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Optimizing Dialogue Strategy Learning Using
Learning Automata

G. Kumaravelan and R. Sivakumar

Abstract—Modeling the behavior of the dialogue management in
the design of a spoken dialogue system using statistical methodolo-
gies is currently a growing research area. This paper presents a work
on developing an adaptive learning approach to optimize dialogue
strategy. At the core of our system is a method formalizing dialogue
management as a sequential decision making under uncertainty whose
underlying probabilistic structure has a Markov Chain. Researchers
have mostly focused on model-free algorithms for automating the
design of dialogue management using machine learning techniques
such as reinforcement learning. But in model-free algorithms there
exist a dilemma in engaging the type of exploration versus ex-
ploitation. Hence we present a model-based online policy learning
algorithm using interconnected learning automata for optimizing
dialogue strategy. The proposed algorithm is capable of deriving
an optimal policy that prescribes what action should be taken in
various states of conversation so as to maximize the expected total
reward to attain the goal and incorporates good exploration and
exploitation in its updates to improve the naturalness of human-
computer interaction. We test the proposed approach using the most
sophisticated evaluation framework PARADISE for accessing to the
railway information system.

Keywords—Dialogue management, Learning automata, Reinforce-
ment learning, Spoken dialogue system

I. INTRODUCTION

THE Dialogue Management (DM) is the central com-
ponent of a Spoken Dialogue System (SDS) accepting

input from the user, producing messages as output to the
user, communicating with external knowledge sources, and
generally determining the dialogue flow in an efficient and
natural way. In order to complete these tasks, the DM needs
a dialogue strategy that defines when to take the initiative in
a dialogue, when to confirm receipt of a piece of information,
how to identify and recover from recognition and understand-
ing errors, and so forth. Moreover, the dialogue management
is the module that defines the interaction with the user and
it is the window through which the user perceives the sys-
tem’s capabilities. This means dialogue strategies designed by
human are prone to errors, labour-intensive and non portable.
These facts motivate the topic of automatic dialogue strategy
learning an attractive alternative.

Broadly speaking, three different approaches have been used
in DM. First, the finite state-based approach represents the
dialogue structure in the form of a network, where every
node represents a question and the transitions between nodes
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represent all the possible dialogue [12] whose primary na-
ture is system initiative. Secondly, the frame-based approach
represents the dialogue structure in the form of frames that
have to be filled by the user, where each frame contains slots
that guide the user through the dialogue. In this approach
the user is free to take the initiative in the dialogue [9].
Finally, agent-based approach incorporates a wide variety of
approaches that use techniques from Artificial Intelligence to
produce more intelligent systems [2] which incorporates mixed
initiative interaction in which the user can change the current
context and the dialogue history. These approaches typically
involve authoring and complicating hand-crafted rules that
require considerable deployment of time and cost. However
they do not address the issue of how to develop the best
possible dialogue strategy.

For these reasons, during the last decade many research
groups have been attempting to find a way to automate the
design of DM for learning dialogue strategy using machine
learning technique such as Reinforcement Learning (RL) [26].
Reinforcement learning addresses the problem faced by an
agent that learns behavior using trial and error interaction
within a dynamic environment so as to maximize a scalar
reward signal. The aforementioned factor influences dialogue
management to be modeled as a Markov Decision Process
(MDP) in which the state of the dialogue depends only on
the previous state & its action and reinforcement learning is
applied to find the optimal dialogue policy.

A number of reinforcement learning methods have been
proposed in recent years to automate the design of dialogue
strategy [7], [20], [21], [23], [25]. However, much research
effort is being proposed for improving these techniques and
in applying these techniques in various application domains.
Generally speaking, RL has already been shown to be a pow-
erful tool for solving single agent MDPs. On the other hand,
increasing the size of the state space for RL has the danger of
making the learning problem intractable (referred as “the curse
of dimensionality”). Recent investigations employ function
approximation [10], dialogue simulation [24] and prior knowl-
edge [4] in order to find solutions on reduced state spaces.
However, although these kinds of approach presents interesting
characteristics in what concerns the learning of dialogue
strategies, they suffer from well-known drawbacks in online
operation. Especially in the number of interactions needed for
convergence, which restricts their application mainly to offline
processing. On the contrary, in online dynamic environments,
the user interactions are relatively scarce and the SDS must be
able to adapt its operation taking advantage of these limited
interactions.

In addition, mostly all the popular RL algorithms (e.g.,
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Q-Learning) used in learning dialogue strategies are model
free in nature and require explicit tabular storage of agent Q-
functions and possibly of their policies [33]. Hence when the
state and action space contain a large number of elements,
tabular storage of the Q-function becomes impractical and
there exists a dilemma with exploration versus exploitation
in choosing an optimal action. Consequently, online model-
based policy learning algorithms hold great promise in this
regard to overcome the above mentioned factors in learning
the dialogue strategy within RL framework [19].

Therefore, in these cases, approximate solutions must be
sought out, for example, by extending to multiple agents
that works on approximate single-agent RL [6]. Powerful
approximate Multi-Agent Reinforcement Learning (MARL)
algorithms have been proposed for discrete, large state-action
spaces [1], continuous states & discrete state actions [3], [11],
[35], and for continuous states and actions [8], [27]. Most of
these algorithms work only in a narrow set of problems and are
heuristic in nature. In a MARL however, the reinforcement an
agent receives may depend on the action taken by the other
agents acting in the same environment. Hence, the Markov
property no longer holds and as such the convergence policies
are lost. Alternatively, Learning Automata (LA) are valuable
tools for current MARL research [5], [16], [29]–[31] and
their learning scheme (purely model-based) updates strictly on
the basis of the response of the environment and not on the
basis of any knowledge regarding other automata, i.e. neither
their strategies, nor their feedback. As such LA agents are
simple. Moreover, LA can be treated analytically. Conver-
gence proofs do exist for a variety of settings ranging from
a single automaton model acting in a random environment
to a distributed automata model interacting in a complex
environment. Therefore, in this paper we propose a design
for dialogue strategy using a team of learning automaton in
the context of decentralized control of MDP. This method
offers the following benefits among others: a) faster learning;
b) broad convergence guarantees; c) 100% exploitation when
all LA converge.

This paper is organized as follows: In the next section, a
brief overview of problem area and methodology are given. In
section III, the proposed algorithm is presented which could
be useful for better convergence along with good exploitation
and exploration in modeling dialogue management. The ex-
perimental result of the proposed online model-based learning
algorithm on train information system is given in section IV
along with evaluation consequence and comparison with the
state-of-art approach for learning dialogue strategy. Finally the
paper concludes in section V.

II. LEARNING AUTOMATA AND SOLUTION
APPROACH

A. Learning automata

Adaptive learning is one of the main fields of Artificial
Intelligence. LA is one of the most powerful tools in this
research area [15], [17], [22], [28]. A learning automaton is a
precursor of a policy iteration type of reinforcement learning
algorithm and has some roots in psychology and operations

Environment

Performance
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Automaton

Response β(t)

Set of Actions α(t)

Fig. 1. A Learning Automata that interacts with a stochastic environment.

research. LA are adaptive decision-making devices operating
on unknown random environments. A learning automaton
has a finite set of actions and each action has a certain
probability (unknown to the automata) of getting rewarded
by the environment of the automata as shown in Fig. 1. The
objective is to learn to choose the optimal action (i.e. the
action with the highest probability of being rewarded) through
repeated interaction with the system. If the learning algorithm
is chosen properly, then the iterative process of interacting on
the environment can be made to result in the selection of the
optimal action. We refer the reader to the survey papers [13],
[14] for a review of various families and the corresponding
properties of learning automata.

In a Variable-Structure Learning Automata (VSLA), the
probabilities of the various actions are updated on the basis of
information the environment provides. A VSLA is a quadruple
〈α, β, p, T (α, β, p)〉, where α, β and p constitute an action set
with r actions, an environment response set, and the probabil-
ity set p containing r probabilities, each being the probability
of performing every action in the current internal automata
state, respectively. The function of T is the reinforcement
scheme which modifies the action probability vector p with
respect to the performed action and received response. If
the response of the environment takes binary values, learning
automata model is P -model and if it takes finite output set with
more than two elements that take values in the interval [0,1],
such a model is referred to as Q-model, and when the output
of the environment is a continuous variable in the interval
[0,1], it is referred to as S-model. Assuming β ∈ [0, 1], a
general linear schema for updating action probabilities can be
represented as follows:

Pi(t+1) = Pi(t)+α
(
1−β(t)

)(
1−

(
Pi(t)

))
−bβ(t)Pi(t) (1)

if action α was taken at time step t

Pj(t+1) = Pj(t)−αβ(t)Pj(t)+b
(
1−β(t)

)
�r−1�−1−Pj(t)

(2)
∀j �= i.

The constants a and b in the interval [0,1] are the reward and
penalty parameters respectively and r the number of actions
of the action set of the automata. When a = b the algorithm
is referred to as linear reward-penalty (LR-P ), when b = 0
it is referred to as linear reward-inaction (LR-I ) and when
b is small compared to a it is called linear reward-ε-penalty
(LR-εP ).
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B. Interconnected Learning Automata: Decentralized Control
of MDPs

The important problem of controlling a Markov chain can be
formulated as a network of automata in which control passes
from one automata to another. In this set-up, every action state
in the Markov chain has an LA that tries to learn the optimal
action probabilities in that state with learning update rules (1)
and (2). Only one LA is active at each time and the transition
to the next state triggers the LA from that state to become
active and take some action. The LA active in state i is not
informed of the one-step reward ri

j(k) resulting from its action
k, leading to state j. Wheeler and Narendra [34] have proved
that this interconnected LA-model is capable of solving the
MDP.

C. Casting LA model to learn dialogue strategy

The current state-of-art SDS often has mixed-initiative slot-
filling system. This means that both the user and the system
take the initiative to provide information or ask to follow up
questions in a dialogue session to jointly complete certain
tasks. However, automatically designing an efficient dialogue
strategy to assist the user to quickly fill in the slots has never
been a trivial problem.

The LA model presents DM strategy that has to be opti-
mized and the DM will be the learning agent. At each turn
the learning automata has to choose an action according to its
interaction strategy with the environment so as to complete
the task that it has been designed for. These actions can
be greetings, request to constraint and confirm the value of
attributes, perform retrieval operations in the database and to
close the dialogue session. The response from the environment
leads to the updating of the reward and internal state of the
learning agent which contains enough information about the
history of the dialogue.

At each decision epoch, an action ai is chosen and the cor-
responding reward is obtained. The goodness measure GM(ai)
is then updated using the following exponential weighted
average:

NewGM(ai)← OldGM(ai)

+ StepSize[CurrentReward(ai)− OldGM(ai)] (3)

This formula states that, when each action ai is performed,
its NewGM(ai) is updated using the subjective difference of
CurrentReward(ai) and OldGM(ai) to the OldGM(ai). Here
StepSize is a learning parameter, which has been experi-
mentally verified as a good parameter value in nonstationary
environments.

The new action is chosen according to the following prob-
abilistic rule with updated Goodness measure NewGM(ai) as
in (3).

P [newaction = ai]
e

1
NewGM(ai)

∑
ak∈AS

[
e

1
NewGM(ak)

] (4)

AS denotes action set [a1, a2, . . . , an] for each LA in the
Markov chain and the denominator is a normalization term.
Since e1/NewGM(ai) in (4) increases as NewGM(ai) decreases,
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Fig. 2. Mechanism of learning dialogue strategy using interconnected
Learning Automata.

the action that has the smallest NewGM(ai) is likely to be
chosen with the highest probability.

III. PROPOSED APPROACH FOR LEARNING
DIALOGUE STRATEGY

A central debate in the literature concerns the use of models
for learning dialogue strategy. Model-free approaches do not
explicitly represent the dynamics of the environment, but
instead directly approximate a value function that measures the
desirability of each environment state. These approaches offer
near-optimal solutions that depend on systematic exploration
of all actions in all states [18]. On the other hand, model-based
approaches explicitly represent dynamics of the environment
to compute an estimate of the expected value of each action.
With a model, the agent can reduce the number of steps
to learn a policy by simulating the effects of its actions at
various states. Perhaps for this reason and for the fact that it
is possible to derive a policy that is guaranteed to be optimal
with respect to the data. Therefore LA (model-based approach)
is guaranteed to find an optimal policy that maximizes the
expected total reward with good convergence property.

A. Convergence Property

The ultimate product of utilizing reinforcement learning
methods for dialogue management is a policy that is optimal
with respect to the data. Fig. 2 shows the interconnected
LA model which optimizes the learning strategy through
interaction with environment. We put an automata LAi

k in
each action state of the Markov chain si with i : 1 · · ·N , for
each agent k, k : 1 · · ·N . Each LAi

k through its interaction
with its environment updates the probabilities until the optimal
action(s) has the highest probability. Over time, with trial and
error, the system learns the optimal action in each stage of the
conversation.
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Let Aj denote the set of actions available in LAi
k. Hence

the union of Aj over LAi
k gives the action space. With every

agent-action pair, we associate a probability P (LAi
k, a) of

taking action a in LAi
k. Obviously

∑
a∈Aj

P (LAi
k, a) = 1.

In the beginning of the learning process, the policy is random
and each action is likely to be equal. Hence P (LAi

k, a) = 1/rj

where ri = |Aj | is the number of possible actions in LAi
k.

If the performance of an action is good the probability of
that action is increased and if the performance is poor, the
probability is reduced. However the updating scheme must
always ensure that the sum of probabilities of all the actions
in a given LAi

k is 1.

B. Feedback Mechanism

The action chosen by the automata is the input to the
environment which responds with stochastic response or rein-
forcement. The automata LAi

k active in state si is not informed
of the one-step reward Ri

j resulting from choosing joint action
ai = {ai

1, . . . , a
i
n} with ai

k ∈ LAi
k in si and leading to

state sj . Instead, when state si is visited again, all automata
LAi

k receive two pieces of data: the cumulative reward and
the current global time. From these, all LAi

k compute the
incremental reward generated since this last visit and the
corresponding elapsed global time. The environment feedback
or the input to LAi

k is taken to be:

βi(ti + 1) =
ρi(ti + 1)

ηi(ti + 1)
(5)

where ρi(ti+1) is cumulative total reward generated for action
ai in state sj and ηi(ti +1) the cumulative total time elapsed.

C. Learning Scheme

The learning scheme for updating the probabilities using
feedback is a topic of research and several schemes have been
suggested in literature. The scheme that gave the best result
is known as the Reward-Inaction Scheme [15]. The goal is to
identify the optimal action to be achieved through a learning
algorithm that updates the action probability at each instant,
using the most recent interaction with the environment. For
this βi(ti +1) is calculated and then according to the Reward-
inaction scheme, the probabilities are updated via the rule
given below:

P (LAi
k, ai)← P (LAi

k, ai)

+ ηβ(i)I[D(i) + ai]− ηβ(i)P (LAi
k, ai) (6)

where D(i) denotes the action taken in LAi
k in its last visit,

η denotes the learning rate, ai the action whose probability
of getting selected in LAi

k is to be updated and I[.] equals 1
if the condition inside the brackets is satisfied and I[.] = 0
otherwise. In this scheme a good action automatically has
a high value for β and therefore the scheme increases the
probability of that action. Similarly an action that results
in a poor reward has a low value for β and therefore the
probabilities are not changed significantly. Thus, the objective
of the learning scheme is to maximize the expected value of
the reinforcement received from the environment. Hence, an

equivalent way to characterizing the goal of an automata can
be defined as:

max Mk(i) = E[βk(i) | P k] (7)

where βk(i) be the feedback received by the automata in the
i-th state at the k-th iteration of the algorithm and Mk(i) to
be its expected value. The feedback is associated with given
values for the vector P k = (P k(i, 1)P k(i, 2), . . . , P k(i, ri),
where P k(i, a) denote the probability of selecting action a in
LAi

k in the k-th iteration of the algorithm.

Now the algorithm for optimizing dialogue strategy using
LA is given as follows:

1. Initialize
for all states s, agents k do

p(s, k) = randomInit()//state action probabilities
lastTime(s) = 0 // last time step state was visited
lastReward(s, k) = 0// agent reward when state

//was last visited
totalReward(k) = 0// total reward received by

//each agent
lastAction(s, k) = 0//last action played in each state

end for
state = startState;
2.
for 1 < iteration < maxIter do

jointAction = ∅
for all agents do

if state visited before then
//calculate feedback and update probabilities
deltaRew=totalReward (agent)−

lastReward(state,agent)
deltaTime=iteration−lastTime(currentState);
feedback=deltaRew / deltaTime;
updateProbabilities(p (state,agent),

lastAction(state,agent), feedback)
end if
//select new action
action = selectAction(p (state,agent))
jointAction = jointAction ∪ action
//store current reward & action taken
lastReward(state, agent)=totalReward(agent)
lastAction(state,agent)= action

end for
3. Store data as

lastTime(state)=iteration
oldState=state

4. Go to next state by
state=getNextState(state, jointAction)

5. Receive immediate reward as
for all agents do

totalReward(agent)=totalReward(agent) +
getReward(oldState, jointAction)

end for
end for
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TABLE I
AUTOMATON AND ENVIRONMENT DIALOGUE ACTS

System Acts User Acts

Greeting Command (bye)
Request Info(dep value) Provide Info(dep value)
Request Info(dest value) Provide Info(dest value)
Request Info(date value) Provide Info(date value)
Request Info(time value) Provide Info(timevalue)
Database Results

IV. EXPERIMENTAL RESULTS

A. Experimental Design

In this section, we present a slot-filling dialogue system
based on train booking domain to verify the effectiveness of
dialogue strategy for the proposed model. The goal of the
system is to acquire the values for four slots (attributes):
departure city, destination city, the date the user wishes to
travel and the time of travel. For each slot, we put a learning
automata in each state of the Markov chain. Each state
representation contains enough information about the history
of the dialogue. In slot-filling dialogues, optimal strategy
is the one that interacts with user in a satisfactory way
through interconnected learning automata in the Markov chain
while trying to minimize the length of the dialogue. In our
experiments we use the very elemental actions like: i) Greeting
ii) Ask to constrain the values of the attribute iii) Ask open
ended question iv) Ask to confirm the values of the attribute
v) Ask to relax the values of attribute vi) Perform a database
query to retrieve information vii) Close the dialogue session.
The values of the attributes are preserved in the Markov chain
for the purpose of database query. Thus the total state space
is restricted to six including the initial state (Greeting) and
sink state (Database query) of the controlled finite Markov
chain along with the aforementioned 4 attributes with respect
to our experimental settings of the dialogue system. However
the total possible actions will be 66 on our simulations. The
aim is to explore and exploit the learning capability of the
automata in an uncertain environment with prior knowledge
on using the system and user Dialogue Acts (DAs).

The chosen system and user dialogue acts are summarized in
Table I. The system dialogue acts allow the system to request
the user for the slot values or to confirm these values, either
explicitly or implicitly and to restart or end the dialogue.
Finally, the system presents the results of a users database
query. The user dialogue acts allow the user to provide slot
information and to terminate the dialogue.

B. Results

After several thousand simulated dialogue sessions, the
system adopts a learning strategy as shown in Fig. 3. In this
simulation, we focused on the convergence of LA algorithm.
Since the recognition rate of the speech recognizer was
assumed to be 100%, the behavior of the Reward-Inaction
learning scheme for the proposed approach with different
values of η (learning rate), i.e. η = 0.1, η = 0.5 and η = 0.8
is plotted in Fig. 4 shows that bigger the value of η, the
faster convergence. However, the bigger we set η the higher
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Close System

User Reset
System

User Close
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remaining

slots or
conform slots

Get confirmation
for slots

All essential
slots are filled

Yes

No

No

Yes

Fig. 3. The dialogue strategy learned by LA learning algorithm
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Fig. 4. Convergence of the learning scheme with learning parameter η.

the probability of convergence to a suboptimal action, this is
due to the fact that an LRI scheme is only guaranteed to be
ε-optimal. This is illustrated in Table II, shows the percentage
of runs over and its action converges to zero as a function
of η. From Table II it is clear that if one were to tolerate a
5% error, a suitable value for the learning rate would be 0.3,
which would substantially increase the speed of convergence.

The first few states of the trajectory generated by the
simulation along with its updated calculations performed in
each states of Markov chain are listed in Table III. The
updation process is continued in this fashion for a large
number of iterations. The most likely action (the action with
the largest probability) in each state is considered to be the
action for that state. Table III also shows the cumulative reward
obtained for each iteration based on the selected action in
each states of Markov chain. Each action is selected based on
Reward-inaction scheme and the current reward is assigned
with positive or negative value in the range (+10.0 to −5.0)
for the best & worst action selection respectively.
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TABLE II
EFFICIENCY OF LEARNING PARAMETER

η Percentage of wrong Convergence
0.9 22
0.5 12
0.3 5
0.1 0

0.01 0
0.001 0

TABLE III
ITERATIVE UPDATES DURING THE SIMULATION OF THE

SYSTEM

{Current
Iteration state (i) Selected Current Cumulative

Next Action Reward Reward
state (j)}

1 {s2, s1} 3 0 4.5
2 {s1, s3} 4 4.5 8.0
3 {s3, s1} 4 8.0 7
4 {s1, s2} 3 7.0 9.4

C. Evaluation

In order to find the most significant parameters (i.e., pre-
dictors) of the proposed dialogue management performance,
the PARADISE framework [32] was used. It maintains that
the systems primary objective is to maximize user satisfac-
tion, and it derives a combined performance metric for a
dialogue system as a weighted linear combination of task-
success measures and dialogue costs. To evaluate the dialogue
strategies 60 undergraduate students (32 female, 28 male) with
an average age of 21 have tested our system. It is important
to mention that since our testers had no previous experience
with a dialogue system, our experiments were performed with
novice users.

To evaluate user satisfaction, users were given the user-
satisfaction survey Table IV used within PARADISE frame-
work, which asks to specify the degree to which one agrees
with several questions about the behavior or the performance
of the system (TTS Performance, ASR Performance, Task
Ease, Interaction Pace, User Expertise, System Response,
Expected Behavior, and Future Use). The answers to the
questions were based on a five-class ranking scale from 1,
indicating strong disagreement, to 5, indicating strong agree-
ment. For our experiment, the mean User Satisfaction value
was 33.32 as shown in Table V. In this table we can observe
some relevant positive results for the dialogue strategy: Task
ease-of-use, user expertise, expected behavior and future use.

For computing the system performance, PARADISE model
applies Multiple Linear Regression (MLR) with User Satisfac-
tion as the dependent variable and task-success measures and
dialogue costs as the independent variables as:

performance =
(
α×N(κ)

)
−

∑
i=1

wi ×N(ci) (8)

Here, α is the weight on the Kappa coefficient κ, wi are
weights on the dialogue costs ci and N is a Z-score nor-
malization function defined as:

N(x) = (x− x̄)/σx (9)

TABLE IV
USER-SATISFACTION SURVEY USED WITHIN THE PARADISE

FRAMEWORK

TTS quality: Was the system easy to understand?
ASR quality: In this conversation, did the system under-

stand what you said?
Task Ease-of-Use: In this conversation, was it easy to find the

message you were looking for?
Interaction Pace: Was the pace of interaction with the system

appropriate in this conversation?
User experience: Did you know what you could say at each

point of the dialogue?
System response: How often was the system sluggish and slow

to reply to you in this conversation?
Expected behavior: Did the system work the way you expected?
Future use: Based on your current experience with the

system, would you use it regularly when you
need information about the train details?

TABLE V
USER SATISFACTION SURVEY RESULTS

Criteria Scale Values
TTS Quality 4.08
ASR Quality 4.20
Task ease 4.40
Interaction pace 2.68
User expertise 4.20
System response 4.16
Expected behavior 5.0
Future use 4.60
User Satisfaction 33.32

where x̄ and σ are the mean value and the standard devi-
ation for x, respectively, computed from the sample set of
observations. The normalization function N guarantees that
the weights directly indicate the relative contributions to the
performance function, which can be used to predict User
satisfaction. A summary of metrics collected from our systems
applying the PARADISE framework is listed in Table VI. This
table shows that our approach is more efficient and in fact
better in System Turns, User Turns and Elapsed Time.

D. Comparison

In optimizing dialogue strategy using traditional reinforce-
ment learning algorithms such as Q-learning (purely model
free) one agent visits all states and keeps a single Q-table for
all the states in the system. However in the proposed approach
there are non-mobile LA agents which do not move around the

TABLE VI
METRICS PERFORMANCE VALUE FOR THE DIALOGUE

STRATEGY

Metrics Parameter Values
Efficiency Measures
System Turns 38.96
User Turns 17.56
Elapsed Time (Secs) 346.24

Qualitative Measures
MRS 0.82
Time Out 1.24
Retry 4.92
Help 0.08
Cancel 0.12
Task Success (κ) 0.79
User Satisfaction 33.32
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state space but stay in their own state to get active and learn
to take actions only in their own state of the Markov chain. In
Q-leaning approach with multi agent setup, each agent uses
an epsilon greedy exploration strategy with a standard single
agent Q-leaning rule as:

Qi(s, a) = (1− α)Qt−1(s, a) + α(r = γ max a,Qi(s
′, a′))

(10)
Each Q-learner learns individually the associated Q-values
with their own action, rather than joint actions. The Q-learners
are completely independent and have no knowledge of the
other agents acting in the environment and influencing their
reward. Despite the above fact the Q-learning algorithm is
known to have problems in such multi-agent setting. Thus
the Learning automaton with sufficiently low learning rate
is converged into the optimal policy each time. However
the Q-learners on the other hand find close but non-optimal
policies. Their reward is also lower as they keep a fixed
rate of exploration throughout the conversation. Thus when
the system has a unique limiting distribution over the state
space, both independent Learning automaton based agents and
independent Q-learners are able to find a strategy for optimal
action. Although the latter needs good exploration settings, it
may take a very long time before convergence.

Dialogue designers considering the use of LA methods to
learn policies for action selection in dialogue management en-
joy several advantages from other meta-heuristics. First, it does
not require a starting solution; also it has a natural stopping
criterion. Second, since it is much simpler to learn from data
and it does no require estimation of the optimal value function.
And finally the LA model makes fewer assumptions about the
structure of the state space, which is quite appealing from a
theoretical standpoint.

V. CONCLUSION

This paper presents a method for the development of model-
based learning automata algorithm for dialogue management
that can learn from training samples to generate the system
actions. This representation allows the system to automatically
generate specialized actions that takes into account the current
situation of the dialogue depending on the use of expected
cumulative reward. This approach is appealing due to the
following benefits: a) faster learning, because the state space
is being divided among multiple interconnected automata that
can work independently to provide better convergence b) re-
duced computational demands, because breaking the problem
into sub problems helps to ignore irrelevant features and
adapt to good exploitation strategy c) Knowledge transfer,
because solution learnt on previous problems can be re-used
in new problems. Some experiments have been performed to
test the behavior of the system with respect to PARADISE
framework. The results show the satisfactory operations of
the developed approach. An important area for future research
could be in the area of reinforcement schemes, to analyze the
finest configuration parameters for the environment. We hope
that such a formulation would lead to a finer learning curve
that would mimic more closely the behavior of the learning
algorithm. Our tests are geared towards stochastic domain

of interest; this may form an interesting avenue for further
research.
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