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Abstract—Nonlinear solitary structures of electron plasmaaga
have been investigated by using nonlinear quantuid équations
for electrons with an arbitrary temperature. Itsisown that the
electron degeneracy parameter has significant teffes the linear
and nonlinear properties of electron plasma wabepending on its
value both compressive and rarefactive solitonsheaexcited in the
model plasma under consideration.

But in most practical cases the plasma temperaguiiaite
and not approaching zero. Recently Eliasson andI&Hl4]
have developed nonlinear fluid equations taking iatcount
the moments of the Wigner equation and by usingFReeni
Dirac equilibrium distribution for electrons witmaarbitrary
temperature. The model thus developed is expeotdddcribe
a finite temperature quantum plasma. The linearraordinear
properties of electron plasma waves in a quantasnph have
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|. INTRODUCTION

QHD model [15-18]. To the best of our knowledgeome has
studied this problem including finite temperatufeeets. The
motivation of the present paper is to study theedmand

HE quantum plasmas which are characterized by higtonlinear properties of electron plasma waves iffinde

particle density and low temperature are ubiquitaus
white dwarfs, neutron stars, galactic plasma,
nanostructures, intense laser-solid interaction andnany
other environments. In recent years propagatiorvasfous
electrostatic modes such as ion-acoustic wavesitrete
acoustic waves, dust-acoustic waves, dust ion-dicowsaves
etc. in quantum plasma have been studied by mahgm@1]-
[12].

Quantum effects in plasmas are usually studied thighhelp
of two well-known formulations, viz. the Wigner-Rsbn and
the Schrodinger-Poisson formulations. The Wignhds$tm
model is often used in the study of quantum kinb&baviour
of plasma. The Schrodinger-Poisson model describes
hydrodynamic behaviour of plasma particles in quant
scales. The quantum hydrodynamic (QHD) model isvddr
by taking velocity space moments of the Wigner &qua.
The QHD model generalizes the classical fluid mofibel
plasma with the inclusion of a quantum correctiemt also
known as the Bohm potential [1]. The model incogtes
guantum statistical effects through the equation stdte.

Because of simplicity, straight forward approachd anf(X,V’t):

numerical efficiency the QHD model has been widedgd by
several authors [1]-[12]. Different approaches foodeling
guantum plasmas in electrostatic limit have begieveed by

temperature quantum plasma by using a finite teaipe

metguantum hydrodynamic model.

Il.  THE FINITE TEMPERATUREQHD MODEL EQUATIONS

The model as developed by Eliasson and Shukla 4]
based on 3D Fermi-Dirac equilibrium distributiom &ectrons
with an arbitrary temperature. Propagation of
longitudinal electron plasma waves in a collisi@slguantum
plasma leads to adiabatic compression along onerdiion
only and hence to a temperature anisotropy of thetren
distribution.

In quantum picture the classical incompressibitifyphase
fluid is violated by quantum tunneling. However &ofirst
approximation one may assume the incompressikilfftghe
electron phase fluid. It may also be assumed treathemical
potential (1) remains constant during the noneopiilim
dynamics of plasma. Based on these assumptionsmaye
consider the following nonequilibrium particle dibution
function:

2(m/ 27’ @
exp{(ﬂm /2)[(vX -, )'n +V +vf}—,8,u} +1

where m is the electronic massis the Plank constant divided

Manfredi [13].The QHD model as used by most auttisrs bY 2t p =1/ksTeo , ks is the Boltzmann constant ang, 15 the

valid for quantum plasmas in the ultra-cold limit.

Swarniv Chandra is a doctoral fellow in the Depammof Physics,
Jadavpur University, Kolkata, West Bengal-700032did. (e-mail:
swarnivl47@gmail.com)

Basudev Ghosh is an associate professor with tiparbeent of Physics,
Jadavpur University, Kolkata, West Bengal-700032ydid. (e-mail:
bsdvghosh@gmail.com)

background temperature, p is the chemical potentiglis the
mean velocity of the particles given by

Vv, (X, 1) =(v,) :ni_[vxfd3v @)

and nex (X,t) = Ted Texd(X)=[N/Ne(X,1)]? is the temperature
anisotropy of the distribution function which isfibed from
the number density variations wheggis given by:

plane
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1 (Zm)wr EY4E ~ [ll.  DISPERSIONCHARACTERISTICS
o= 2\ w? 0 exp[ﬁ(E—,u)+ 1] - 3 In order to investigate the nonlinear behaviourelgctron
plasma waves we make the following perturbationaesppon

1 (2m\_(3) . / "e _
“22E\ 0t r > Liy, [ —exp(Bu) | for the field quantities & Vex , Ne and @ about their

Li,(y) is the polylogarithm function. In the ultra dolimit i.e. ~€quilibrium values:
T—0, we havd—o and p—Er.

where n, 1 nél) néz’
= (372n, )" (# (4)
E. =(3n,)" (7 / 2m) v, |=| 0|+l VO [+£7| v [+ (10)
Now using the zeroth and first moments of the Wigne 0 ¢(1) ¢(2)
equation with the Fermi-Dirac distribution functioand

assuming that the Bohm potential is independettiethermal

fluctuations in a finite temperature plasma one darive the Substituting the expansion (12) in Egs. (9)-(11d ahen

continuity and momentum equation in the followiogrh: linearizing and assuming that all the field quaggitvary as
exp|i (x—at )], we get for normalized wave frequensyand

on, + o(n,v,,) -0 (5) Wave number k, the following linear dispersion tiela
ot ox
2132
¥, e 7 :1+kz(3Gaz+k_Hj (11)
ot X m ox 4
(6) In the dimensional form the dispersion relationdrees:
RVARIGRLY S { 1 on, } P
2 2 4 2
n, ox 2m” ox \/“—e ox o =a)§e+36a2k2\/F§+k4\/FeH "
where R and y, are respectively the particle density and fluid pe (12)
. . . . . 4 2
velocity of ele.ctron,(p is the electrostatlc. wave pot?ntlal and = f, + 36K + k‘:/;;H
v, = /ksﬁe/me is the themal speed. G is the ratio of two e

polylogarithm functions given by:

G :M (7) between the ultra cold and thermal cases. In the lo
'—iyz(‘EXpLﬁﬂl) twmperature limiu—ao, i~ Er= (MVeS)/2 and G 2BEL/5,
The system is closed by the Poisson equation, then the dispersion relation (11) takes the form
g
e - 8
aXZ 4ne(ne n) ( ) kAVFiH 2 (13)

o =0k, + kA2 +
We now introduce the following normalization: 5 4af,
X = X0 Vit - tw,, @ - epl 2k,T...n, - n, /n, and b similar 1o the di _ ton for aen o
_ > which is similar to the dispersion relation for aten plasma
U = U Ve Here o, = /4rmye’ /m, the electron plasma . es in o quantum plasma obtained by using onertdifonal
oscillation frequency ans}lEe = /21<B'|'Fe/me is the Fermi speed QHD Model. In high temperature linfit— -« so that G»1
and then the dispersion relation (12) reduces & Bbhm-

of electrons. Using the above normalization Eqs6(and 8) Gross dispersion relation for electron plasma wawxea hot

can be recast as:

plasma
X
kVAH 2

2 2 o = f, +3kALZ+——Fe (14)

(24.\/9( ijvex :%—SGazne ane +ii ia \/ZE (9) pe Te 40.)2

ot ox ox ox 2 0x|n, ox e
ﬁ”:( ‘ﬂ) In many cases of practical interest the last temthe RHS
ox’ ¢ may be neglected and then one gets the well knoamB

whereH =7, /2k,T,, is a nondimensional quantumGross dispersion relation of electron plasma wéwea hot
parameter proportional to the quantum diffractiond a Plasma. It may be noted that in the frequency ramgerew?
az(VTe/VFe)' The parameter H is proportional to the ratic>1 the dlSpeI‘SlOI; r;elatlon (11) reduces to the form:
H%k
between the plasma energyw, (energy of an elementary w= \/3Gak+8\/£ (15)
¢ a

excitation associated with an electron plasma wave) the  Fig.1 shows the linear dispersion characteristcsiifferent
Fermi energy,T,, . values of G.

The degeneracy parameter G determines the tramsitio
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The electron degeneracy parameter is found to aser¢he
slope of the dispersion curve. i.e.as the valu& dhcreases
the wave frequency increases for a given k.

Fig. 1 Linear dispersion curve for different vahfeG

IV. DERIVATION OF THEKdV EQUATION

In order to study the nonlinear behaviour of eleetplasma
waves we use the standard reductive perturbaticnnigue
and the usual stretching of the space and timalvias:
E=e¥?(x-\Vt) and r=¢%% (16)
where V is the normalized linear velocity of theweands is
the smallness parameter measuring the dispersiomh
nonlinear effects.

Now writing the Egs. (9) in terms of these strettlm-

@= g, sed’ (Q]
4 (21)

where the amplitudep,, and widthA of the soliton are given
by:

M
=3~ (22)
=34

4B
M

For the existence of soliton solution we require>B. It
requires that 3&” < V- (H/2) or 3G@* > V?+ (H/2). The
nature of the solitary waves (i.e. whether the esystwill
support compressive or rarefactive solitary waviEgends on
the sign of A.

If A is positive (or negative) a compressive (orefactive)
solitary wave is excited. Thus for 86< V?- (H/2) rarefactive
soliton and for 3@* > V? + (H/2) compressive soliton is
formed. From Eq (20) it is clear that the dispersivefficient
B vanishes for two critical values of the difframti parameter
H, given by

and 4- (23)

for 3Gi® > V?
for 3G2 < V?

He= 2 (3G% -V?)
Heo= 2 (V' -3Go?)

(24a)
(24b)

At these values of H no soliton solution is possitilor H<
H.1 compressive solitons and for H < Harefactive solitons
e obtained.

V.RESULTS ANDDISCUSSION

ordinates? andt and then applying the perturbation expansion Using the nonlinear quantum fluid equations forcetens

(10) and solving for the lowest order equation witie

boundary conditionn(”, ul”, and @ — 0 as|¢|— =,

the following solutions are obtained:

¢ o = Voo?” .
3Ga* -V Bac-V)
and then going for the next higher order termseirand
following the usual method we obtain the desiredt&weeg de
Vries (KdV) equation:

n® = a7)

ex

with an arbitrary temperature and the standard atbdk
perturbation technique both the linear and nonlipeaperties
of electron-plasma waves has been investigated.

The electron degeneracy parameter G is shown lieeimte
the linear and nonlinear properties of the electpdasma
waves in a significant way. Fig 1 shows that theveva
frequency increases with increase in the degengra@meter
G. The model plasma under consideration can suppmtht
compressive and rarefactive types of soliton. Solamplitude
and width are found to depend significantly on diegeneracy

P g & parameter G. Fig. 2 shows that both the amplitudk width
—+Ap—+B_—5=0 of the compressive solitons increase with incrémsz.
or o0& o0& (18)

:7(3(30!2 +3/2) (19) 0.15[a: G=1

2/ (3a"-V?) &3
2 _\2\2_ 12
B:(3Ga V2 -H?/4 (20) ol
Y
Lol

To find the solution of Eq. (18) we transform the 0059
independent variables and t into one variabley =& - M 1 a .
where M is the normalized constant speed of theeweame. o0
Applying the boundary conditions that ag — * oo;
D, D§¢—>0 the possible stationary solution of Eq. (20) > " . * *

is obtained as:

Fig. 2Compressive solitary wave profiles for differentues of
degeneracy parameter G
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It is shown that the amplitude and width of theefactive
soliton decreases with increase in the value dfiG.3).
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Fig. 3 Rarefactive solitary wave profiles for difat values of
degeneracy parameter G

As the degeneracy parameter G determines the ticansi
from ultra cold to thermal cases it is importantkimow its
value. Table | shows the values of G for certaiacpical
plasmas. Finally we would like to point out thateth
investigation presented here may be helpful in
understanding of the basic features of long waggthen
electron plasma waves in dense and hot plasmasasuzdn be
found in white dwarfs, neutron stars and intenserasolid
plasma experiments.

TABLE |
VALUES OF ELECTRON DEGENERACY PARAMETER FOR DIFFERENPLASMAS

Type of Plasma Density (f | Temperature (K)| G

Tokamak 107 10 1
Inertial Confinement >
Fusion 10° 10° L
Metal and Metal 1078 10° 1.
clusters 4
Jupiter 10%2 10* i
White Dwarf 1§ 10° 4
ACKNOWLEDGEMENTS

One of the authors (S.Chandra) would like to th@®R,
Govt of India for providing research fellowship ¢arry out
the work

REFERENCES

[1] F.Hass, L.G.Garcia, J.Goedert, G.Manfredthys. Plasmas, 10,
3858(2003).

[2] P. K. Shukla, J. Plasma Physl, 107 (2008)

[3] L.S. Stenflo, P.K. Shukla and M. Marklund, Europhlystt.74 (5), 844
(2006)

[4] C.L. Gardner and C. Ringhofer ,Phys. Rev3F157 (1996).

[5] S.A.Khanand A. Mushtag, Phys. Plasrhids083703 (2007)

[6] Misra, A. P., Shukla, P. K., Bhowmik, C., Phys. dPfes,14, 082309
(2007)

[7] Sah, O. P., Manta, J., Phys. Plasit@s032304, (2009)

[8] P. K. Shukla and B. Eliasson, Phys. Rev. 1%4t.245001 (2006)

[9]1 B. Sahu and R. Roychoudhury, Phys. Plasi$€72302 (2006)

[10] S. Aliand P. K. Shukla, Phys. Plasnia; 022313 (2006)

[11] P. K. Shukla and S. Ali, Phys. Plasni&s 114502 (2005)

[12] S. A. Khan and A. Mushtaq, Phys. Plasri4s083703 (2007)

[13] Manfredi, G., Fields Inst. Commu#6, 263 (2005)

[14] B.Eliasson and P.K. Shukla, Physica Scrig&,025503 (2008)

[15] B.Ghosh, S.Chandra and S.N.Paul, Phys. PlasiBa812106 (2011)

[16] B.Ghosh, S.Chandra and S.N.Paul, Pramana-J.Pi8y$5) 779-790
(2012)

[17] S.Chandra, S.N Paul and B.Ghosh, Ind. J. Pure gpl Phys.50(5)
314-319 (2012)

[18] S.Chandra, S.N Paul and B.Ghosh, Astro .Phys. padeSSci. (2012)

Swarniv Chandra is a doctoral Fellow in the department of Physics,
Jadavpur University. He graduated from UniversityCalcutta (2005), and
did his post graduation from Indian Institute ofcfieology, Delhi, India
(2008). He is a life memember of the Indian Phys&aciety (IPS), Indian
Science Congress Association (ISCA) and the PlaSeiance Society of
India (PSSI) as well as the Indian Science Conghsssciation. His field of
interest includes quantum and relativistic plasma ather nonlinear
behavior in space plasma. He has bagged many awadif$erent levels and
has published about 22 papers.

Basudev Ghoshis an associate professor with the Departmenthgies,
Jadavpur University. Previously he was a readeR@makrishna Mission
Vidyamandira, Belurmath, affiliated to the Univeysiof Calcutta. He
graduated from University of Burdwan, India (197&nd did his post
graduation from the same university (1979) and ¢opat both levels. He did
his PhD from University of Calcutta (1989).He idife memember of the

th@dian Physical Society (IPS) and the Plasma Sei&uriety of India (PSSI).

His field of interest includes nonlinear waves lagma. He has published 15
books and about 50 research papers. He is aciivebyved in teaching for
more than 26 years.

1432



