normal subgroups,

F,, -supplemented subgroups and F , -normal subgroups are
al F,-normal in G for any nonempty saturated

formation F . However, the following example shows that the
converseis not true. For example, if asubgroup H is
C-normal in G, then there exists anormal subgroup K such
that G = HK and

(HAT)Hg /Hg =1<ZF (G/Hy)

However, the following example shows that the converseis not
true.

Example 1.2. Let S, be the symmetric group of degree 4, P
be the Sylow 3-subgroupof S, and Z be agroup of order
p with p#23.Let G=2ZiS, =[K]S, bearegular

wreath product, where K is the base group of the regular
wreath product G . Then PK isapermutable Hall subgroup

and PN K =1.Hence P is F -norma in G for any
nonempty saturated formation F . However, it is easy to see that
P isnot normal, C-normal, S, -normal and is not
U . -supplemented in G (in fact, for example, G isthe only
normal subgroup of G suchthat PG =G and P, =1.
However, since the unique minimal normal subgroup K of G
isnot cyclic, PNG =P £ Zf(G) . Thus, Pisnot
S, -norma in G).

In this paper, we study the properties of Fp -normal

subgroups and use them to give some new characterizations of
some classes of groups. Some previously known results are
generalized.
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Il. PRELIMINARIES
Aformation F issaidtobe S-closed (resp. S, -closed) if it

contains all subgroups (resp. al normal subgroups) of al its
groups.

We cite the following lemmas which will be useful in the
sequel.

Lemma2.1[9, Lemma2.1] Let G beagroupand AL G. Let
F be anon-empty saturated formationand Z = Z' (G) .
Then

(1) If Aisnormalin G,then AZ/ A< ZF (G/ A);

() If F is S-closed, then ZN A< ZF (G);

() If F is S,-closedand A isnorma in G, then
ZNA<ZI(G);

@IfGeF thnZ=G.

Lemma 2.2 Let F be asaturated formation containing U and
G agroup with anormal subgroup E suchthat G/E e F .
If $E$iscyclic, then G e F .

Proof. We assume that E is aminimal normal subgroup of
G suchthat E ¢ ¢(G).Let M be amaximal subgroup

suchthat G =[E]M andlet C = C;(E). Then
CnM =M, <G, and sowehave
G/Mg =[EM /M (M /M) € F .Hence

G=G/(EnM;)<G/ExG/M issupersoluble.
ThusGe F.
This completes the proof. &

Lemma 2.3 [14, Lemma2.6] Let N be a soluble normal
subgroup of G . If N N ¢(G) =1, then F(N) isthedirect

product of minimal normal subgroupsof G containedin N .

Definition 2.4 Let H be asubgroup of G . A subgroup K of
G issaid to be asupersoluble supplement of H in G if K
is a supersoluble subgroup of G suchthat G = HK

Lemma 2.5 [5, Lemma2.6] Supposethat H hasasupersoluble
supplementin G .

(D) 1f N <G, then HN /N has a supersoluble supplement
inG/N.

(2 1f H <K <G, then H hasasupersoluble supplement in
K.

Lemma 2.6 [5, Lemma2.7] Supposethat G hasaunique
minimal normal subgroup N and ¢(G) =1.1f N issoluble,

then there exist amaximal subgroup M of G such

thatG =[N]M ,and N =0, (G) = F(G) = C(N) for
some prime P .

Definition 2.7 Let F be aclass of groups. A subgroup H of
G issadtobe F-normal in G if there exists anormal

subgroup T of G suchthat HT isapermutable Hall
subgroupof G ,and (H " T)H,/H, <ZF(G/H).

Lemma28Let G beagroupand H < K <G. Then
(1) H is F,-normal in G if and only if G hasa normal

subgroup T suchthat HT isapermutable Hall subgroup of

G,He<Tad(H/H)N(T/H;<Zf(G/Hy).
(2) Supposethat H isnormal in G.Then K/ H is

F,-normal in G/ H if and only if K is F,-normal in G ..

(3) Supposethat H isnormal in G . Then for every
F, -normal subgroup E in G satisfying (|H |,| E[) =1,
the subgroup HE/H is F -normal in G/ H .

(4)1f H is F,-normal in G and F ishereditary, then H
is F,-normal in K.

(5) If K isnormal in G and F isnormally hereditary,
then H is F_-normal in K.

(6)If G € F , then every subgroup of G is F,-normal in

G.
Proof. (1) Assumethat H is F -normalin G andlet T

be anormal subgroup of G suchthat HT isapermutable
Hall subgroup of G and

(HNAT)H /Hg <ZF(G/H,).Let T, =TH. Then
T, isnormal in G, HT, = HTH; = HT isapermutable
Hall subgroup of G and
(To/H)N(H/HG) =T, nH)/Hg
=(TNH)H /Hs<ZF(G/H,)

(2) Firstassumethat K /H is F-normal in G/ H . Then

by (1), G/ H hasa normal subgroup T/ H such that
(K/H)(T/H) isapermutable Hall subgroup of G/H ,

(K/H)g,y <T/H and
(T/HYI(K/H) gy n(KIH)YI(KNH)g, 4
<ZF((GIH)I(KTH)gn) '
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Then T isnormal in G and KT isapermutable Hall
subgroup of G . Besides, since

(T/H)I(K/H)g,y n(K/H)/(K/H)g, 4
=(T/H)I(Kg/H)N(K/H)/(K;/H)
=(TnK)/H)/(Ks/H)

and

Z, (GIH)I(KIH)g,u)=Z. (GIH)I(Kg /H)),
we have

(TAK)/ Kg =(T/IK )N (KIK)<ZE(GIKY).
Hence, K is Fp-normal in G . Analogously, one can show
that if K is Fp-normal in G,then K/H is Fp-normal in

G/H.
(3) Assumethat E is F,-normal in G . Thenby (2), G

has a normal subgroup T suchthat ET isapermutable Hall
subgroupof G, E; <T and

(E/El)N(T/EL)<ZF (G/E.). Wewill prove that
HE/H is F -normal in G/H . By (1), we only need to
show that HE is F,-normal in G . Since (|H || E ) =1,
wehave H <T andso TN HE=H(TnE) <HZ,
where Z/ E, = Z! (G/ E,) . Hence from the

G -isomorphism
HZ/HE; = HE;Z/ HE,

=Z/(ZNHEg)=Z/E;(ZNH),

wehave HZ /HE; < X /HE, = Z! (G/HE,) and 0
(HENT)/HE; < X/HE;. Let D = HE;. By Lemma
2.3,
(X/HEG)(D/HEG)/(D/HEG)SZO':(G/HEG).
Therefore,

(TD/D)N(HE/D)=D(T "HE)/D < Zf (G/D)
andso HE is F,-norma in G..

(4) Let T beanormal subgroup of G suchthat HT isa
permutable Hall subgroupof G, Hg <T and
(HIH)N(T/HG)<ZI(G/H). Let
T, =Hgs(HNK).Since K=KNnHT =H(KNT),
wehave K = HT,. By Lemma2.2(3), T, is normal in K.
Besides,

(T./Hg)N(H/Hg)
=H(HNTnK)/Hg
<Z/Hg=Zf(G/H )N K/H,.

Assumethat F is hereditary. Then by Lemma2.3(2),
Z/H,<Zf(G/H.).ByLemma2.3(1),

(ZIHG)HK/Hg)/(HK/H)
<SZ((KIHG)I(H THg))

andso (T,/H, )N (H/H,)<Z(K/H,).Hence,
H is F,-normal in K

(5) See the proof of (4).

(6) Assumethat G € F andlet H bean arbitrary
subgroup of G . By Lemma2.3(6), Z=2Z"(G) =G, and
soby Lenma2.3(1), ZF (G/H.) = G/H,. Hence,
H/H, <ZF(G/H.).

This completes the proof. o

Lemma 2.9 Let R beasoluble minimal normal subgroup of
G . If there exists amaximal subgroup R, of R suchthat R

isU , -normal in G, then R isagroup of prime order.

Proof. Assumethat | R| isnotaprime. Then R, # 1. Since
R isaminimal normal subgroup R, of R, (R))s =1.

Then, by hypothesis, there exists anormal subgroup K of
G suchthat R K isapermutable Hall subgroup of G,

R NK <ZF(G) and RK issubnorma in G . Hence

R < R K sincethe minimality of R. Since RNK <G,
RNK=1o RNK=R.If RnK =1, then
R=RNRK =R (RNK) =R, acontradiction. If
RN K =R, then R< K. Hence, R < K and therefore,
1#R =R NK <ZY(G). Thus

12 R <ZY(G)nR<G. It follows, from the minimality
of R, that R< ZY (G). Consequently, | R| isaprime.

Thefinal contradiction completes the proof. &

[11. CHARACTERIZATION OF SUPERSOLUBLE GROUPS
Theorem3.1 Let F be asaturated formation containing U .
Then G € F if and only if there exists a soluble normal
subgroup H of G suchthat G/H e F , and every maximal
subgroup of every Sylow subgroup of F(H) , which has no

supersoluble supplementin G, is U -normal in G .

Proof. The necessity part is obvious. We only need to prove
the sufficienty part. Suppose that the assertion isfalse and let

G beacontraexamplewith |G || H | minimal. Let P bean
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arbitrary Sylow p -subgroup of F(H). Since P char
F(H) char H < G . We proceed the proof viathe following
steps.

Sep 1. ¢(G) =1.

If §(G) =1, then §(G) < F(H).Let R=¢(G).
Clearly, (G/IR)/(H/R)=G/H € F. By[10,1ll,
Theorem 3.5], we havethat F(H/R) = F(H)/R. Let
P/R beaSylow p-subgroupof F(H)/R, and B /R
be amaximal subgroup of P/ R. Then P, isamaximal
subgroup of P . By hypothesis, P, either has supersoluble
supplementin G orisU ;-normal in G . It follows from
Lemmas 2.5(1) and 2.8(2), P,/ R either has supersoluble
supplementin G/ R orisU , -normal in G/ R. Now Let
Q/ R beamaximal subgroup of some Sylow $g$-subgroup of
F(H)/R,where g# p.Then Q =Q,R,where Q, isa
maximal subgroup of the Sylow (] -subgroup of F(H). By
hypothesis, Q, either has supersoluble supplement in G or is
U, -normal in G . It follows from Lemmas 2.5(1) and 2.8(3),
that Q,R/ R either has supersoluble supplementin G/ R or
isU ,-normal in G/ R. Hence (G/R,H / R) satisfiesthe
hypothesis. The minimal choice of (G,H) inpliesthat
G/ReF .since G/¢(G)=G/R and F isasaturated
formation, we have G e F , acontradiction.

Sep2. P=2Z,xZ,x...xZ_ ,whereevery Z; isanormal
subgroup of order p of G.

Since P <G, by Step1, P n ¢(G) = 1. Hence by
Lenma23, P=2Z,xZ,x...xZ_,wheredl Z; are
minimal normal subgroups of G . Next, we provethat all Z,
areof primeorder p.

Assumethat | Z, |[> p for some i . Without loss of
generality, let | Z, [> p. Let Z, beamaximal subgroup of
Z,.Then Z, xZ, x...Z,, = P, isamaximal subgroup of a
Sylow p-subgroup P of F(H).Set T =27, x...xZ_,
then (R,)s =T . If P, hasasupersoluble supplement K in
G, then G=PK =2,Z,...Z, K = Z,TK . Since
T <« G, TK isasubgroup of G and so
|G:TK K| Z, K| Z, |. Since

(Z,"TK)® =(Z, nTK)=™

=(Z,"TK)™ =Z, nTK,

wehave Z, "TK < G. Hence, we have either
Z,NTK=1lor Z, N"NTK =Z,.1f Z, nTK =1, thenwe
have |G : TK |=| Z, [>| Z; |, acontradiction.

If Z,N"TK =2, ,then Z, <TK andso G =TK . Since

T<G,then K=G/T=TK/T=KI/TnK is
supersoluble as K is a supersoluble supplement and
Z, =ZTIT ischief factor of G/T . It follows that

|Z, 5| Z,T/T |= p, whichisacontradiction. Thus P, is
U, -normal in G, and so by Lemma 2.8(1), there exists a
normal subgroup N of G suchthat (P)s < N, PN isa
permutable Hall subgroup of G, and

(RAN)/(R)s <Z;(G/(R)g) . Hence
PN=Z,Z,...Z N=Z;(P)cN=2Z,N.weonly
think the following two cases.

Casel.Z, "N =1,

Inthiscase, (Z,)s <Z; "N andso
(Z)s =1<N<ZF(GI(Z))s), Z" =PN isa
permutable subgroup of G , which implies that Zl* is
U, -normal in G . Hence By Lemma 2.9, Z, isacyclic group
of order P, acontradiction.

Case2. Z, "N #1.

Inthiscase, 1< Z; "N <G since Z; and N areboth
normal in G . By the minimality of Z,, we have either
ZiNnN=1or Z, "N =2Z,. Weassume that
Z, "N =1.Hence Z; " N =1, acontradiction. Hence
Z,"N=Z andsoZ, <N.Thus PN=Z;N=N.
Consequently, P, < N . It follows
that
P/(R)s =(RNN)/(R)s <Z7(G/(R)s) N P/(R)s
Af P, =(R)g ., then ZI =1, which contradicts
Z; "N # 1. Hence (P,); < P, and s
1# RI(R)s =(RAN)/(R)e
<ZI(GIP)s)NPI(R)s
Snce P=27,x...2,=2ZT=2,(R,)¢, thenwe have that
P/(P)s =P/P =Z, and P/(P,) isachief factor of
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G because of the minimality of Z,. Thisimplies that

Z; (G/(R)s) NPI(P,)¢, and thereby,

PI(R)e <27 (GI(R)) -1t meansthat | P/(R) |- p.
Therefore P, /(R,); =1, which contradicts B, /(P); # 1.

Sep3. P=F(H).

Obvioudy, P < F(H). Assumethat P < F(H), then
since F(H) isnilpotent, there existsa Sylow (-subgroup Q
of F(H) and Q< G.FromStep2, P=2Z,x...xZ_
and P=R x...x R, where Z;, R, areanormal subgroup
of G of order p,q respectively. Obviously,
F(H)/Z,<F(H/Z)ad F(H)/R, <F(H/R)).
From Step 1, wehave G/ Z;, € F and G/Rj eF .1t
followsthat G/1= G/Z; x G/ R, acontradiction.

Sepd. G/F(H) e F.

FromSteps2and3, P=F(H)=2Z,xZ, x...xZ_,
whereevery Z, isanormal subgroup of G of order p . Since
G/C;(Z;) isisomorphic to asubgroup of Aut(Z,),
G/C;(Z;) iscyclicand soitliesin U for each i . It follows
that G/N", C;(Z,) €U Obviously,

Cs(F(H)) =L Cs(Z;) - Hence,

G/Cs(F(H)) eU c F . Consequently,
G/(HNCg(F(H))=G/C,(F(H)) e F .Since
F(H) isabelianand H issoluble, we have that
F(H)<Cs;(F(H))<F(H).Thus,
F(H)=C;(F(H))=Pawdso G/F(H)e F.

Sep 5. If K isaminiml normal subgroup of G contained in
H,then G/K e F.

Since H issoluble, then K < F(H). By Lemmas 2.5(1)
and 2.8(2), we have that every maximal subgroup of
F(H)/K either has asupersoluble supplement in G/ K or

isU,-normal in G/ K and (G/K)/(H/K) e F .1t

follow that (G/K,F(H)/K) satisfiesthe hypothesis. The
minimal choiceof (G,H) impliesthat G/K € F .

Sep 6. Final contradiction.

Since F isa saturated formation, then by Steps 2 and 4, we
havethat F(H) isthe uniue minimal ormal subgroup of G
contained in H , and F(H) = R, isacyclic group of order

p. Hence by Step 4 and Lemma 2.2, G € F , acontradiction.

Thefinal contradiction completes the proof. &

Corollary 3.2 [5] Let F be asaturated formation containing
U . Then G € F if andonly if there exists a soluble normal
subgroup H of G suchthat G/H € F , and every maximal
subgroup of every Sylow subgroup of F(H), which hasno

supersoluble supplementin G ,is U -norma in G .

Corollary 3.3 [12] Let G be asoluble group having a normal
subgroup H suchthat G/ H issupersoluble. If every
maximal subgroup of any Sylow subgroup of F(H) $ either is

normal in G or has a supersoluble supplement in G , then G
is supersoluble.

Corollary3.4[14] Let G beagroup. If H isasolublennormal
subgroup of G with supersoluble quotient G/ H and all
maximal subgroups of all Sylow subgroupsof F(H) are

c-normal in G, then G is supersoluble.

Corollary 3.5[15] If G isasoluble group and all maximal
subgroups of Sylow subgroups of F(G) arenorma in G,

then G is supersoluble

Corollary 3.6 [16] Let F be a saturated formation containing
U . Supposethat G isagroup with asoluble normal subgroup
H suchthat G/ H € F . If al maximal subgroups of any

Sylow subgroupof F(H) are c-normalin G ,then Ge F .

1VV. CHARACTERIZATION OF SOLUBLE GROUPS

Theorem4.1 Let P be the smallest prime dividing |G|, and let
P be some Sylow p-subgroup P. Then group G issolubleif
and only if every maximal subgroup of Pis U o -normal in G.

Proof. Let P be an arbitrary Sylow subgroup of G . If G is
soluble, then G/ Py isalso soluble and so

Z2(G/P,) =G/ P,. Hence, the necessity part obviously
holds. We now prove the sufficiency part. Suppose that the
assertionisfalse, and let G be a counterexample of minimal

order. Then by the well-known Feit-Thompson’s theorem, we
have p=2. Now, we proceed the proof by the following steps.

sepl. O,(G) =1.
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Let N =0O,(G) # 1. Obviously, P/N isa Sylow

2-subgroup of G/N. Let M/N be amaximal subgroup of P/N.
Then M isamaximal subgroup of Pand so M isisUp-normal in
G by hypothesis. By Lemma 2.8(2), M/N isUp-normal in G/N.
The minimality of G impliesthat G/N is soluble. It follow that

G issoluble, acontradiction.
Sep2. 0, (G) =1.

Let D =0, (G) # 1. Then PD/D is a Sylow 2-subgroup of
G/D. Let M/D be amaximal subgroup of PD/D. Then there
existsamaximal subgroup P, of Psuchthat M = P.D and
so P, isUp-normal in G by hypothesis. By Lemma 2.8(3),

M/D isUp-normal in G/D. Hence G/D is soluble by the minimal
choiceof G, andso G issoluble, acontradiction.

Sep 3. Final contradiction.

Let P, beamaximal subgroup of P. By the hypothesis, there
existsanormal subgroup K of G suchthat PK isa
permutable Hall subgroup of G and
(RN K)R)e/(R)g < ZS(G/(P:L)G) .

By Steps 1 and 2, wehave (P,) =1and Z3(G) =1. This
inducesthat P, MK =1.Since P,K isapermutable Hall
subgroup of G, | K, |= 2, where K, issome Sylow

2-subgroup of K. By \cite] Theorem 10.1.9]{ robin}, we see that
K is 2-nilpotent, and so K has anormal

2-complement K.,.. Since K, char K <G, K, < G.
Hence, by Step 2, K, =1,andso | K |= 2, which contradicts
Step 1.

This completes the proof. o

Corollary 4.2 Let M be amaximal subgroup of G with |G : M|
=r, whererisaprime. Let p be the smallest prime dividing |[M|.
If there exists a Sylow p-subgroup P of M such that every

maximal subgroup of Pis Sp-normal in G, then G issoluble.

Proof. By Feit-Thompson’s theorem, we may assume that
2||G]. If r =2, then M isnormal in G . By Lemma 2.8(4), every
maximal subgroup of P is Sp-normal in M. Hence, by Theorem
4.1, M issoluble. It followsthat G issoluble. If r# 2, thenp
=2$, and so Pisa Sylow 2-subgroup of G . By Theorem 4.1, we
havethat G issoluble.

This completes the proof. o
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