
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2849

Abstract—In this paper a special kind of buffer management

policy is studied where the packet are preempted even when
sufficient space is available in the buffer for incoming packets. This
is done to congestion for future incoming packets to improve QoS for
certain type of packets. This type of study has been done in past for
ATM type of scenario. We extend the same for heterogeneous traffic
where data rate and size of the packets are very versatile in nature.
Typical example of this scenario is the buffer management in
Differentiated Service Router. There are two aspects that are of
interest. First is the packet size: whether all packets have same or
different sizes. Second aspect is the value or space priority of the
packets, do all packets have the same space priority or different
packets have different space priorities. We present two types of
policies to achieve QoS goals for packets with different priorities: the
push out scheme and the expelling scheme. For this work the
scenario of packets of variable length is considered with two space
priorities and main goal is to minimize the total weighted packet loss.
Simulation and analytical studies show that, expelling policies can
outperform the push out policies when it comes to offering variable
QoS for packets of two different priorities and expelling policies also
help improve the amount of admissible load. Some other
comparisons of push out and expelling policies are also presented
using simulations.

Keywords—Buffer Management Policy, Diffserv, ATM, Pushout

Policy, Expeling Policy.

I. INTRODUCTION
IFFERENTIATED Services (Diffserv) is a computer
networking architecture that specifies a simple, scalable
and coarse grained mechanism for classifying, managing

network traffic and providing quality of service (QoS)
guarantees on modern IP networks. DiffServ can, for example,
be used to provide low-latency, guaranteed service (GS) to
critical network traffic such as voice or video while providing
simple best-effort traffic guarantees to non-critical services
such as web traffic or file transfers. Since modern data
networks carry many different types of services, including
voice, video, streaming music, web pages and email, many of
the proposed QoS mechanisms that allowed these services to

Manuscript received May 5, 2007. Some of the result of this paper was

published in the proceeding of IEEE International Workshop of High
Performance Switching and Routing [29]

Kumar Padmanabh is with Software Engineering and Technology Lab of
Infosys Technology Limited, Bangalore India, phone: +91-80-2852-0261
extn. 58936 email kumar_padmanabh@infosys.com .

Rajarshi Roy is with department of electrical and electronics
communication engineering, Indian Institute of Technology, Kharagpur, India.
e-mail: royr@ece.iitkgp.ece.iitkgp.ernet.in

co-exist were both complex and failed to scale to meet the
demands of the public Internet.

A. Differentiated Services: The current state of art

The traditional internet offers best effort service and Diffserv
is a Class of Service (CoS) model that enhances the best effort
services of the Internet. It differentiates traffic by user, service
requirements, and other criteria; then, it marks packets so that
network nodes can provide different levels of service via
priority queuing or bandwidth allocation, or by choosing
dedicated routes for specific traffic flows. A policy
management system controls service allocation.

Various quality of service techniques have been proposed or
developed that attempt to provide predictable service on the
Internet. One technique is Integrated Services (IntServ) and its
associated RSVP protocol, it will be discussed later on in this
section. Some of the concepts in Diffserv grew out of the
IntServ model only. However, Diffserv is a CoS approaches
rather than a full QoS approach.

There is one fundamental limitations of best effort method
being used in internet. The traditional best effort model of the
Internet makes no attempt to differentiate between the traffic
flows that are generated by different hosts. As traffic flow
varies, the network provides the best service it can; but there
are no controls to preserve higher levels of service for some
flows and not others. What DiffServ does is attempt to
provide better levels of service in a best-effort environment.
Following is an intuitive analogy of diffserv which is helpful
in understanding it better. The class of service provided in
diffserv is similar to classes of service provided in a train.
Though, the entire train goes from a particular station to
another one, however, passenger traveling in first class,
second class and general class get different level of service. A
part of the analogy we want to stress is that best effort traffic,
like coach class seats on the train, is still expected to make up
the bulk of internet traffic. While first class and second class
carry a small number of passengers, but are quite important to
the economics of the department of rail. The various economic
forces and realities combine to dictate the relative allocation
of the seats and to try to fill the seats of the train. We don't
expect that differentiated services will comprise all the traffic
on the internet, but we do expect that new services will lead to
a healthy economic and service environment.

The next step of QoS architecture is with regard to QoS in the
Internet. Intserv is a bandwidth reservation technique that

Expelling Policy Based Buffer Control during
Congestion in Differentiated Service Routers

Kumar Padmanabh, Rajarshi Roy

D

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2850

builds virtual circuits across the Internet. Bandwidth requests
come from applications running in hosts. Once a bandwidth
reservation is made, the bandwidth cannot be reassigned or
preempted by another reservation or by other traffic. IntServ
and RSVP are stateful, meaning that RSVP network nodes
must coordinate with one another to set up an RSVP path, and
then remember state information about the flow. This can be a
daunting task on the Internet, where millions of flows may
exist across a router. The RSVP approach is now considered
too unwieldy for the Internet, but appropriate for smaller
enterprise networks (or when used with DiffServ and other
techniques, discussed shortly).

Diffserv takes a stateless approach that minimizes the need for
nodes in the network to remember anything about flows. It is
not as good at providing QoS as the stateful approach, but
more practical to implement across the Internet. Diffserv
devices at the edge of the network mark packets in a way that
describes the service level they should receive. Network
elements simply respond to these markings without the need
to negotiate paths or remember extensive state information for
every flow. In addition, applications don't need to request a
particular service level or provide advance notice about where
traffic is going.

In the IntServ/RSVP environment, applications negotiate with
the network for service. IntServ is said to be application
aware, which allows hosts to communicate useful information
to the network about their requirements and the state of their
flows. In contrast, Diffserv in present form is not application
aware. Since Diffserv does not listen to applications, it does
not benefit from feedback that applications could provide.
Since it doesn't know exactly what an application needs, it
may fail to provide it with an appropriate service level. In
addition, Diffserv is not in touch with the receiving host, so it
doesn't know whether that host can handle the services it will
allocate.

One could say that the Internet needs both RSVP (or some
other full QoS model) and Diffserv. RFC 2990 mentions that
both Intserv and Diffserv may need to be combined into an
end-to-end model, with Intserv as the architecture that allows
applications to interact with the network, and Diffserv as the
architecture to manage admission and network resources. This
is covered further in RFC 2998 (A Framework for Integrated
Services Operation Over Diffserv Networks, November
2000). One approach is to use Diffserv to carry RSVP
application messages across the core to another RSVP
network.

We are trying to compare diffserv with Inteserv and RSVP.
Diffserv can be contrasted with MPLS, which implements
connection-oriented virtual circuits on ATM, frame relay, or
switched networks. MPLS adds labels (tags) to packets that
indicate forwarding behavior, but packets travel across
predefined circuits. MPLS is generally more sophisticated and
complex than Diffserv, but provides better QoS capabilities.

1) The diffserv architecture:

RFC 2638 states that a differentiated services architecture
should keep the forwarding path simple, push complexity to
the edges of the network to the extent possible, provide a
service that avoids assumptions about the type of traffic using
it, employ an allocation policy that will be compatible with
both long-term and short-term provisioning, and make it
possible for the dominant Internet traffic model to remain
best-effort.

Per-Hop Behaviors: A PHB (per-hop behavior) is a basic
hop-by-hop resource allocation mechanism. Think of PHB as
a particular forwarding behavior that stretches across a
network and that provides a particular class of service-being
careful not to call it a path, because a path could imply state in
the network.

RFC 2475 describes a PHB as a forwarding behavior applied
to a particular DS behavior aggregate. A DS behavior
aggregate is a collection of packets with the same DSCP
value crossing a link in a particular direction. When a
behavior aggregate arrives at a node, the node maps the DSCP
to the appropriate PHB, and this mapping defines how the
node will allocate resources to the behavior aggregate. Some
example PHBs are described here:

• A PHB that guarantees a minimal bandwidth
allocation across a link to a behavior aggregate.

• A PHB similar to the preceding with the added
feature of being able to share any excess link
capacity with other behavior aggregates.

• A PHB that has resource (buffers and bandwidth)
priority over other PHBs.

• A PHB that has low delay and traffic loss
characteristics

RFC 2474 and RFC 2475 include sections that describe
guidelines for defining PHBs in order to promote consistency
and standardization. The guidelines recommend that PHBs be
designed to provide host-to-host, WAN edge-to-WAN edge,
and/or domain edge-to-domain edge services.

A PHB is implemented with buffer management and packet -
scheduling mechanisms. Routers examine the DSCP field,
differentiate according to the markings, and then move
packets into appropriate queues. An outgoing link typically
has multiple queues with different priorities. A scheduling
technique is used to move packets in the queues out to the
next hop.

Diffserv Network Elements: The Diffserv network consists
of a variety of network elements and some specific
terminology. Some of the elements are illustrated in Figure-1
and the same is explained next. All of these elements and their
associated behaviors are designed to decouple traffic
management and service provisioning functions from the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2851

forwarding functions, which are implemented within the core
network nodes.

Fig. 1 Various elements of differentiated service (a) Differentiated
Service (DS) Field (b) DS network element and (c) traffic
conditioner

The most prominent features of Diffserv networks are the DS
domains and the DS boundary nodes. The DS domains may be
private intranets, but are typically autonomous service
provider networks that have their own service-provisioning
policies and PHB definitions. DS Interior nodes interpret the
DSCP value and forward packets. They may perform some
traffic conditioning functions and may remark packets. DS
domains interconnect with other domains via boundary links.
A DS region is a set of contiguous DS domains that offer
inter-domain differentiated services.

The DS boundary nodes exist at the edge of the Diffserv
network as either ingress or egress nodes. The ingress node is
the most important because it classifies and injects traffic into
the network. It may also condition traffic to make sure it
meets policy requirements. The boundary node contains the
following elements.

• Standard Classifier Selects packets based on the
DS code-point value. Selected packets are then
forwarded as appropriate or subjected to traffic
conditioning if necessary.

• Multi-Field Classifier This classifier selects
packets based on the content of some arbitrary
number of header fields-typically, some combination
of source address, destination address, DS field,
protocol ID, source port, and destination port.

• Marker An entity that sets the value of the DSCP
field.

• Policy Systems/Bandwidth Brokers Devices that
are configured with organizational policies. They
keep track of the current allocation of marked traffic
and interpret new requests to mark traffic in light of
the policies and current allocation. RFC 2638
provides a broad overview of these system
requirements.

• Traffic Conditioner An entity that meters, marks,
drops, and shapes traffic. A traffic conditioner may
re-mark a traffic stream, or may discard or shape
packets to alter the temporal characteristics of the
stream and bring it into compliance with a traffic
profile. The subcomponents of the traffic conditioner
are listed here. See "Traffic Management, Shaping,
and Engineering" for related details.

• Meter Measures the rate of traffic streams selected
by the classifier. The measurements are used by the
following elements, or for accounting and
measurement purposes.

• Policer Evaluates the measurements made by the
meter and uses them to enforce policy-based traffic
profiles.

• Dropper Droppers discard some or all of the
packets in a traffic stream in order to bring the stream
into compliance with a traffic profile. This process is
known as "policing" the stream.

• Shaper Delays packets within a traffic stream to
cause it to conform to some defined traffic profile. A
shaper may drop packets if there is not sufficient
buffer space to hold the delayed packets.

Traffic conditioners are usually located within the DS ingress
or egress boundary nodes, but may also be located in interior
nodes within the DS domain. The ingress node of the source
domain is the first to mark packets. An egress node that leads
to another DS domain may re-mark packets if necessary.

Traffic conditioning rules are specified in a TCA (traffic
conditioning agreement) and enforced by the traffic
conditioner. TCA rules correspond to SLAs (service-level
agreements) made between customers and service providers.
These agreements specify the type of service a customer will
receive. Note that DS domains within a region include ISPs
that are peering with one another and have established peering
SLAs.

DSCP

0 1 2 3 4 5 6 7

CU

(a)

Classifier

Traffic
Shaper

Policy
Server

Policy
Server

DS Ingress Boundary nodes

Ingress

DS Boundary

DS domain (ESP) DS domain ISP
DS Egress Boundary node

Boundary link

egress

DS Region

(b)

Classifier Marker Shaper/Dropper

Meter

Packets

(c)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2852

Diffserv performs traffic conditioning to ensure that the traffic
entering the DS domain conforms to the rules specified in the
TCA, in accordance with the domain's service provisioning
policy. The traffic classifier forwards packets to appropriate
traffic conditioning elements.

Traffic conditioners use traffic profiles to determine how to
condition traffic. A traffic profile defines the rules for
determining whether packets are in-profile or out-of-profile.
Out-of-profile packets may be queued until they are in-profile
(shaped), discarded (policed), marked with a new code-point
(re-marked), or forwarded unchanged while triggering some
accounting procedure. Out-of-profile packets may be mapped
to an "inferior" behavior aggregate.

As mentioned in the preceding list, traffic conditioners contain
meters, markers, shapers, and droppers. The meter measures
traffic streams against the traffic profile, and the state of the
meter affects whether a packet is marked, dropped, or shaped.
The following illustration shows packets coming into the
classifier. The meter measures the stream and passes
information to other elements that trigger a particular action.
The marker sets the DSCP value of a packet, effectively
adding it to a particular behavior aggregate.

RFC 2597 (Assured Forwarding PHB Group, June 1999)
defines a method for defining drop precedence. IP packets are
marked by customers or other ISPs with one of three possible
drop precedence values. When congestion occurs, the
congested DS node protects packets with a lower drop
precedence value by discarding packets with a higher drop
precedence value.

RFC 2598 (An Expedited Forwarding PHB, June 1999)
describes an expedited forwarding (EF) PHB that can be used
to build a low-loss, low-latency, low-jitter, assured-
bandwidth, end-to-end service through DS domains. Such a
service appears to the endpoints like a point-to-point
connection or a "virtual leased line." It is useful for voice over
IP because it minimizes latency.

RFC 2697 (A Single Rate Three Color Marker [srTCM],
September 1999) describes a way to mark packets according
to three traffic parameters: Committed Information Rate,
(CIR), Committed Burst Size (CBS), and Excess Burst Size
(EBS). The srTCM is useful for ingress policing of a service,
where only the length, not the peak rate, of the burst
determines service eligibility.

RFC 2698 (A Two Rate Three Color Marker [trTCM],
September 1999) describes a way to mark packets based on
two rates, Peak Information Rate (PIR) and Committed
Information Rate (CIR). The trTCM is useful for ingress
policing of a service, where a peak rate needs to be enforced
separately from a committed rate.

RFC 2859 (A Time Sliding Window Three Color Marker,
June 2000) describes a method of marking packets based on
the measured throughput of the traffic stream, compared to the
Committed Target Rate (CTR) and the Peak Target Rate

(PTR). The marker is intended to mark packets that will be
treated by the Assured Forwarding (AF) PHB in downstream
routers.

Thus diffserv is the future technology of internet where
various class of service can be provided with its inherent
capabilities. However, the router used in the diffserv based
traffic will have to deal with severe versatility. The various
policies designed for a typical IP traffic may not be the right
candidate to be used for it. The careful designs as well as
modifications are needed for this scenario’s. Buffer
management is a typical policy to enhance the qualities of
service. Let us summarize the relevant points on buffer
management for diffserv.

B. Buffer Management Policies:
In this paper the shared memory switches has been taken into
consideration. It is proved [1, 2] that complete memory
sharing with proper buffer management can provide better
throughput performance than complete partitioning of
memory among output ports or complete sharing without
buffer management; however for complete memory sharing,
careful design of buffer management is essential. The buffer
management policy has to decide whether to accept or reject
new incoming packets. The buffer management policy may
also decide to drop a few packets, which are in the buffer
waiting to be drained by the output ports and were accepted in
the buffer in a previous decision epoch. The buffer
management policy can trigger the dropping action only when
there is not sufficient space available for the new incoming
packet or it may even be triggered when the buffer is not full
and all the new incoming packets are successfully accepted.

The prime purpose of an ATM switch is to route incoming
cells (packets more generally) arriving on a particular input
link to the output link, which is also called the output port,
associated with the appropriate route [3]. Three basic
techniques have been proposed to carry out the switching
(routing) function: space-division, shared-medium, and
shared-memory [4]. The basic example for a space-division
switch is a crossbar switch, which has also served circuit-
switched telephony networks for many years. The inputs and
outputs in a crossbar switch are connected at switching points
called cross-points, resulting in a matrix type of structure. The
operation of a shared-medium switch, on the other hand, is
based on a common high-speed bus. Cells are launched from
input links onto the bus in round-robin fashion, and each
output link accepts cells that are destined to it.

1) Shared Memory Switch

The subject of this article, the shared-memory (SM) switch,
consists of a single dual-ported memory shared by all input
and output lines. Packets arriving on all input lines are
multiplexed into a single stream that is fed to the common
memory for storage; inside the memory, packets are organized
into separate output queues, one for each output line.
Simultaneously, an output stream of packets is formed by
retrieving packets from the output queues sequentially, one
per queue; the output stream is then demultiplexed, and
packets are transmitted on the output lines [4]. The block

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2853

diagram of an SM ATM switch is depicted in Fig. 1.
Examples of early shared-memory ATM switches are CNET's
Prelude [5] and Hitachi's ATM switch [6]. Packet switches
have another major functionality besides switching, namely,
queuing. The need for queuing (also called buffering) arises
since multiple cells arriving at the same time from different
input lines may be destined for the same output port [4]. There
are three possibilities for queuing in a packet switch: buffer
cells at the input of the switch (input queuing); buffer at the
output (output queuing); or buffer internally (shared-memory)
[3]. Shared-memory ATM switches gained popularity among
switch vendors due to the advantages they bring to both
switching and queuing. In fact, both functions can be
implemented together by controlling the memory read and
write appropriately [7]. As in output buffered switches, SM
switches do not suffer from the throughput degradation caused
by head of line (HOL) blocking, a phenomenon inherent in
input buffered switches [3, 7]. Moreover, modifying the
memory read/write control circuit makes the SM switch
flexible enough to perform functions such as priority control
and multicast [7]. Issues regarding the routing function of the
SM architecture are outside the scope of this article. Likewise,
we will not discuss the details of how the memory is
organized into logical queues, and how the cells are written in
and read out. Our focus is on the problem of buffer allocation.
Buffer allocation determines how the total buffer space
(memory) will be used by individual output ports of the
switch.

2) Static and Dynamic Threshold Policy
In the early research on buffer management policy, there were
two policies broadly evolved, namely static threshold policy
and dynamic threshold policy. In the static threshold policy,
the length of a particular queue was not supposed to cross the
predefined threshold. This policy does not let the inputs with
higher traffic to consume most of the buffer memory and
make sure that input with lower data rate have sufficient
memory available in its corresponding queue. However, if one
cannot predict the very nature of the traffic of all inputs, this
policy will introduce un-fairness among the queue allocation.
At particular moment some of the queue will have plenty of
memory available in its queue whereas other will be
overcrowded. Dynamic threshold policy avoids this type of
fairness problem and length of the queue is variable and
depends upon the nature of the traffic at particular instance.
The Irland [8], and Kamoun and Kleinrock [9] and authors in
[10-12] studied these types of policy.
The buffer sharing policies explained in the preceding
sections have a common philosophy. An arriving packet is
dropped at the instant of arrival, if the switch is at a certain
predetermined state in order to accept future arrivals from
some other link which promises better throughput than the
current arrival. However, there is always a chance that the
decision to discard a packet to save space for another link may
be a wrong one, and that the saved free space may not be used
by other arrivals. In order to eliminate these situations, a
delayed resolution policy (DRP) is proposed by Thareja and
Agrawala in [14]. The DRP does not discard an arriving

packet if there is space in the common buffer. If a packet
arrives and the common buffer is full, the arriving packet, or
some other packet that was already accepted, is discarded. The
decision to drop a packet from a certain port can be made
based on the state of the system or based on different priority
classes. If the arriving packet is always dropped, then of
course the policy is equivalent to CS. Wei et al. propose to
drop from the longest queue in the switch, when the memory
is full [18]. They call their algorithm drop-on-demand (DoD).
This class of policies, in which a previously accepted packet
can be dropped, is more commonly known as push-out (PO),
and it has been studied with various different queuing
systems. For example, push-out schemes have previously been
used to provide service to multiple classes of traffic through
one output buffer (and link) in an ATM switch [19]. A
comparison of schemes in this type of buffer-sharing systems
has been provided in [20]. In our context, where multiple
output links compete for buffer space, the PO policy, as
defined in [18], is appealing for the following reasons: It is
fair, as it allows smaller queues to increase at the expense of
longer queues. It is efficient, as no space is ever held idle
while some queue desires more; thus, overall system
throughput should be high.
It is naturally adaptive. When lots of queues are active, their
rivalry keeps their queue lengths short; when only one queue
is active, it is allowed to become long [12].

3) Buffer management in Diffserv based traffic
If we focus ourselves only at the ATM type scenario we will
have packets of same size with perhaps two or more space
priorities. However, in the Diffserv [21] model there are
versatilities in data packets. The data packets come from
difference sources, which create two fundamental situations.
There may be two packets, which have same values (cost), but
their lengths are different one. Alternatively, there may be two
packets whose values are different but have the same lengths.
Thus the packets with variable sizes having different space
priorities or values will be there. One of the authors of this
paper had studied the relative merits and demerits of expelling
policy over push out policies in the context of shared memory
based ATM switches and demultiplexer before [22, 23].
Therefore, in this work focus is on the relative performance
study of push out and expelling policies for the situation when
the packets of variable size with two different space priorities
is there.

There has been considerable prior work in this area [24]-
[28]. Moreover a VLSI implementation has also been done for
expelling policy in ATM switches [31]. Our contribution
differs from previous works in that it focuses on multi port
devices, packets with priorities, packets with variable sizes
and considers broad policy classes. The queuing analyses of
different buffer management schemes were present in [24].
One of the early papers in this area is [25], which considered
optimal memory sharing within the class of blocking based
policies. In [26] the optimality of push out from the longest
queue under symmetric traffic situation is discussed.
Optimality of the push out with threshold policy is discussed
in [1] and their treatment includes traffic asymmetry while

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2854

only memory less traffic and service model is considered. In
[2] authors extend the work of [1] in the context of ATM
switches. Hung. et al in [27] provided optimal policies within
discarding, push out and expelling classes for the case of a
single output port using dynamic programming and sample
path based techniques. Researchers including one of the co-
authors of this paper have extended the work in [27] in the
context of shared memory ATM switches already in [22] and
[23]. This work can be viewed as a further extension of that
previous work in the context of IP based Diffserv as here
packets of variable sizes and of two different space priorities
are considered. In [28] competitive analysis techniques were
used to evaluate merits of various buffer management policies
for such a situation, however, policies like expelling class of
policies is there where the packet drop even when the buffer is
not full is not considered.

C. Contribution of this paper:
With analyses and simulation studies following two points are
found to be the major contributions:

i. This is the first paper on buffer management which
extend the idea of expelling class of buffer
management policy in the case of in the context of IP
based Diffserv routers previous expelling policies
studied only for ATM switch. Thus this paper
identifies the advantages of expelling policy for a
traffic that consists of packets of variable lengths and
multiple priorities.

ii. This is the first paper that proposes a method to control
QoS of different class of packets using expelling policy
in the context for DiffServ routers.

The organization of this paper is as following: The Push out
policy is described in section-II. In section-III the statement
of expelling policy its analysis is presented. Thereafter, the
method to control QoS of two priority classes is describes. In
section-IV simulation studies based on real life data is
presented.

II. PUSHOUT POLICY
In this section, heuristic push out policy is developed for
packet dropping, which is defined by the following rules:

(a) If a low priority packet comes and can not find
sufficient room in the buffer then the longest low priority
packet from the longest queue is picked as a primary
candidate for expulsion. If that is not sufficient for
accommodation of the new packet then the next longest low
priority packet from the same queue for expulsion is also
considered. If such a packet is not available in that queue then
we go for the longest low priority packet in the next longest
queue. However, if more than two packets are required to be
dropped for the insertion of the new packet then instead of
dropping them the new incoming packet is discarded. A low
priority packet is never allowed to push out a high priority
packet.

(b) If a high priority packet comes and finds that sufficient
room is not available in the buffer then it targets the longest
low priority packet from the longest queue for expulsion. If

sufficient space is still not there, it targets the next longest low
priority packet from the longest queue and so on. If it exhausts
all the low priority packets in the longest queue then it goes
for the longest low priority packet in the next longest queue
and so on. If after expulsion of all the low priority packets, the
new high priority packet still needs some more packets to be
dropped or if only high priority packets are present in the
system then it targets the longest high priority packet from the
longest queue for expulsion and then may go for other high
priority packets in the longest queue or other queues in
decreasing order of length. However, if more than two high
priority packets are required to be dropped by this new
incoming packet then this new packet itself is dropped instead.

 This heuristic prefers packets of longer length for
expulsion compared to packets of shorter length, which tends
to create more space for future incoming packets. This
heuristic also tries to put a bound on the amount of packet loss
at the expense of byte loss.

III. EXPELLING POLICIES
In this section the heuristic expelling policy is presented.

Here, following are the two important rules to execute this
policy.

 (a) A new incoming packet is treated the same way as it
would be treated under the push out policy.

(b) However, while serving a particular output queue if it is
found that the amount of high priority data in that queue is
more than some threshold then all low priority packets from
the head of that queue are dropped till the first available high
priority packet and that high priority packet is put into service.
If a high priority packet is at the head of the queue it is
however always put into service.

A. QoS Control by expelling policy:
Let)(iPL represents the length of the thi packet represented
by iP . Let us consider that 1C be the cost (value) of a unit
length of lower priority packet and 2C be the cost of unit
length packet of higher priority packet with 1 2C C≤ . Further,
let us consider that before applying expelling policy,

1M number of low and 2M number of high priority packets are
available in the buffer. Let us consider that due to a particular
value of threshold say, 1Th , 1X number of extra lower priority
order packets gets lost and 1Y number of higher priority
packets get into the queue. So the over all cost (value) of the
all packets present in the buffer before applying the expelling
policy can be given as

1 2

1 2{ ()} { ()}l h
M M

C L P C L P+∑ ∑ . Where as

after applying the expelling policy the total cost (value) of all
packets present in the buffer can be given as

1 1 2 1

1 2{ () ()} { () ()}l l h h
M X M Y

C L P L P C L P L P− + +∑ ∑ ∑ ∑ .

 So the total cost of packet is saved by applying expelling
policy can be expresses as:

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2855

1 1 2 1

1 2{ () ()} { () ()}{ }l l h h
M X M Y

C L P L P C L P L P− + +∑ ∑ ∑ ∑

1 2

1 2{ ()} { ()}{ }l h
M M

C L P C L P− +∑ ∑

1 1

2 1() ()h L
Y X

C L P C L P= −∑ ∑ .

Here 1X the extra lower priority order packets lost and 1Y the
additional higher priority order packets saved. These
parameters 1X and 1Y depends upon the expelling
threshold Th . If decrease expelling threshold is decreased, loss
of low priority packets will get increased but at the same time
saving of high priority packet also will increase. Thus 1X and

1Y both are decreasing function of expelling threshold Th .
Thus due to expelling policy we can achieve the saving of
total weighted cost given by:

1 1

2 1h L
Y X

C L P C L PTh = −∑ ∑sC () ()() (1)

With this analysis we have following results to claim:
Claim-1: By applying the expelling class of buffer

management policy, we could save the extra “total weighted
cost” given by equation-1.

Claim-2: QoS of high priority packets can be improved by
dropping more number of low priority packets.

Claim-3: Since in this process number of low priority
packets lost also increases, a trade-off between the numbers of
high priority packet saved and number of low priority packets
lost by setting a proper expelling threshold can be done
depending upon the QoS requirement of the packets of both
priority class.

Thus it is claimed that by using expelling policy, one can have
extra saving of total weighted cost (value). We can satisfy
improved QoS requirements of high priority packets and a
trade-off between QoS of high priority packets with the same
of low priority packet can be done. These show that expelling
policy can be used to control QoS of different class of
packets. This point is further explained in the simulation
studies are presented in next section.

In what follows, it will be also shown that in doing so, loss
probability of the packet with high priority improves
dramatically while loss probability of low priority packets
increases but remains of the same order.

IV. SIMULATION STUDIES
For the experimental set up an 8x8 system is simulated with
each input line connected to a two stage on off source with
probabilistically distributed ON-OFF period as shown in
figure-1. The source can generate a packet in ON period and
from ON period it can go to off period with a probability p1.
Source does not generate any packet in OFF period. From
OFF period source can go to ON period with a probability p2.
The probability distribution of the length of packet generated

is directly taken from [30]. Distribution of the sizes of the
packet is as following:

a) Size of 50% of the packet is 0.02KB,
b) Sizes of 15% packet are uniformly distributed between

0.02KB to 0.58 KB,
c) Size of 20% of the packet is exactly 0.6KB
d) Size of rest 15% of the packet is uniformly distributed

between 0.62KB to 1.5KB.
In the OFF period the source does not generate any packet.
Packets are marked as packets of high or low space priorities
probabilistically. Simulation runs were set up so that 95
percent confidence interval for packet losses is always less
than 10 percent of the measured value.

We have considered two cases of loading the queue with
incoming packet. In the first case; when each packet goes to
an output queue with equal probability and gets drained by the
output line at a rate of 0.4KB per time slot. In the second case
the hotspot scenario is considered where there are chances of
getting one queue overloaded. The packets generated have
following chance pattern to enter into the queues:

 (i) There is 30% chance that a packet will join 1st queue.
(ii) There is 20% chance that it will join 2nd queue.
(iii) There is 10% chance that it will join 3rd queue.
(iv) There are 8% chances for a packet to join remaining 5
queues uniformly.
 We are never allowed to drop the partially delivered packet,
which is in the process of draining by the output line. FCFS
order is maintained within each logical queue. We have not
put any restriction on the length of the queue. Depending upon
the traffic any queue can grows up to any size depending
provided the total size of the buffer is within limit.
In what follows, the simulation results for two distinct cases
of loading the queue are presented. In first case an incoming
packet can join any queue out of 8 queues available with equal
probability. In second case the hotspot scenario is taken into
consideration where some of queues are suppose to heavily
loaded, where as other queue don’t have so much loaded. We
follow the hotspot scenario as it is described earlier in this
section.

A. Case-I uniform loading scheme:
 In figure-2, the variation of packet loss probability of packets
of various priorities under different buffer management
policies versus the load on the system is presented. Here, the
total buffer size is kept at 1200 KB and high priority traffic
consists of 80 percent of the total load.
In figure 3, buffer size is kept at 1200 KB and load was fixed
at 0.83 while the traffic mix was varied. Under the expelling
policy as the proportion of high priority packet increases, high
priority packets are less likely to get a low priority packet to
push out and that causes high priority loss to increase. Low
priority loss also increases because the expelling action gets
triggered more often and the lack of low priority cells in the
system increases the probability that a low priority cell will
get pushed out. Here in expelling policies total packet loss is

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2856

slightly greater but it remains of the same order, while high
priority packet loss decreases dramatically. This improvement
of the performance of high priority packet loss at a little
compromise of low priority packet loss gives a special merit
to expelling policies.

loss variation w ith load

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.4 0.5 0.6 0.7 0.8 0.9 1.0
load

Lo
ss

 p
ro

ba
bi

lity

Hi expell
lo expell
total expel
Hi pushout
Lo pushout
total pushout

Fig. 2 Loss variation with loads, Buffer Size =1200, percentages of
high mix 80%, for Case-I where packets can join any queue with
equal probability.

Loss variation Vs Traffic Mix

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 10 20 30 40 50 60 70 80 90 100
% of High Mix

Lo
ss

 P
ro

ba
bi

lity

Hi Pushout
Lo Pushout
Total Pushout
High Expell
Lo Expell
Total Expell

Fig. 3 Loss variation with % of high mix. Buffer size=1200,
Load=0.83, for Case-I where packets can join any queue with equal
probability

The merit of expelling heuristic policy over heuristic push
out policy is demonstrated in figure 5. For example, assume a
required value of probability of high priority packet loss of 10-

5 and that of low priority loss of 10-2 . With a high priority mix
of 80 percent, it was observed that the maximum admissible
load is higher in expelling policy than in push out policy. We
have plotted buffer size vs. maximum admissible load in this
figure-4.

Buffer size Vs Max admissible load

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400
Buffer Size

M
ax

im
um

 A
dm

is
si

bl
e

lo
ad

expell
pushout

Fig. 4 Maximum Admissible Load Vs Buffer size. Expelling policy
can bear more load, for Case-I where packets can join any queue
with equal probability

Fig. 5 Although low priority loss remains of the same order high
priority loss reduces drastically in in expelling policy, for Case-I
where packets can join any queue with equal probability.

However, using expelling policy one can achieve orders of
magnitude improvement in the high priority performance and
therefore can eventually satisfy its QoS requirement at the cost
of moderate low priority performance degradation. The low
priority loss remains at the same order. We can achieve this by
varying the expelling threshold.

In figure 5 the demonstration of the relative merits of push

out and expelling policies regarding this issue is presented. It
shows that we have one more control parameter i.e. the
expelling threshold. If threshold is decreased, keeping the load
at fixed value the high priority packet loss decreases very

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2857

rapidly, though the low priority loss increases too. It can be
observed that for a load of 0.7 if decrease the threshold up to
50% the loss of low priority packet increases but remains in
the order of 10-2 while loss probability of the high probability
packet decreases from 10-3 to 10-6. Thus if one can
compromise a bit for low priority packet loss, then high
priority packet loss can be reduced up to a great extent.

B. Case-II: Hotspot scenario: Some of the queue is heavily
loaded:
Here the same scenario as described earlier in this section is

being followed. Here an incoming packet has 25% chance that
it will join first queue, 15% chance that it will join second
queue, 10% chance that it will join third queue and 8% chance
to join remaining 5 queues. Size of the packets and other
assumptions are as it is given for case-I.

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0.90054 0.70216 0.50225
Load

Pr
ob

ab
ili

ty
 o

f L
os

s

Hi expell lo expell
Hi pushout Lo pushout
Case-II Hi Exp Case-II Lo Exp
Case-II Hi Pushout Case-II Lo Pushout

Fig. 6 Probability of loss of low priority and high priority packets in
case-I and in case-II. In hot spot scenario where there is chances of
losing more packets, expelling policy still lowers the probability of
loss of high priority packets.

There are two results out of this simulation study. Due to
hotspot scenario there are more chances of loss of both high
priority and low priority packets with respect to the same of
case-I. But still it can be found that in expelling policy
probability of loss of high priority packet is less in comparison
of the same of push out policy. Thus in this scenario also, one
can easily conclude that by applying expelling policy
probability of loss of high priority packets can be lowered if
one can bear a little more loss of low priority packets.

V. CONCLUSION
In Diffserv router have to deal with heterogeneous traffic with
multiple priority class of variable packet lengths. The buffer
management policy designed for ATM switch may or may not
be relevant here. In this paper, the simulation and analysis
based studies is presented to explore the relative merit of

expelling policies over push out policies is studied in a
situation where multi port shared memory systems getting
traffic made of variable size packets with two loss priorities is
there. Sample path based studies show some sort of
dominance results for the expelling policies over push out
policies and further exploration of some expelling policy
using competitive analysis remains topics of future study.

REFERENCE

[1] Cidon, I.; Georgiadis, L.; Guerin, R.; Khamisy, A.; “Optimal buffer

sharing” IEEE Journal on Selected Areas in Communications, ,Volume:
13 , Issue: 7 , Sept.1995 Pages:1229 – 1240.

[2] Sharma, S.;Viniotis,Y.; “Optimal buffer management policies for shared-
buffer ATM switches”, IEEE/ACM Transactions on
Networking ,Volume: 7 , Issue: 4 , Aug.1999 Pages:575 – 587

[3] M. Schwarz, Broadband Integrated Networks, Prentice Hall, Inc. 1996.
[4] F. A. Tobagi, "Fast Packet Switch Architectures for Broadband

Integrated Services Digital Networks," Proc. IEEE, vol. 78, no. 1, Jan.
1990, pp. 13367.

[5] M. Devault, J. Cochennec, and M. Servel, "The Prelude ATD
Experiment : Assessments and Future Prospects," IEEE JSAC, vol. 6,
no. 9, Dec. 1988, pp. 157686.

[6] T. Kozaki et al., "32x32 Shared Buffer Type Switch VLSIs for B-
ISDN," Proc. IEEE ICC '91, June 1991, pp. 7115.

[7] N. Endo et al., "Shared Buffer Memory Switch for an ATM Exchange,"
IEEE Trans. Commun., vol. 41, no. 1, Jan. 1993, pp. 23745.

[8] M. Irland, "Buffer Management in a Packet Switch," IEEE Trans.
Commun., vol. COM-26, no. 3, Mar. 1978, pp. 32837.

[9] F. Kamoun and L. Kleinrock, "Analysis of Shared Finite Storage in a
Computer Network Node Environment under General Traffic
Conditions," IEEE Trans. Commun., vol. COM-28, no. 7, July 1980, pp.
9921003.

[10] G. Latouch, "Exponential Servers Sharing a Finite Storage: Comparison
of Space Allocation Policies," IEEE Trans. Commun., vol. COM-28, no.
6, June 1980, pp. 9105.

[11] G. J. Foschini and B. Gopinath, "Sharing Memory Optimally," IEEE
Trans. Commun., vol. COM-31, no. 3, Mar. 1983, pp. 35260.

[12] A. K. Choudhury and E. L. Hahne, "Dynamic Queue Length Thresholds
for Shared-Memory Packet Switches," IEEE/ACM Trans. Commun.,
vol. 6, no. 2, Apr. 1998, pp. 13040.

[13] H. G. Perros and K. M. Elsayed, "Call Admission Control Schemes: A
Review," IEEE Commun. Mag., Nov. 1996, pp. 8291.

[14] A. Erramilli and J. L. Wang, "Monitoring Packet Levels," Proc. IEEE
GLOBECOM '94, vol. 1, Dec. 1994, pp. 27480.

[15] B. R. Collier and H. S. Kim, "Efficient Analysis of Shared Buffer
Management Strategies in ATM Networks under Non-Uniform Bursty
Traffic," Proc. IEEE Magazine, Mar. 1996, pp. 6718.

[16] A. K. Thareja and A. K. Agrawala, "On the Design of Optimal Policy for
Sharing Finite Buffers," IEEE Trans. Commun., vol. COM-32, no. 6,
June 1984, pp. 73740.

[17] I. Cidon et al., "Optimal Buffer Sharing," IEEE JSAC, vol. 13, no. 7,
Sept. Page 17 1995, pp. 122939.

[18] A. Baiocchi et al., "Loss Performance Analysis of an ATM Multiplexer
Loaded with High-Speed ON-OFF Sources," IEEE JSAC, vol. 9, no. 3,
Apr. 1991, pp. 388-92.

[19] Cisco LightStream 1010 product documentation, available at
http://www.cisco.com/univercd/cc/td/doc/pcat/

[20] S. X. Wei, E. J. Coyle, and M. T. Hsiao, "An Optimal Buffer
Management Policy for High-Performance Packet Switching," Proc.
IEEE GLOBECOM '91, vol. 2, Dec. 1991, pp. 92428.

[21] K. Nichols, V. Jacobson and L.Zhang, ``A Tow-bit Differentiated
Services Architecture for the Internet”, Internet Draft, July, 1999.

[22] Rajarshi Roy and S. S. Panwar, “Optimal Space Priority Policies for
Shared Memory ATM Systems”, Proceedings of the 35th Annual
Allerton Conference on Communications, Control and Computing,
pp.604-613, September-October, 1997.

[23] Rajarshi Roy and S. S. Panwar, “Efficient Buffer Sharing in Shared
Memory ATM Systems With Space Priority Traffic”, IEEE
Communications Letters, Vol. 6, No. 4, April 2002.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2858

[24] Analysis of Shared Finite Storage in a Computer Network Node
Environment Under General Traffic Conditions Kamoun, F.; Kleinrock,
L.; IEEE Transactions on Communications,Volume: 28, Issue: 7 , Jul
1980, Pages:992 – 1003.

[25] G.J.Foschini and B.Gopinath, “ Sharing Memory Optimally”, IEEE
Transactions on Communications,Vol. COM-31, No.3, March 1983.

[26] An optimal buffer management policy for high-performance packet
switching Wei, S.X.; Coyle, E.J.; Hsiao, M.-T.T.; Global
Telecommunications Conference, 1991. GLOBECOM '91. Pages:924 -
928 vol.2.

[27] L. Tassiulas, Y. C. Hung and S. S. Panwar, ``Optimal Buffer Control
during congestion in an ATM network Node”, IEEE/ACM Transactions
on Networking, August 1994, Vol. 2, No. 4, pp. 374-386.

[28] "Competitive Algorithms for High-Speed QoS Switches,'' PhD Thesis,
Tel Aviv University, 2004 by Dr. Alexander Kesselman.

[29] Kumar Padmanabh and Rajarshi Roy, “Expelling Policies for Shared
Memory Fast Packet Switches with Variable size Packets of Multiple
Priorities”, IEEE, High Performance Switching and Routing HPSR-
2005.

[30] http://www.caida.org/analysis/AIX/plen_hist/
[31] H.J.Chao and N Uzun, “A VLSI sequencer chip for ATM traffic shaper

and queue manager” IEEE Journal of Solid state circuits pp. 1634-1643,
nov 1992.

[32] Internet Engineering task Force (IETF) http://www.ietf.org/

Kumar Padmanabh : Kumar Padmanabh was born
in India in year 1976. He obtainer his PhD degree in
2007 from the department of Electronics and
Electrical Communication Engineering, Indian
Institute of Technology, Kharagpur, India. Prior to
this he obtained Master of Technology in Digital
Systems from National Institute of Technology,
Allahabad, India and Bachelor of Engineering in

Electronics and Communication Engineering from MJP Rohillkhand
University, Bareilly, India. He was selected up to the final round of Indian
Mathematics Olympiad and he was among top 500 candidates who received
certificate of proficiency in mathematics. During his master’s course he
worked in Bhabha Atomic Research Center, Mumbai in Biomedical Signal
Processing. Presently, he is working as a Research Associate at Software
Engineering and Technology Labs of Infosys Technology Limited, Bangalore,
India. Presently he is working on the issues of wireless sensor networking
research to provide based business solution using this technology.

Rajarshi Roy: Rajarshi Roy obtained his PhD
degree from Polytechnic University, Brooklyn, NY,
USA, and Master of Science from Indian Institute of
Science, Bangalore, India and Bachelor of
Engineering degree from Jadavpur University,
Kolkata, India. Presently he is a faculty in the
department of Electronics and Electrical
Communication Engineering of Indian Institute of
Technology, Kharagpur, India. Prior to this, he

worked with Helsinky Institute of Technology, Espoo, Finland; Indian
Statistical Institute, Kolkata; Lucent Technology, Bangalore, India; Comverse
System, NY, USA, and Bell-Labs USA.

