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Abstract—Linear two-point boundary value problem of order two
is solved using extended cubic B-spline interpolation method. There
is one free parameters, λ, that control the tension of the solution
curve. For some λ, this method produced better results than cubic
B-spline interpolation method.
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I. INTRODUCTION

CONSIDER the general form of linear two-point boundary
value problem

u′′(x) + p(x)u′(x) + q(x)u(x) = r(x),

x ∈ [a, b], u(a) = α, u(b) = β. (1)

This problem has a unique solution, u(x), if p, q, r ∈ C1 and
q(x) < 0 [1]. Generally, this problem is difficult to solve ana-
lytically. Some of the most frequently used numerical methods
are shooting, finite difference, finite element and finite volume
methods [1], [2]. These methods, although requiring little
computational time, evaluate the approximated solutions only
at the collocation points, u(xi) for i = 0, 1, ..., n.

A different approach of solving linear two-point boundary
value problem has first been suggested by Bickley in 1968
[3]. He used cubic spline interpolation to model the solution
curve and applied the differential equation as well as the
boundary conditions to solve for the unknown constants. As
a result, a set of equations could be produced approximating
the analytical solution. Further work on this approach can be
found in [4], [5]. Thirty years later, Caglar et al. proposed
the use of cubic B-spline interpolation to solve this problem.
The basis function of B-spline is constructed using piecewise
polynomial function that satisfies C2 continuity. The definition
and properties of the function as well as their approach can be
found in [6] and the references therein. Continuing with this
work, we applied the same procedure using extended cubic
B-spline interpolation to solve the problem.

Extended B-spline is a generalization of B-spline. One free
parameter, λ, is introduced within the basis function that can
be used to change the shape of the produced curve. The value
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of λ is varied systematically and the results were analyzed.
The value of λ producing the least error is identified. One
example is provided at the end.

II. EXTENDED CUBIC B-SPLINE BASIS FUNCTION

For a finite interval [a, b], let {xi}ni=0 be a partition of the
interval with uniform step size, h. We can extend the partition
using

h =
b− a

n
, x0 = a, xi = x0 + ih, i = ±1,±2,±3, ...

Extended cubic B-spline basis function is constructed by
linear combination of the cubic B-spline basis function [7].
Here, blending function of degree 4, EB3,i(x), is considered
and the resulting function is shown in (2).

1

24h4

⎧⎪⎪⎨
⎪⎪⎩

bi(x), x ∈ [xi, xi+1],
bi+1(x), x ∈ [xi+1, xi+2],
bi+2(x), x ∈ [xi+2, xi+3],
bi+3(x), x ∈ [xi+3, xi+4],

(2)

bi(x) = −4h(λ− 1)(x− xi)
3 + 3λ(x− xi)

4,

bi+1(x) = (4− λ)h4 + 12h3(x− xi+1) +

6h2(2 + λ)(x− xi+1)
2 − 12h(x− xi+1)

3 −
3λ(x− xi+1)

4,

bi+2(x) = (16 + 2λ)h4 − 12h2(2 + λ)(x− xi+2)
2 +

12h(1 + λ)(x− xi+2)
3 − 3λ(x+ xi+2)

4,

bi+3(x) = −(h+ xi+3 − x)3 [h(λ− 4) + 3λ(x− xi+3)] .

Extended cubic B-spline basis will degenerate into cubic
B-spline basis when λ = 0. For λ ∈ [−8, 1], B-spline and
extended B-spline share the same properties: local support,
non-negativity, partition of unity and C2 continuity.

III. EXTENDED CUBIC B-SPLINE INTERPOLATION

Given {xi}, the extended cubic B-spline function, S(x)
is a linear combination of the extended cubic B-spline basis
function,

S(x) =

n−1∑
i=−3

CiEB3,i(x), x ∈ [x0, xn], (3)

where Ci are unknown real coefficients. Since EB3,i(xi)
has a support on [xi, xi+4], there are three nonzero basis
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function evaluated at each xi : EB3,i−3(xi), EB3,i−2(xi) and
EB3,i−1(xi). Thus, from (3), for i = 0, 1, ..., n,

S(xi)

= Ci−3E4,i−3(x) + Ci−2E4,i−2(x) + Ci−1E4,i−1(x),

= Ci−3

(
4−λ
24

)
+ Ci−2

(
8+λ
12

)
+ Ci−1

(
4−λ
24

)
, (4)

S′(xi)

= Ci−3E
′
4,i−3(x) + Ci−2E

′
4,i−2(x) + Ci−1E

′
4,i−1(x),

= Ci−3

(− 1
2h

)
+ Ci−2(0) + Ci−1

(
1
2h

)
, (5)

S′′(xi)

= Ci−3E
′′
4,i−3(x) + Ci−2E

′′
4,i−2(x) + Ci−1E

′′
4,i−1(x),

= Ci−3

(
2+λ
2h2

)
+ Ci−2

(− 2+λ
h2

)
+ Ci−1

(
2+λ
2h2

)
. (6)

Returning to the two-point boundary value problem stated in
(1), S(x) is presumed to be the approximation of its solution,
u(x). Substituting S(x) into (1), the equation becomes

u′′(x) + p(x)u′(x) + q(x)u(x) = r(x),

x ∈ [a, b], u(a) = α, u(b) = β. (7)

Substituting (4), (5) and (6) into (7) would result in a system
of linear equations of order (n + 3) × (n + 3). The Ci’s are
solved from the system and are substituted in (3). The resulting
equation becomes the approximated analytical solution for (1).

IV. VARYING λ

The value of λ is varied systematically in the neighborhood
of zero using brute force with suitable step size. At each trial,
Max-norm and L2-norm for the solution are calculated. The
values of λ with the lowest norms are identified. Suppose that
the true and approximated solution of (1) are u(x) and S(x),
respectively. The norms are calculated using the following
equations:

Max-norm =
n

max
i=0

|S(xi)− u(xi)| ,

L2-norm =
n∑

i=0

[S(xi)− u(xi)]
2
.

V. NUMERICAL EXAMPLE AND CONCLUSION

Problem 5.1 [6]
u′′(x)−u′(x) = −ex−1−1, x ∈ [0, 1], u(0) = u(1) = 0.
Exact solution: u(x) = x

(
1− ex−1

)
.

Problem 5.1 was solved using extended cubic B-spline
interpolation method. The numerical results are shown in Table
I. The first row is the norms when λ = 0, that is, for cubic
B-spline interpolation method. Using λ = 2.9762× 10−3, the
approximated analytical solution is given in (8). The plots of
S(x) and u(x) along with the error are presented in Figure 1.

TABLE I
THE BEST VALUES OF λ FOR EXAMPLE 5.1

λ Max-Norm L2-Norm
0 2.8996× 10−4 6.6089× 10−4

2.9762× 10−3 3.1415× 10−6 7.2625× 10−6

2.9776× 10−3 3.2452× 10−6 7.2555× 10−6
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Fig. 1. Comparison between the exact and approximated solutions

S(x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.683× 10−16 + 0.6321x−
0.3679x2 − 0.1849x3 − 0.05905x4, x ∈ [0.0, 0.1],

1.380× 10−6 + 0.6321x−
0.3677x2 − 0.1835x3 − 0.06844x4, x ∈ [0.1, 0.2),

2.621× 10−8 + 0.6322x−
0.3691x2 − 0.1769x3 − 0.07915x4, x ∈ [0.2, 0.3),

−5.759× 10−5 + 0.6331x−
0.3743x2 − 0.1638x3 − 0.09136x4, x ∈ [0.3, 0.4),

−3.515× 10−4 + 0.6362x−
0.3865x2 − 0.1425x3 − 0.1053x4, x ∈ [0.4, 0.5),

−0.001306 + 0.6439x−
0.4098x2 − 0.1112x3 − 0.1211x4, x ∈ [0.5, 0.6),

−0.003760 + 0.6601x−
0.4497x2 − 0.06744x3 − 0.1390x4, x ∈ [0.6, 0.7),

−0.009215 + 0.6905x−
0.5131x2 − 0.008663x3 − 0.1595x4, x ∈ [0.7, 0.8),

−0.02017 + 0.7434x−
0.6089x2 + 0.06834x3 − 0.1826x4, x ∈ [0.8, 0.9),

−0.04058 + 0.8306x−
0.7484x2 + 0.1673x3 − 0.2089x4, x ∈ [0.9, 1.0].

(8)
These results show that extended cubic B-spline has po-

tential to approximate the solution of two-point boundary
value problems better than B-spline. Here, we used the exact
solution of the problem as a reference to find good values
of λ. Therefore, future work will focus on finding the values
of λ that produce better approximation from the differential
equation in (1) itself without using the exact solution. This
study confirmed that for some problems, these values do exist.
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