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Abstract—Nonlinear solitary structures of electron plasma waves 

have been investigated by using nonlinear quantum fluid equations 
for electrons with an arbitrary temperature. It is shown that the 
electron degeneracy parameter has significant effects on the linear 
and nonlinear properties of electron plasma waves. Depending on its 
value both compressive and rarefactive solitons can be excited in the 
model plasma under consideration.  
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I. INTRODUCTION 

HE quantum plasmas which are characterized by high 
particle density and low temperature are ubiquitous in 

white dwarfs, neutron stars, galactic plasma, metal 
nanostructures, intense laser-solid interaction and in many 
other environments. In recent years propagation of various 
electrostatic modes such as ion-acoustic waves, electron-
acoustic waves, dust-acoustic waves, dust ion-acoustic waves 
etc. in quantum plasma have been studied by many authors [1]-
[12].  

Quantum effects in plasmas are usually studied with the help 
of two well-known formulations, viz. the Wigner-Poisson and 
the Schrodinger-Poisson formulations. The Wigner-Poisson 
model is often used in the study of quantum kinetic behaviour 
of plasma. The Schrödinger-Poisson model describes the 
hydrodynamic behaviour of plasma particles in quantum 
scales. The quantum hydrodynamic (QHD) model is derived 
by taking velocity space moments of the Wigner equations. 
The QHD model generalizes the classical fluid model for 
plasma with the inclusion of a quantum correction term also 
known as the Bohm potential [1]. The model incorporates 
quantum statistical effects through the equation of state. 
Because of simplicity, straight forward approach and 
numerical efficiency the QHD model has been widely used by 
several authors [1]-[12]. Different approaches for modeling 
quantum plasmas in electrostatic limit have been reviewed by  
Manfredi [13].The QHD model as used by most authors is 
valid for quantum plasmas in the ultra-cold limit.  
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But in most practical cases the plasma temperature is finite 
and not approaching zero. Recently Eliasson and Shukla [14] 
have developed nonlinear fluid equations taking into account 
the moments of the Wigner equation and by using the Fermi 
Dirac equilibrium distribution for electrons with an arbitrary 
temperature. The model thus developed is expected to describe 
a finite temperature quantum plasma. The linear and nonlinear 
properties of electron plasma waves in a quantum plasma have 
been studied by a few authors in the ultra-cold limit by using 
QHD model [15-18]. To the best of our knowledge no one has 
studied this problem including finite temperature effects. The 
motivation of the present paper is to study the linear and 
nonlinear properties of electron plasma waves in a finite 
temperature quantum plasma by using a finite temperature 
quantum hydrodynamic model.  

II.  THE FINITE TEMPERATURE QHD MODEL EQUATIONS 

The model as developed by Eliasson and Shukla [14] is 
based on 3D Fermi-Dirac equilibrium distribution for electrons 
with an arbitrary temperature. Propagation of plane 
longitudinal electron plasma waves in a collisionless quantum 
plasma leads to adiabatic compression along one dimension 
only and hence to a temperature anisotropy of the electron 
distribution.  

In quantum picture the classical incompressibility of phase 
fluid is violated by quantum tunneling. However to a first 
approximation one may assume the incompressibility of the 
electron phase fluid. It may also be assumed that the chemical 
potential (µ) remains constant during the nonequilibrium 
dynamics of plasma. Based on these assumptions one may 
consider the following nonequilibrium particle distribution 
function:  
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where m is the electronic mass, ћ is the Plank constant divided 
by 2π, β =1/kBTe0 , kB is the Boltzmann constant and Te0 is the 
background temperature, µ is the chemical potential.  vex is the 
mean velocity of the particles given by 
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and ηex (x,t) = Te0/Tex(x,t)=[n0/ne(x,t)]2 is the temperature 
anisotropy of the distribution function which is defined from 
the number density variations where n0  is given by: 
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Li γ(y) is the polylogarithm function. In the ultra cold limit i.e. 
T→0, we have β→∞ and µ→EF.  
where 
 ( ) ( )2 32 2

03 / 2FE n mπ= h                  (4) 

Now using the zeroth and first moments of the Wigner 
equation with the Fermi-Dirac distribution function and 
assuming that the Bohm potential is independent of the thermal 
fluctuations in a finite temperature plasma one can derive the 
continuity and momentum equation in the following form: 
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where ne and vex are respectively the particle density and fluid 
velocity of electron; φ   is the electrostatic wave potential and  

/
Te B Te e

v k T m= is the themal speed. G is the ratio of two 

polylogarithm functions given by:  
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The system is closed by the Poisson equation, 
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We now introduce the following normalization: 
  

0/ , , / 2 , /pe Fe pe B Fe j jx x V t t e k T n n nω ω φ φ→ → → →  and  

/j j Feu u V→
. 

Here 2
04 /pe en e mω π= the electron plasma 

oscillation frequency and 2 /Fe B Fe ev k T m= is the Fermi speed 

of electrons. Using the above normalization Eqs. (5, 6 and 8) 
can be recast as: 
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where / 2 pe B FeH k Tω= h  is a nondimensional quantum 

parameter proportional to the quantum diffraction and 

( )Te FeV Vα = . The parameter H is proportional to the ratio 

between the plasma energy h peω  (energy of an elementary 

excitation associated with an electron plasma wave) and the 
Fermi energy

B Fek T . 

III.  DISPERSION CHARACTERISTICS 

In order to investigate the nonlinear behaviour of electron 
plasma waves we make the following perturbation expansion 
for the field quantities ne, vex , nec  and φ  about their 

equilibrium values: 
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Substituting the expansion (12) in Eqs. (9)-(11) and then 
linearizing and assuming that all the field quantities vary as 

[ ]exp ( )i kx tω− , we get for normalized wave frequency ω and 

wave number k, the following linear dispersion relation  
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In the dimensional form the dispersion relation becomes: 
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The degeneracy parameter G determines the transition 

between the ultra cold and thermal cases. In the low 
twmperature limit βµ→∞, µ ≈ EF ≡ (mVFe

2)/2 and G ≈ 2βEF/5, 
then the dispersion relation (11) takes the form  
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which is similar to the dispersion relation for electron plasma 
waves in a quantum plasma obtained by using one dimensional 
QHD Model.  In high temperature limit βµ→ -∞ so that G→1 
and then the dispersion relation (12) reduces to the Bohm-
Gross dispersion relation for electron plasma waves in a hot 
plasma 
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In many cases of practical interest the last term on the RHS 

may be neglected and then one gets the well known Bohm-
Gross dispersion relation of electron plasma waves in a hot 
plasma. It may be noted that in the frequency range where ω2  

>>1   the dispersion relation (11) reduces to the form: 
2 3
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Fig.1 shows the linear dispersion characteristics for different 
values of G.  
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The electron degeneracy parameter is found to increase the 
slope of the dispersion curve. i.e.as the value of G increases 
the wave frequency increases for a given k.  

 
Fig. 1 Linear dispersion curve for different value of G 

IV.  DERIVATION OF THE KdV EQUATION 

In order to study the nonlinear behaviour of electron plasma 
waves we use the standard reductive perturbation technique 
and the usual stretching of the space and time variables:  

( )1 2 x Vtξ ε= −   and  3 2tτ ε=             (16) 

where V is the normalized linear velocity of the wave and ε is 
the smallness parameter measuring the dispersion and 
nonlinear effects.  

Now writing the Eqs. (9) in terms of these stretched co-
ordinates ξ and τ and then applying the perturbation expansion 
(10) and solving for the lowest order equation with the 

boundary condition (1)
en , (1)

eu ,  and (1)φ  → 0 as │ξ│→ ∞ , 

the following solutions are obtained: 
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and then going for the next higher order terms in ε and 
following the usual method we obtain the desired Korteweg de 
Vries (KdV) equation: 
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To find the solution of Eq. (18) we transform the 
independent variables ξ and τ into one variable η = ξ - M τ 
where M is the normalized constant speed of the wave frame. 
Applying the boundary conditions that as η → ± ∞;  

, , 2D Dη ηφ φ φ→0  the possible stationary solution of Eq. (20) 

is obtained as: 

sec 2
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ηφ φ
∆
 =  
                   (21) 

where the amplitude mφ   and width ∆ of the soliton are given 

by: 

 
m

M
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A
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M
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For the existence of soliton solution we require B > 0. It 
requires that 3Gα2 < V2 - (H/2) or         3Gα2 > V2 + (H/2). The 
nature of the solitary waves (i.e. whether the system will 
support compressive or rarefactive solitary waves) depends on 
the sign of A.  

If A is positive (or negative) a compressive (or rarefactive) 
solitary wave is excited. Thus for 3Gα2 < V2 - (H/2) rarefactive 
soliton and for 3Gα2 > V2 + (H/2) compressive soliton is 
formed. From Eq (20) it is clear that the dispersive coefficient 
B vanishes for two critical values of the diffraction parameter 
H, given by  

 
Hc1= 2 (3Gα2 -V2)    for  3Gα2 > V2          (24a) 
Hc2= 2 (V2 -3Gα2)    for  3Gα2 < V2          (24b) 
 
At these values of H no soliton solution is possible. For H< 
Hc1 compressive solitons and for H < Hc2 rarefactive solitons 
are obtained.  

V. RESULTS AND DISCUSSION 

Using the nonlinear quantum fluid equations for electrons 
with an arbitrary temperature and the standard reductive 
perturbation technique both the linear and nonlinear properties 
of electron-plasma waves has been investigated.  

The electron degeneracy parameter G is shown to influence 
the linear and nonlinear properties of the electron plasma 
waves in a significant way. Fig 1 shows that the wave 
frequency increases with increase in the degeneracy parameter 
G. The model plasma under consideration can support both 
compressive and rarefactive types of soliton. Soliton amplitude 
and width are found to depend significantly on the degeneracy 
parameter G. Fig. 2 shows that both the amplitude and width 
of the compressive solitons increase with increase in G.  

 
Fig. 2 Compressive solitary wave profiles for different values of 

degeneracy parameter G 
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It is shown that the amplitude and width of the rarefactive 
soliton decreases with increase in the value of G (Fig.3). 

 
Fig. 3 Rarefactive solitary wave profiles for different values  of 

degeneracy parameter G 
  
As the degeneracy parameter G determines the transition 

from ultra cold to thermal cases it is important to know its 
value. Table I shows the values of G for certain practical 
plasmas. Finally we would like to point out that the 
investigation presented here may be helpful in the 
understanding of the basic features of long wavelength 
electron plasma waves in dense and hot plasmas such as can be 
found in white dwarfs, neutron stars and intense laser-solid 
plasma experiments. 

 
TABLE I 

VALUES OF ELECTRON DEGENERACY PARAMETER FOR DIFFERENT PLASMAS 

Type of Plasma Density  (m-3) Temperature (K) G 

Tokamak 1020 1018 1 

Inertial Confinement 
Fusion 

1032 108 1 

Metal and Metal 
clusters 

1028 104 1.
4 

Jupiter 1032 104 1.
4 

White Dwarf 1035 108 4 
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