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Solution of First kind Fredholm Integral Equation
by Sinc Function

Khosrow Maleknejad, Reza Mollapourasl,Parvin Torabi and Mahdiyeh Alizadeh,

Abstract—Sinc-collocation scheme is one of the new techniques
used in solving numerical problems involving integral equations. This
method has been shown to be a powerful numerical tool for finding
fast and accurate solutions. So, in this paper, some properties of the
Sinc-collocation method required for our subsequent development
are given and are utilized to reduce integral equation of the first
kind to some algebraic equations. Then convergence with exponential
rate is proved by a theorem to guarantee applicability of numerical
technique. Finally, numerical examples are included to demonstrate
the validity and applicability of the technique.

Keywords—Integral equation, Fredholm type, Collocation method,
Sinc approximation.

I. INTRODUCTION

The purpose of this paper is to develop high order numerical
methods for Fredholm integral equations of the first kind
defined by∫ b

a

k(s, t)f(t)dt = g(s) −∞ < a ≤ s ≤ b < ∞ (1)

where k(s, t) and g(s) are known functions and f(t) is the
solution to be determined. This type of equations appear in
many science and engineering fields, and in many cases,
we can not solve this equation analytically to find an exact
solution. So that, by using numerical methods we try to
estimate a solution for this equation.

Numerical and theoretical methods for solving integro-
differential and integral equations have been studied by many
authors so far [1-9]. Some of them usually use techniques
based on an expansion in terms of some basis functions or
use some quadrature formulas, and the convergence rate of
these methods are usually of polynomial order with respect to
N, where N represents the number of terms of the expansion
or the number of points of the quadrature formula. On the
other hand, in [10] it is shown that if we use the Sinc method
the convergence rate is O(exp(−c

√
N)) with some c > 0.

Although this convergence rate is much faster than that of
polynomial order.

So, in the present paper, we apply the Sinc-collocation
method which has exponential approximation rate for solving
Eq. (1). Our method consists of reducing the solution of Eq.
(1) to a set of algebraic equations by expanding f(t) as
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Sinc functions with unknown coefficients. The properties of
the Sinc function are then utilized to evaluate the unknown
coefficients [1,11-12]. In some papers such as [13-15] integral
equation of first and second kind have been studied by some
authors, but in some of these papers there is no error analysis
which guarantees the convergence of the mentioned scheme.
So, in this study a theorem is prepared to show convergence
analysis of Sinc collocation method, then some numerical
illustration examples are presented to show accuracy of this
technique.

II. PRELIMINARIES

In this section, we introduce the cardinal function and some
of its properties. For this result sinc(x) definition is followed
by

sinc(x) =
{

sin(πx)
πx , x �= 0

1, x = 0.

Now, for h > 0 and integer k, we define k’th Sinc function
with step size h by

S(k, h)(x) =
sin(π(x − kh)/h)

π(x − kh)/h
.

The Sinc approximation on the entire interval (−∞,∞) is
defined as

f(x) ≈
N∑

k=−N

f(kh)S(k, h)(x).

Now, the following Definition and Theorem will guarantee
the approximation authority of Sinc functions on the real line.
Definition 1. Let H1(Dd) denote the family of all functions
analytic in Dd defined by

Dd = {z ∈ C : |Im(z)| < d}
such that for 0 < ε < 1 , Dd(ε) is defined by

Dd(ε) = {z ∈ C : |Im(z)| < d(1 − ε), |Re(z)| <
1
ε
}

then N(f, Dd) < ∞ with

N(f, Dd) = lim
ε→0

(
∫

∂Dd

|f(z)||dz|)

Theorem 1. Let α, β and d as positive constants, that
1) f ∈ H1(Dd)
2) f decays exponentially on the real line such that

|f(x)| ≤ α exp(−β|x|), ∀x ∈ R



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:6, 2010

715

then we have

sup
−∞<x<∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(kh)S(k, h)(x)

∣∣∣∣∣ ≤
CN1/2exp[−(πdβN)1/2]

for some C and step size h is taken as

h = (
πd

βN
)1/2.

Proof: [11], [12]
Let t = φ(z) denote a conformal map which maps the

simply connected domain D with boundary ∂D onto a strip
region Dd such that

φ((a, b)) = (−∞,∞), lim
t→a

φ(t) = −∞, lim
t→b

φ(t) = ∞.

Now, in order to have the Sinc approximation on a finite
interval (a, b) conformal map is employed as follow

φ(x) = ln(
x − a

b − x
).

This map carries the eye-shaped complex domain{
z = x + iy :

∣∣∣∣arg(
z − a

b − z
)
∣∣∣∣ < d ≤ π

2

}
,

onto the infinite strip

Dd = {μ = α + βi : |β| < d <
π

2
}.

The basis function on finite interval (a, b) are given by

S(k, h) ◦ φ(x) =
sin(π(φ(x) − kh)/h)

π(φ(x) − kh)/h
,

also, Sinc function for interpolation points xk = kh is given
by

S(k, h)(jh) = δ
(0)
kj =

{
1, k = j;
0, k �= j.

So, S(k, h) ◦ φ(x) exhibits Kronecker delta behavior on the
grid points

xk = φ−1(kh) =
a + b ekh

1 + ekh

and interpolation and quadrature formulas for f(x) over [a, b]
are

f(x) ≈
N∑

k=−N

f(xk)S(k, h) ◦ φ(x),

∫ b

a

f(x)dx ≈ h
N∑

k=−N

f(xk)
φ ′(xk)

.

Theorem 2. Assume that, for a variable transformation z =
φ−1(ξ), the transformation function f(φ−1(ξ)) satisfies as-
sumptions (1) and (2) in Theorem 1. with some α, β and d.
Then we have

sup
a<x<b

∣∣∣∣∣f(x) −
N∑

k=−N

f(φ−1(kh))S(k, h) ◦ φ(x)

∣∣∣∣∣ ≤
CN1/2exp[−(πdβN)1/2]

for some C, where the step size h is taken as

h = (
πd

βN
)1/2.

Proof: [11], [12]

III. SINC-COLLOCATION METHOD

Now, for solving integral equation of the first kind denoted
by ∫ b

a

k(s, t)f(t)dt = g(s) −∞ < a ≤ s ≤ b < ∞

with Sinc approximation, we need to chose a method to find
unknown coefficients in this expansion. Collocation method is
one of the projection methods that is used as follow:
By substituting Sinc approximation expansion of unknown
function f(t) in the above equation, we have∫ b

a

k(s, t)

(
N∑

k=−N

f(φ−1(kh))S(k, h) ◦ φ(t)

)
dt = g(s)

then, define residual function as follow

RN (s) =
∫ b

a

k(s, t)

(
N∑

k=−N

f(φ−1(kh))S(k, h) ◦ φ(t)

)
dt−g(s).

So, to find f(φ−1(kh)) in Sinc approximation expansion,
there are some techniques such as projection methods like
Galerkin and collocation [16-18]. In this study, collocation
method which has less computations than Galerkin is applied
with some collocation points in interval [a, b] for residual
function as follows

RN (si) = 0; i = −N,−N + 1, ..., N − 1, N

si = φ−1(ih) =
a + b eih

1 + eih
; i = −N,−N + 1, ..., N − 1, N

So that∫ b

a

k(si, t)

(
N∑

k=−N

f(φ−1(kh))S(k, h) ◦ φ(t)

)
dt = g(si)

Then integral equation of the first kind is converted to system
of linear algebraic equations ANX = bN where

AN =

[∫ b

a

k(si, t)S(k, h) ◦ φ(t)dt

]N

k=−N

,

XT =
[
f(φ−1(kh))

]N

k=−N
,

bN = [g(si)] , i = −N,−N + 1, ..., N − 1, N.

Now, for evaluating matrix elements of algebraic equations we
have∫ b

a

k(si, t)S(k, h)◦φ(t)dt ≈ h
N∑

j=−N

k(si, tj)S(k, h) ◦ φ(tj)
φ ′(tj)

,

where

tj = φ−1(jh) =
a + b ejh

1 + ejh
; j = −N,−N +1, ..., N −1, N.
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IV. CONVERGENCE ANALYSIS

In this section, we discuss about convergence of Sinc-
Collocation for Fredholm integral equation of the first kind.
For this result, consider the following theorem.

Theorem 3. In Eq. (1) assume that, k(s, t) is continuous
on square [a, b]2, and let

φ−1(ξ) =
a + b eξ

1 + eξ

such that, f(φ−1(ξ)) satisfies in assumptions (1) and (2) in
Theorem 1. where f is solution of integral equation. Also let

Pnum
N (f)(t) =

N∑
k=−N

fnum(φ−1(kh))S(k, h) ◦ φ(t)

as Sinc approximation of f with step size h and
fnum(φ−1(kh)) are unknown coefficients which will be de-
termined by solving system of algebraic equation ANX = bN .
Now, if AN is nonsingular then

‖f−Pnum
N (f)‖∞ ≤ [c1+c3‖A−1

N ‖∞N ]N1/2 exp{−c2N
1/2}

for some positive constant c1, c2, c3.
Proof: Let

f(t) � Pnum
N (f)(t) =

N∑
k=−N

fnum(φ−1(kh))S(k, h) ◦ φ(t)

where fnum(φ−1(kh)) are unknown coefficients which are
found by solving linear system of equations [19]. Also, assume

PN (f)(t) =
N∑

k=−N

f(φ−1(kh))S(k, h) ◦ φ(t)

and in this approximation f(φ−1(kh)) is the exact value of f
at φ−1(kh). If substitute Pnum

N (f)(t) as an approximation of
f(t) in Eq. (1) then

g(s) =
∫ b

a

k(s, t)Pnum
N (f)(t)dt (2)

but if use PN (f)(t) then obtain

ĝ(s) =
∫ b

a

k(s, t)PN (f)(t)dt. (3)

Now, by converting Eq. (2) to linear system then by solving
this system we have

[fnum(φ−1(kh))]Nk=−N = A−1
N [g(si)]Ni=−N

but, by applying numerical scheme which was discussed in
previous section to Eq. (3) we have

[f(φ−1(kh))]Nk=−N = A−1
N [ĝ(si)]Ni=−N .

So that

sup
k∈SN

|fnum(φ−1(kh))−f(φ−1(kh))| ≤ ‖A−1
N ‖ sup

i∈SN

|g(si)−ĝ(si)|
(4)

where SN is all integers belong to [−N, N ].

Now, we have∫ b

a

k(s, t)PN (f)(t)dt = g(s)−
∫ b

a

k(s, t)[f(t)−PN (f)(t)]dt

then let

ĝ(s) = g(s) −
∫ b

a

k(s, t)[f(t) − PN (f)(t)]dt

so that we have

sup
i∈SN

|ĝ(si) − g(si)| = sup
s∈[a,b]

|
∫ b

a

k(s, t)[f(t) − PN (f)(t)]dt|

≤ (b − a) sup
t,s∈[a,b]

|k(s, t)| ‖f − PN (f)‖

Since k(s, t) is continuous on [a, b]2 so that let

M = sup
t,s∈[a,b]

|k(s, t)|

also regarding to Theorem (2) we have

‖f − PN (f)‖ ≤ c1N
1/2 exp{−c2N

1/2}
so,

sup
i∈SN

|g(si)− ĝ(si)| ≤ (b−a)Mc1N
1/2 exp{−c2N

1/2}. (5)

Finally, by substituting Eq. (5) in Eq. (4) we can derive

sup
k∈SN

|fnum(φ−1(kh)) − f(φ−1(kh))| ≤

c3‖A−1
N ‖N1/2 exp{−c2N

1/2}.
Also, we need to determine a bound for ‖PN (f)(t) −
Pnum

N (f)(t)‖ hence

sup
t∈[a,b]

|PN (f)(t) − Pnum
N (f)(t)|

= sup
t∈[a,b]

∣∣∣∣∣
N∑

k=−N

[f(φ−1(kh)) − fnum(φ−1(kh))]S(k, h) ◦ φ(t)

∣∣∣∣∣
≤ ‖f(φ−1(kh)) − fnum(φ−1(kh))‖ sup

t∈[a,b]

N∑
k=−N

|S(k, h) ◦ φ(t)|

≤ ‖A−1
N ‖c3N

1/2 exp{−c2N
1/2} sup

t∈[a,b]

N∑
k=−N

|S(k, h) ◦ φ(t)|

Also, in [10]

sup
t∈[a,b]

N∑
k=−N

|S(k, h) ◦ φ(t)| ≤ 2
π
{3 + log(N)}

for sufficiently large N so, it is possible to replace 2
π{3 +

log(N)} by N so that

sup
t∈[a,b]

|PN (f)(t)−Pnum
N (f)(t)| ≤ c3‖A−1

N ‖N3/2 exp{−c2N
1/2}

finally,

‖f(t) − Pnum
N (f)(t)‖

≤ ‖f(t) − PN (f)(t)‖ + ‖PN (f)(t) − Pnum
N (f)(t)‖

≤ c1N
1/2 exp{−c2N

1/2} + c3‖A−1
N ‖N3/2 exp{−c2N

1/2}

= N1/2 exp{−c2N
1/2}[c1 + c3‖A−1

N ‖N ],
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and proof of this theorem is completed.

V. NUMERICAL EXAMPLES

Aim of this section is to show efficiency and accuracy of
numerical method which is discussed in previous sections. So
that, Eq. (1) is discredited by Sinc-collocation method and
converted to system of algebraic equations and then it is solved
to find a numerical solution for Eq. (1).
Example1. In this example, let∫ π

2

0

(sin(s−t)+cos(t−s))f(t)dt = 0.048 cos(s)+0.2853 sin(s),

where the exact solution is f(t) = sin(t)(1 − sin(t)). That is
easy to show that this exact solution satisfies assumptions (1)
and (2) in Theorem 1. for α = β = 1, also let d = π

2 , so step
size for Sinc function is h = π

(2N)
1
2

.

Now let

E(N) = max
−N≤j≤N

|f(tj) − Pnum
N (f)(tj)|

where tj’s are collocation nodes, and assume

Cond(A) = ‖A‖∞‖A−1‖∞
where A is coefficient matrix in algebraic system of equations.
Then Numerical results are shown for different values of N
in Table 1.

N E(N) Cond(A)
5 1.2×10−2 11

10 3.6×10−3 23
15 2.4×10−4 38
20 1.1×10−4 42
25 3.1×10−5 57

TABLE I
NUMERICAL RESULTS FOR EXAMPLE 1

Example 2. In this example, we have∫ 1

0

(sin(t)t3 + s2)f(t)dt = 0.021 + 0.167s2

and the exact solution is f(t) = t(1 − t). This is clear that
f(t) satisfies assumption (1) and (2) is Theorem 1. Also, let

e(t) = |f(t) − Pnum
N (f)(t)|, ∀t ∈ [a, b]

as absolute error function. Error function has been drawn for
different values of N and results are shown in Figures 1, 2.
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Fig. 1. Error Function for N = 5 .
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Fig. 2. Error Function for N = 25 .

CONCLUSION

Properties of the Sinc-collocation method are utilized to
reduce the computation of this problem to some algebraic
equation and then get the numerical results with high accuracy
and little computational efforts. Our method is shown to be of
good convergence, easy to program. So, we expect our method
can be extended to the nonlinear Fredholm and Volterra type
equations. This is left for our next paper.
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