Extended Cubic B-spline Interpolation Method Applied to Linear Two-Point Boundary Value Problems

Nur Nadiah Abd Hamid, Ahmad Abd. Majid, and Ahmad Izani Md. Ismail

Abstract

Linear two-point boundary value problem of order two is solved using extended cubic B-spline interpolation method. There is one free parameters, λ, that control the tension of the solution curve. For some λ, this method produced better results than cubic B-spline interpolation method.

Keywords-two-point boundary value problem, B-spline, extended cubic B-spline.

I. Introduction

CONSIDER the general form of linear two-point boundary value problem

$$
\begin{array}{r}
u^{\prime \prime}(x)+p(x) u^{\prime}(x)+q(x) u(x)=r(x) \\
x \in[a, b], \quad u(a)=\alpha, \quad u(b)=\beta \tag{1}
\end{array}
$$

This problem has a unique solution, $u(x)$, if $p, q, r \in C^{1}$ and $q(x)<0$ [1]. Generally, this problem is difficult to solve analytically. Some of the most frequently used numerical methods are shooting, finite difference, finite element and finite volume methods [1], [2]. These methods, although requiring little computational time, evaluate the approximated solutions only at the collocation points, $u\left(x_{i}\right)$ for $i=0,1, \ldots, n$.

A different approach of solving linear two-point boundary value problem has first been suggested by Bickley in 1968 [3]. He used cubic spline interpolation to model the solution curve and applied the differential equation as well as the boundary conditions to solve for the unknown constants. As a result, a set of equations could be produced approximating the analytical solution. Further work on this approach can be found in [4], [5]. Thirty years later, Caglar et al. proposed the use of cubic B-spline interpolation to solve this problem. The basis function of B -spline is constructed using piecewise polynomial function that satisfies C^{2} continuity. The definition and properties of the function as well as their approach can be found in [6] and the references therein. Continuing with this work, we applied the same procedure using extended cubic B -spline interpolation to solve the problem.

Extended B-spline is a generalization of B-spline. One free parameter, λ, is introduced within the basis function that can be used to change the shape of the produced curve. The value

[^0]of λ is varied systematically and the results were analyzed. The value of λ producing the least error is identified. One example is provided at the end.

II. Extended Cubic B-spline Basis Function

For a finite interval $[a, b]$, let $\left\{x_{i}\right\}_{i=0}^{n}$ be a partition of the interval with uniform step size, h. We can extend the partition using
$h=\frac{b-a}{n}, \quad x_{0}=a, \quad x_{i}=x_{0}+i h, \quad i= \pm 1, \pm 2, \pm 3, \ldots$
Extended cubic B-spline basis function is constructed by linear combination of the cubic B -spline basis function [7]. Here, blending function of degree $4, E B_{3, i}(x)$, is considered and the resulting function is shown in (2).

$$
\frac{1}{24 h^{4}} \begin{cases}b_{i}(x), & x \in\left[x_{i}, x_{i+1}\right] \tag{2}\\ b_{i+1}(x), & x \in\left[x_{i+1}, x_{i+2}\right] \\ b_{i+2}(x), & x \in\left[x_{i+2}, x_{i+3}\right] \\ b_{i+3}(x), & x \in\left[x_{i+3}, x_{i+4}\right]\end{cases}
$$

$$
\begin{aligned}
b_{i}(x)= & -4 h(\lambda-1)\left(x-x_{i}\right)^{3}+3 \lambda\left(x-x_{i}\right)^{4}, \\
b_{i+1}(x)= & (4-\lambda) h^{4}+12 h^{3}\left(x-x_{i+1}\right)+ \\
& 6 h^{2}(2+\lambda)\left(x-x_{i+1}\right)^{2}-12 h\left(x-x_{i+1}\right)^{3}- \\
& 3 \lambda\left(x-x_{i+1}\right)^{4}, \\
b_{i+2}(x)= & (16+2 \lambda) h^{4}-12 h^{2}(2+\lambda)\left(x-x_{i+2}\right)^{2}+ \\
& 12 h(1+\lambda)\left(x-x_{i+2}\right)^{3}-3 \lambda\left(x+x_{i+2}\right)^{4}, \\
b_{i+3}(x)= & -\left(h+x_{i+3}-x\right)^{3}\left[h(\lambda-4)+3 \lambda\left(x-x_{i+3}\right)\right] .
\end{aligned}
$$

Extended cubic B-spline basis will degenerate into cubic B-spline basis when $\lambda=0$. For $\lambda \in[-8,1]$, B-spline and extended B-spline share the same properties: local support, non-negativity, partition of unity and C^{2} continuity.

III. Extended Cubic B-spline Interpolation

Given $\left\{x_{i}\right\}$, the extended cubic B-spline function, $S(x)$ is a linear combination of the extended cubic B -spline basis function,

$$
\begin{equation*}
S(x)=\sum_{i=-3}^{n-1} C_{i} E B_{3, i}(x), \quad x \in\left[x_{0}, x_{n}\right] \tag{3}
\end{equation*}
$$

where C_{i} are unknown real coefficients. Since $E B_{3, i}\left(x_{i}\right)$ has a support on $\left[x_{i}, x_{i+4}\right]$, there are three nonzero basis
function evaluated at each $x_{i}: E B_{3, i-3}\left(x_{i}\right), E B_{3, i-2}\left(x_{i}\right)$ and $E B_{3, i-1}\left(x_{i}\right)$. Thus, from (3), for $i=0,1, \ldots, n$,

$$
\begin{array}{cc}
S\left(x_{i}\right) & \\
= & C_{i-3} E_{4, i-3}(x)+C_{i-2} E_{4, i-2}(x)+C_{i-1} E_{4, i-1}(x), \\
= & C_{i-3}\left(\frac{4-\lambda}{24}\right)+C_{i-2}\left(\frac{8+\lambda}{12}\right)+C_{i-1}\left(\frac{4-\lambda}{24}\right), \\
S^{\prime}\left(x_{i}\right) & \\
= & C_{i-3} E_{4, i-3}^{\prime}(x)+C_{i-2} E_{4, i-2}^{\prime}(x)+C_{i-1} E_{4, i-1}^{\prime}(x), \\
= & C_{i-3}\left(-\frac{1}{2 h}\right)+C_{i-2}(0)+C_{i-1}\left(\frac{1}{2 h}\right), \\
S^{\prime \prime}\left(x_{i}\right) & \\
= & C_{i-3} E_{4, i-3}^{\prime \prime}(x)+C_{i-2} E_{4, i-2}^{\prime \prime}(x)+C_{i-1} E_{4, i-1}^{\prime \prime}(x), \\
= & C_{i-3}\left(\frac{2+\lambda}{2 h^{2}}\right)+C_{i-2}\left(-\frac{2+\lambda}{h^{2}}\right)+C_{i-1}\left(\frac{2+\lambda}{2 h^{2}}\right) . \tag{6}
\end{array}
$$

Returning to the two-point boundary value problem stated in (1), $S(x)$ is presumed to be the approximation of its solution, $u(x)$. Substituting $S(x)$ into (1), the equation becomes

$$
\begin{gather*}
u^{\prime \prime}(x)+p(x) u^{\prime}(x)+q(x) u(x)=r(x) \\
x \in[a, b], \quad u(a)=\alpha, \quad u(b)=\beta . \tag{7}
\end{gather*}
$$

Substituting (4), (5) and (6) into (7) would result in a system of linear equations of order $(n+3) \times(n+3)$. The C_{i} 's are solved from the system and are substituted in (3). The resulting equation becomes the approximated analytical solution for (1).

IV. Varying λ

The value of λ is varied systematically in the neighborhood of zero using brute force with suitable step size. At each trial, Max-norm and L^{2}-norm for the solution are calculated. The values of λ with the lowest norms are identified. Suppose that the true and approximated solution of (1) are $u(x)$ and $S(x)$, respectively. The norms are calculated using the following equations:

$$
\begin{aligned}
\text { Max-norm } & =\max _{i=0}^{n}\left|S\left(x_{i}\right)-u\left(x_{i}\right)\right|, \\
L^{2} \text {-norm } & =\sum_{i=0}^{n}\left[S\left(x_{i}\right)-u\left(x_{i}\right)\right]^{2} .
\end{aligned}
$$

V. Numerical Example and Conclusion

Problem 5.1 [6]

$u^{\prime \prime}(x)-u^{\prime}(x)=-e^{x-1}-1, \quad x \in[0,1], \quad u(0)=u(1)=0$. Exact solution: $u(x)=x\left(1-e^{x-1}\right)$.

Problem 5.1 was solved using extended cubic B-spline interpolation method. The numerical results are shown in Table I. The first row is the norms when $\lambda=0$, that is, for cubic B-spline interpolation method. Using $\lambda=2.9762 \times 10^{-3}$, the approximated analytical solution is given in (8). The plots of $S(x)$ and $u(x)$ along with the error are presented in Figure 1.

TABLE I
The best values of λ for Example 5.1

λ	Max-Norm	L^{2}-Norm
0	2.8996×10^{-4}	6.6089×10^{-4}
2.9762×10^{-3}	3.1415×10^{-6}	7.2625×10^{-6}
2.9776×10^{-3}	3.2452×10^{-6}	7.2555×10^{-6}

Fig. 1. Comparison between the exact and approximated solutions

$$
\begin{align*}
& S(x)= \\
& 3.683 \times 10^{-16}+0.6321 x- \\
& 0.3679 x^{2}-0.1849 x^{3}-0.05905 x^{4}, \quad x \in[0.0,0.1], \\
& 1.380 \times 10^{-6}+0.6321 x- \\
& 0.3677 x^{2}-0.1835 x^{3}-0.06844 x^{4}, \quad x \in[0.1,0.2), \\
& 2.621 \times 10^{-8}+0.6322 x- \\
& 0.3691 x^{2}-0.1769 x^{3}-0.07915 x^{4}, \quad x \in[0.2,0.3) \text {, } \\
& -5.759 \times 10^{-5}+0.6331 x- \\
& 0.3743 x^{2}-0.1638 x^{3}-0.09136 x^{4}, \quad x \in[0.3,0.4), \\
& -3.515 \times 10^{-4}+0.6362 x- \\
& 0.3865 x^{2}-0.1425 x^{3}-0.1053 x^{4}, \quad x \in[0.4,0.5), \\
& -0.001306+0.6439 x- \\
& 0.4098 x^{2}-0.1112 x^{3}-0.1211 x^{4}, \quad x \in[0.5,0.6), \\
& -0.003760+0.6601 x- \\
& 0.4497 x^{2}-0.06744 x^{3}-0.1390 x^{4}, \quad x \in[0.6,0.7), \\
& -0.009215+0.6905 x- \\
& 0.5131 x^{2}-0.008663 x^{3}-0.1595 x^{4}, \quad x \in[0.7,0.8), \\
& -0.02017+0.7434 x- \\
& 0.6089 x^{2}+0.06834 x^{3}-0.1826 x^{4}, \quad x \in[0.8,0.9), \\
& -0.04058+0.8306 x- \\
& 0.7484 x^{2}+0.1673 x^{3}-0.2089 x^{4}, \quad x \in[0.9,1.0] . \tag{8}
\end{align*}
$$

These results show that extended cubic B-spline has potential to approximate the solution of two-point boundary value problems better than B-spline. Here, we used the exact solution of the problem as a reference to find good values of λ. Therefore, future work will focus on finding the values of λ that produce better approximation from the differential equation in (1) itself without using the exact solution. This study confirmed that for some problems, these values do exist.

References

[1] R. L. Burden and J. D. Faires, Numerical Analysis, 8th ed. Brooks/Cole, Cengage Learning, 2005, pp. 641-647, 649-654, 656-660, 662-667, 668682, 684-685.
[2] Q. Fang, T. Tsuchiya, and T. Yamamoto, "Finite difference, finite element and finite volume methods applied to two-point boundary value problems," Journal of Computational and Applied Mathematics, vol. 139, no. 1, pp. 9 - 19, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/B6TYH-44FD3DG-2/2/c59d6272888f882a64514091fff104dc
[3] W. G. Bickley, "Piecewise cubic interpolation and two-point boundary problems," The Computer Journal, vol. 11, no. 2, pp. 206-208, 1968. [Online]. Available: http://comjnl.oxfordjournals.org/cgi/content/abstract/11/2/206
[4] E. L. Albasiny and W. D. Hoskins, "Cubic spline solutions to two-point boundary value problems," The Computer Journal, vol. 12, no. 2, pp. 151-153, 1969. [Online]. Available: http://comjnl.oxfordjournals.org/cgi/content/abstract/12/2/151
[5] D. J. Fyfe, "The use of cubic splines in the solution of two-point boundary value problems," The Computer Journal, vol. 12, no. 2, pp. 188-192, 1969. [Online]. Available: http://comjnl.oxfordjournals.org/cgi/content/abstract/12/2/188
[6] H. Caglar, N. Caglar, and K. Elfaituri, "B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems," Applied Mathematics and Computation, vol. 175, no. 1, pp. 72 - 79, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/B6TY8-4H74KY7-1/2/60f26c55f79c0a39775e1d76586975da
[7] G. Xu and G.-Z. Wang, "Extended cubic uniform b-spline and [alpha]-b-spline," Acta Automatica Sinica, vol. 34, no. 8, pp. 980-984, Aug. 2008. [Online]. Available: http://www.sciencedirect.com/science/article/B8H0V-4T6VT15-3/2/7c4718af9afe2c6bae6b0d1d4f8e66e3

[^0]: N. N. Abd Hamid is with the School of Mathematical Sciences, Universiti Sains Malaysia, Penang, 11800 Malaysia (604-6533924; email: nurnadiah_abdhamid@yahoo.com).
 A. Abd. Majid is with the School of Mathematical Sciences, Universiti Sains Malaysia, Penang, 11800 Malaysia (e-mail: majid@cs.usm.my).
 A. I. Md. Ismail is with the School of Mathematical Sciences, Universiti Sains Malaysia, Penang, 11800 Malaysia (e-mail: izani@cs.usm.my).

