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Integral tracking control for a piezoelectric actuator
system
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Abstract—We propose an integral tracking control method for
a piezoelectric actuator system. The proposed method achieves the
output tracking without requiring any hysteresis observer or schemes
to compensate the hysteresis effect. With the proposed control law,
the system is converted into the standard singularly perturbed model.
Using Tikhonov’s theorem, we guarantee that the tracking error can
be reduced to arbitrarily small bound. A numerical example is given
to illustrate the effectiveness of our proposed method.
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I. INTRODUCTION

Piezoelectric actuators have been used in various precise
manipulation applications including sperm injection, precision
machining, and active vibration control [1]-[3]. Because the
actuators have some advantages such as physically infinite
displacement resolution, high speed, large bandwidth, high
output force, zero stick-slip effect, and little heat generation.
These applications have inspired many researchers to study the
control methods for the piezoelectric actuators. However, it is
often not easy because a highly nonlinear relationship named
the hysteresis effect exists between the applied input voltage
and the output displacement. This nonlinear effect may cause
inaccuracy in the output response and eventually lead to the in-
stability of the closed loop system. To deal with the hysteresis
effect, studies have been developed to model and compensate
for the effect. The examples of modeling techniques include
a nonlinear dynamic model with hysteresis [4], a voltage
input electromechanical model [5], a charge steering model
[6], a model of physical hysteresis [7], and a neural network
hysteresis model [8]. Moreover, there are other approaches
to the modeling of piezoelectric actuators, which are based
on the established mathematical formulations to approximate
the input-output behavior of hysteresis. The examples are
presented as the Maxwell slip model, Duhem model, Prandtl-
Ishlinskii model, Bouc-Wen model and Preisach model [5],
[9]-[12].
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By using these approaches, various control methods to
compensate or estimate the hysteresis were presented. In [13],
an adaptive variable structure controller design method was
presented to control a class of nonlinear systems with un-
known Prandtl-Ishlinskii hysteresis. By designing a hysteresis
observer to compensate the nonlinearity of the hysteresis,
feedforward-feedback control strategy was proposed with PI
feedback controller [14]. Authors of [15] proposed an adaptive
control for discrete time dynamical system with hysteresis
described by Prandtl-Ishlinskii model without constructing
the inverse hysteresis. Backstepping design scheme with a
robust adaptive dynamic surface control method was used for
a class of uncertain perturbed strict-feedback nonlinear system
having Prandtl-Ishilinskii hysteresis [16]. In [17], a modified
Prandtl-Ishlinskii hysteresis model and its inverse are used
to identify and compensate the hysteresis effect. However,
there is a main drawback of Prandtl-Ishlinskii model. It is that
the model cannot exhibit neither asymmetric hysteresis loops
nor saturated hysteresis output. Moreover, design of hysteresis
observer can cause complexity of the controller and its wrong
design may hinder the performance of the controller.

In this paper, we propose an integral tracking control for
piezoelectric actuator system. The proposed method does
not require any hysteresis observer or scheme which can
compensate the hysteresis effect. Therefore, the method
can provide a easier way to implement or analysis when
controlling the piezo system. With the proposed control
law, the piezoelectric system is converted into the standard
singularly perturbed model. Using Tikhonov’s theorem, the
method guarantees that the tracking error can be reduced
to arbitrarily small bound by choosing a design constant as
sufficiently small value. Numerical simulation is given to
illustrate the effectiveness of our proposed method.

II. PIEZOELECTRIC ACTUATOR SYSTEM AND
PROBLEM STATEMENT

The positioning mechanism of piezo actuator system has
been described as a second order dynamics. Based on Bouc-
Wen model, the dynamical equation can be represented as
follows:

mẍ+ bẋ+ kx = Fh = k(der − h) (1)

where m is the mass of the piezo actuator, b is the damping
coefficient, k is the spring coefficient, and x is the displace-
ment, Fh is the net force including hysteresis term, r is the
input voltage, de is the ratio of the displacement to the input
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voltage, and h is the hysteresis nonlinear term. This hysteresis
is modelled by

ḣ = αdeu̇− β|u̇|h− γu̇|h| (2)

where α, β, and γ are the parameters adjusting the shape and
magnitude of the hysteresis loop.

It is well-known that the hysteresis is typically in the order
of 10%-15% of the commanded motion, and it is a major
drawback in utilizing the piezoelectric actuators for motion
actuation. Therefore, our objective is to design a controller
which make the output of the piezo actuator track the output
of a desired model with suppressing the hysteresis effect.

Then, by removing the hysteresis term h of (1), the desired
model is represented

ẋd = Axd +B(f(xd, r))

yd = Cxd (3)

where xd ∈ R
2 is the state vector, f(xd, r) = − k

mxd1 −
b
mxd2 +

k
mder, A =

[
0 1
0 0

]
, B =

[
0
1

]
.

The actual system has the hysteresis effect and is described
as follows:

ẋ = Ax+B [g(x, r) + u]

y = Cx (4)

where x ∈ R
2 is the state vector, g(x, r) = − k

mx1 − b
mx2 +

k
m (der−h), the hysteresis term h is governed by (2), and u is
the control input which forces to achieve the output tracking
between (3) and (4), that is, (yd − y) → 0 as the time goes to
infinity.

III. INTEGRAL TRACKING CONTROL FOR
PIEZOELECTRIC ACTUATOR

In this section, we present a high gain integral control
method for the piezoelectric actuator with the hysteresis. To
obtain the scheme, let us define the following error dynamics
between (3) and (4)

ė = Ae+B [f(xd, r)− g(x, r)− u] (5)

where e = xd − x ∈ R
2.

The following theorem summarizes the main result of this
paper.

Theorem 1: Consider the desired piezoelectric actuator sys-
tem (3) and actual system (4). Then, there exists ε∗ > 0 such
that for ε ∈ (0, ε∗) the error e converges to zero as t → ∞,
if the control law is designed as

u =
α1

ε
e2 + uf + μ (6)

μ̇ =
α2

ε2
e2 +

1

ε
uf (7)

uf = Ke (8)

where ε is a positive small constant, α1 and α2 are constants
which satisfy that the polynomial s2 + α1s + α2 is Hurwitz,
and K is a control gain matrix such that the transfer function
H(s) = (sI − (A−BK))

−1 is Hurwitz.

Proof: By applying the control law (6), the error dynam-
ics (5) can be written as

ė = Ae+B
[
f(xd, r)− g(x, r)− α1

ε
e2 − uf

]
. (9)

To convert the equation into singular perturbed form, let us
define the following vector

η =

[
η1
η2

]
=

[
e2
ε

f(xd, r)− g(x, r)− μ

]
. (10)

Differentiating (10) and multiplying both sides by ε, then using
(9) leads to

εη̇1 = ė2 = −α1

ε
e2 − uf + f(xd, r)− g(x, r)− μ

εη̇2 = ε
[
φ̇− μ̇

]
= −α2η1 − uf + ε

[
ḟ(xd, r)− ġ(x, r)

]
.

(11)

In the standard singularly perturbed model, the error system
(9) is the slow subsystem and (11) is the fast subsystem.

The fast subsystem can be rewritten in state-space form

εη̇ = Āη + ε
{
B
[
ḟ(xd, r)− ġ(x, r)

]
− B̄

uf

ε

}
(12)

where Ā =

[−α1 1
−α2 0

]
, B̄ =

[
1
1

]
.

Using (10) and (5), it can be shown that 1
εuf is locally

Lipschitz uniformly in its arguments because

uf

ε
=

1

ε
K

[∫
e2dt, e2

]T
= K

[∫
η1dt, η1

]T
. (13)

Moreover, Ā is Hurwitz by designed constants α1 and α2. This
means that the origin is an exponentially stable equilibrium
point of the boundary-layer model [18]. Therefore, from
Tikhonov’s theorem, η = O(ε) for t ∈ [t0, T (ε)] where
limε→0 T (ε) = 0.

Eventually, (9) can be rewritten as

ė = Ae+B [uf +O(ε)] = (A−BK)e+O(ε). (14)

This shows that ‖e‖ is uniformly ultimately bounded and that
the bound can be made arbitrarily small by choosing small ε.
This means in turn that (e, η) will approach a neighborhood
of the origin Nε where Nε can be made arbitrarily small by
choosing small enough ε. Then, in Nε, (9) and (12) can be
rewritten as follows:

ė = (A−BK)e+ δ1(η), (15)
εη̇ = Āη + εδ2(e, η) (16)

where

δ1(η) = B(η2 − α1η1), (17)

δ2(e, η) = B
(
η̇2 +

α2

ε
η1

)
+

1

ε
(BKe− B̄2Ke). (18)

The functions δ1 and δ2 are locally Lipschitz in (e, η) and
vanish at the origin. Then, in Nε,

‖δ1(η)‖ = ‖δ1(η)− δ1(0)‖ ≤ k1‖η‖
‖δ2(e, η)‖ = ‖δ2(e, η)− δ2(0, η) + δ2(e, η)− δ2(e, 0)‖

≤ ‖δ2(e, η)− δ2(0, η)‖+ ‖δ2(e, η)− δ2(e, 0)‖
≤ k2‖e‖+ k3‖η‖ (19)
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with nonnegative constants k1, k2, and k3 that are independent
of ε.

If δ1 = 0, the origin is an exponentially stable and the
existence of a Lyapunov function V1 that satisfies

∂V1

∂e
e [(A−BK)e] ≤ −k4‖e‖2, ‖∂V1

∂e
‖ ≤ k5‖e‖ (20)

is guaranteed by the converse Lyapunov theorem [18].
Choose the Lyapunov function candidate as V = V1(e) +

ηTPη. By differentiating the Lyapunov function, we have

V̇ =
∂V1

∂e
e [(A−BK)e+ δ1(η)] + η̇TPη + ηTP η̇

≤− k4‖e‖2 + k5k1‖e‖‖η‖+ η̇TPη + ηTP η̇

≤− k4‖e‖2 + k5k1‖e‖‖η‖+ ηT
(
1

ε
ĀTP +

1

ε
PĀ

)

+ 2k2λmax(P )‖e‖‖η‖+ 2k3λmax(P )‖η‖‖η‖

≤
[‖e‖
‖η‖

]T
Φ

[‖e‖
‖η‖

]
(21)

where

Φ =

[ −k4
1
2k1k5 + k2λmax(P )

1
2k1k5 + k2λmax(P ) − 1

ελmin(Q) + 2k3λmax(P )

]
,

(22)

Q = − (
ĀTP + PĀ

)
, Q = QT > 0. (23)

If ε is sufficiently small, Φ is negative definite. Therefore,
(e, η) converges to zero as time t goes to infinity. Finally,
we can conclude that limt→∞ e1 = limt→∞(xd1 − x1) =
limt→∞(yd − y) = 0. This means that the output of actual
piezoelectric actuator system approaches to the output of the
desired system.

IV. NUMERICAL SIMULATION

In this section, numerical simulation results for a piezoelec-
tric actuator system are presented to illustrate the performance
of the proposed method. We choose the parameters of the piezo
system (1) as follows:

m = 0.28kg, b = 1302.28Nsm−1,

k = 53, 452N/m, de = 0.1027nm/V.

The parameters adjusting the shapes of hysteresis loop in (2)
are chosen as

α = 0.5136, β = 0.124, γ = −0.073.

A sinusoidal waveform with 30 V amplitude, 30 V biased
voltage, and 2 Hz frequency is applied as the input voltage
r to both (3) and (4) system. Using the parameters and input
voltage, the hysteresis effect between the applied input voltage
and the output displacement is shown in Fig. 1. This hysteresis
affects the output of the piezoelectric system. The output of (3)
and (4) with u = 0 is presented in Fig. 2. Our proposed method
suppresses this hysteresis effect and forces the output of (4) to
track the output of (3). Fig. 3 shows the tracking error yd−y.
The used parameters are α1 = 1, α2 = 0.01, K = [4900, 140],

and ε = 0.00005. In Fig. 4, we compare the effectiveness of
the proposed method with uncontrolled system. From these
results, we can see that the proposed method suppresses the
hysteresis and achieves good tracking performance.

Fig. 1. Hysteresis loop with a sinusoidal voltage input

Fig. 2. Outputs of the desired system (3) and actual system (4) with u = 0

Fig. 3. The tracking error e1 = yd − y
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Fig. 4. Output trajectories of the desired, uncontrolled, and proposed
controlled system

V. CONCLUSIONS

In this paper, an integral tracking control method for piezo-
electric actuator system was proposed. The proposed method
successfully achieved the tracking control without requiring
any hysteresis observer or schemes to compensate the hystere-
sis effect. Using Tikhonov’s theorem for the system converted
into the standard singularly perturbed model, we guarantees
that the tracking error can be reduced to arbitrarily small
bound by choosing a design constant as sufficiently small
value. Numerical simulation results were given to illustrate
the effectiveness of our proposed method.
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