
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

216

Abstract—In this contribution, a way to enhance the performance
of the classic Genetic Algorithm is proposed. The idea of restarting a
Genetic Algorithm is applied in order to obtain better knowledge of
the solution space of the problem. A new operator of “insertion” is
introduced so as to exploit (utilize) the information that has already
been collected before the restarting procedure. Finally, numerical
experiments comparing the performance of the classic Genetic
Algorithm and the Genetic Algorithm with restartings, for some well
known test functions, are given.

Keywords—Genetic Algorithms, Restartings, Search space
exploration, Search space exploitation.

I. INTRODUCTION

ENETIC Algorithms (GAs) are known to be one of the
best methods for searching and optimization [1]–[3]. By
applying genetic operators (reproduction, crossover and

mutation) in a population of individuals (sets of unknown
parameters properly coded), they achieve the optimum value
of the fitness function, which corresponds to the most suitable
solution. As a result, they converge to the (near) optimal
solution by evolving the best individuals in each generation.
The main advantage of the GAs is that they use the
parameters’ values instead of the parameters themselves. In
this way they search the whole parameter space. However,
GAs encounter some serious problems (concerning the
convergence speed and the finding of the exact value of the
global optimum) when they have to deal with functions that
contain too many local optima.

The idea of restarting the classic GA, so as to increase the
performance, derives from the well known idea of restarting
the Arnoldi’s method for finding the eigenvalues [4]–[7]. In
this restarting technique [4]–[7], we are not willing to throw
away the useful information, concerning the Krylov subspace,
that has been captured before restarting. This is achieved by

G. N. Beligiannis is with the Department of Computer Engineering and
Informatics, University of Patras, 26500 Rio, Patras, Greece and with the
Research Academic Computer Technology Institute (R.A.C.T.I.), Riga
Feraiou 61, 26221 Patras, Greece (corresponding author, phone: +30-2610-
997755; fax: +30-2610-997706; e-mail: beligian@ceid.upatras.gr).

G. A. Tsirogiannis is with the Department of Engineering Sciences,
University of Patras, Rio, Patras, Greece (e-mail:
g.tsirogiannis@des.upatras.gr).

P. E. Pintelas is with the Department of Mathematics, University of Patras,
Rio, Patras, Greece, (e-mail: pintelas@math.upatras.gr).

This contribution was financially supported by the Greek Ministry Of
Education and Religious Affairs under grant “PYTHAGORAS: Supporting
Research Groups in Universities”, b.365.018 (EPEAEK II).

using a vector that constitutes of a mix of Ritz values [4], as a
starting vector for the next step of Arnoldi’s method.

In order to apply this strategy to the classic GA the
following technique is established. A fixed number of genomes
– from the current population before the restarting –is selected
and included into the new population. Hopefully these
genomes encapsulate all the useful information gathered about
the solution space till that generation. The role of the “vector
that is a mix of Ritz values” is played by the set of genomes
that is passed to the new generation.

The paper is organized as follows. In section II the proposed
technique is described and analyzed. In section III
experimental results are presented in order to prove the
significance and the efficiency of the proposed technique.
Finally, section IV summarizes the conclusions and suggests
future applications and extensions of the method.

II. GAS’ RESTARTINGS

Experimental results have shown that GAs, when used for
optimizing a function, are able to reach a relative good score
(compared to the global optimum) in a quite small number of
generations. In the sequel generations, they just refine the
solution space trying to identify the exact optimal solution of
the function. As known, classic GAs make use of three basic
genetic operators (selection, crossover and mutation) in order
to evolve the population of possible solutions to fit to the
conditions and the characteristics of each specific problem.

Generally speaking, one can interpret the initial generations
of a classic GA as a global search mechanism and all the
remaining ones as a refining procedure towards the true
optimal value of each specific optimization problem. At this
point, it should be noticed that the application of the crossover
operator is a clever way to escape from local optima (at the
early stages of the evolution procedure it assists the effective
exploration of the whole search space). So, in a typical classic
GA, trying to avoid premature convergence, the evolution
procedure can be described as in Fig.1.

It is clear that this procedure wastes a large amount of
evaluations of the objective function in order to refine a local
optimum solution which is often abandoned in the next
generations due to the application of the mutation operator.
This is because the use of the mutation operator can often lead
to much better solutions compared to the ones found so far,
directing the evolution of the algorithm to another area of the
search space in which a local optimum with higher objective

Restartings: A Technique to Improve Classic
Genetic Algorithms’ Performance

Grigorios N. Beligiannis, Georgios A. Tsirogiannis and Panayotis E. Pintelas

G

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

217

FIGURE 1
THE EVOLUTION PROCEDURE OF A CLASSIC GA

value lies. In general, the application of the mutation operator
usually leads to a “from the beginning” global search for
“good” areas (areas of the search space that will hopefully
include the global optimum). The use of restartings manages to
succeed better exploration of the search space by avoiding
premature convergence and entrapment in local optima while
at the same time it saves most of the evaluations included in
the local refining procedure (fewer generations and evaluations
of the fitness function).

In this contribution, a restarting procedure for the classic
GA is proposed so as to achieve a better global exploration of
the solution space while executing the minimum possible
number of generations (function evaluations). In order to
achieve this goal, we use the standard global exploration
mechanism used by classic GAs (selection, crossover,
mutation) but when the GA reaches the local refining phase,
we restart the GA so as to preserve the global search
procedure. This technique alleviates the enormous
computational burden introduced by the local refining
procedure, which is quite often useless in finding the optimal
solution. The proposed technique is described in Fig. 2. Of
course, the new starting of the GA procedure should include
all the valuable information gathered from the previous global
search. Thus, we propose a new operation called “insertion” to
be included in the classic GAs’ evolution procedure. The
insertion operator works as follows. It chooses randomly a
constant percentage of the genomes of the population of the
last generation (before the restarting procedure takes effect)
and inserts them into the new initial population of the GA as
shown in Fig.3.

The main difficulty of all restarting techniques is to decide
when to apply the restartings. If they are applied too early (in a
rather early phase of the evolution procedure), the global
search procedure completed till that point will be able to
reveal only a small part of the useful information included in
the solution space of the specific problem. In other words, the
GA should be let to run for a minimum number of generations
(before the application of the restarting procedure) in order to
manage to search effectively the solution space and gather
useful information. On the other hand, if restartings are applied
too late (in a rather late phase of the evolution procedure) most
of the information carried by the genomes of the last
population (the population before the restarting procedure)
will be concentrated on a local solution, probably not the

optimal one. Of course, this leads to loss of useful information
and premature convergence.

FIGURE 2
THE EVOLUTION PROCEDURE OF THE PROPOSED GA WITH RESTARTINGS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

218

In this contribution, three different criteria for deciding
when to apply restartings are proposed:

• Fitness function value (that is the restarting procedure is
applied whenever the value of the fitness function
exceeds a predefined threshold)

• Number of generations (that is the restarting procedure
is applied whenever the number of generations
executed exceeds a predefined threshold)

• Mean fitness function value of population (that is the
restarting procedure is applied whenever the mean
value of the fitness function of the whole population
exceeds a predefined threshold)

Another important aspect of the restarting method is to
decide its termination criterion, that is, to decide when the
application of the restarting procedure used to refine the
solution should stop. A rule of thumb is the following: the
more complex the solution space is, the more times the
restarting procedure should be applied. Following this rule, an
integer constant, whose value is totally depended on the
complexity of the solution space, is proposed in each specific
application in order to specify the total number of restartings.

FIGURE 3
THE INSERTION OPERATOR

III. EXPERIMENTAL RESULTS

In order to demonstrate the efficiency and performance of
the proposed technique, several simulation experiments were
carried out. All the experiments were carried out 100 times
(100 Monte Carlo runs). In this section, we present the results
of the application of both the classic GA and the proposed GA
with restartings to four well known optimization problems.
The functions selected to be optimized are the first three
functions of the De Jong test suite [8] and the Himmelblau
function [9]. These functions are quite popular in GAs’
literature, so it is possible to make direct comparisons.

The first De Jong test function is the sphere model:

() ∑
=

=
3

1

2
3211 ,,

i

ixxxxf , 12.512.5 ≤≤− ix (1)

It is smooth, unimodal and symmetric. The goal is to find the

global minimum () () 00,0,0min 11 == ff .

The second De Jong test function is the Rosenbrock’s
valley:

() () ()2
1

22
12212 1100, xxxxxf −+−= , 048.2048.2 ≤≤− ix (2)

It has a very narrow ridge. The tip of the ridge is very sharp
and it runs around a parabola. The goal is to find the global
minimum () () 01,1min 22 == ff .

The third De Jong test function is the Step function:

() ⎣ ⎦∑
=

⋅=
5

1
543213 5,,,,

i

ixixxxxxf , 12.512.5 ≤≤− ix (3)

It is discontinuous and representative of the problem of flat
surfaces. The goal is to find the global minimum

() [) [)() 05,12.5,...,5,12.5min 33 =−−−−= ff .

The fourth test function is the Himmelblau function:

() () ()22
21

2

2
2
1214 711, −++−+= xxxxxxf , 66 ≤≤− ix (4)

It is a multimodal function with four distinct minima. The goal
is to find the global minimum () () 02,3min 44 == ff .

For both the classic GA and the proposed GA with
restartings the same set of GA’s operators and parameters were
used in order to have a fair comparison of their efficiency and
performance. The representation used for the genomes of the
genetic population is the classic binary string. As far as the
reproduction operator is concerned, the classic biased roulette
wheel selection was used. The crossover operator used is
uniform crossover (with crossover probability equal to 0.9),
while the mutation operator is the flip mutator (with mutation
probability equal to 0.001. The size of the population both for
the classic GA and the proposed GA with restartings was set to
50, while the percentage of the genomes passed to the next
initial population by each restarting procedure equals 20% (in
our case 10 genomes, i.e. c=10). Except for that, both GAs
used linear scaling and elitism.

Both GAs were implemented using the C++ Library of
Genetic Algorithms GAlib [10] and especially the
GASimpleGA class for the implementation of the GAs (non-
overlapping populations) and the GABin2DecGenome class
for the binary string genomes (an implementation of the
traditional method for converting binary strings to decimal
values). All the experiments were carried out on a Intel
Pentium IV 2.7GHz PC with 256 MB RAM.

The comparison of the algorithms is based on two criteria.
For each one of the four test functions two specific quantities
are taken into consideration. The first one is the value
achieved by the fitness function of each algorithm. We
measure the number of fitness function evaluations made by
each algorithm in order the value of the fitness function to
overcome a predefined threshold. The second quantity is the
number of fitness function evaluations. We measure the best
value of the fitness function achieved by each algorithm for a
specific number of fitness function evaluations.

In the following table the performance and efficiency of
both the classic GA and the proposed GA with restartings is
shown for the first De Jong function.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

219

TABLE I
EXPERIMENTAL RESULTS FOR THE FIRST DE JONG FUNCTION

GA with restartings
Perfor-
mance

Criterion

Classic
GA

Every
fifty

genera-
tions

Every
sixty

genera-
tions

Every
seventy
genera-

tions

Every
eighty
genera-

tions

Every
ninety
genera-

tions
Fitness

function
value

Number of evaluations

<1.0e-10 20768 21245 20524 18822 20608 21085

<1.0e-16 35290 36044 34253 32017 34260 35415

Number of
evaluations Fitness function value

10000 1.69e-06 1.06e-05 2.67e-06 1.01e-06 8.52e-06 1.26e-06

20000 8.99e-10 4.33e-09 7.32e-10 8.88e-11 5.91e-10 2.97e-09

In the following table the performance and efficiency of
both the classic GA and the proposed GA with restartings is
shown for the Second De Jong function.

TABLE II
EXPERIMENTAL RESULTS FOR THE SECOND DE JONG FUNCTION

GA with restartings
Perfor-
mance

Criterion

Classic
GA

Every
ten

genera-
tions

Every
twenty
genera-

tions

Every
thirty

genera-
tions

Every
forty

genera-
ions

Every
fifty

genera-
tions

Fitness
function

value
Number of evaluations

<1.0e-4 1238271 77218 34748 106398 88680 189813

<1.0e-8
Not able

after
4000000

353265 156853 167083 225154 218781

Number of
evaluations Fitness function value

50000 3.51e-02 2.36e-04 4.19e-05 4.45e-04 3.74e-04 1.51e-03

 100000 2.09e-02 9.93e-05 8.86e-06 1.53e-04 9.05e-05 5.63e-04

 200000 1.55e-02 1.69e-05 7.73e-09 9.69e-09 7.09e-08 6.45e-08

In the following table the performance and efficiency of
both the classic GA and the proposed GA with restartings is
shown for the third De Jong function.

TABLE III
EXPERIMENTAL RESULTS FOR THE THIRD DE JONG FUNCTION

GA with restartings
Perfor-
mance

Criterion

Classic
GA

Every
ten

genera-
tions

Every
twenty
genera-

tions

Every
thirty

genera-
tions

Every
forty

genera-
ions

Every
fifty

genera-
tions

Fitness
function

value
Number of evaluations

<= 1 8692 7061 8116 8433 6517 6466
= 0 15339 13236 14297 13107 14431 14215

Number of
evaluations Fitness function value

6000 2.2 1.7 1.4 1.2 1.6 1.6

12000 1.1 0.6 1.1 0.9 1.1 0.8

In the following table the performance and efficiency of
both the classic GA and the proposed GA with restartings is
shown for the Himmelblau function.

TABLE IV
EXPERIMENTAL RESULTS FOR THE HIMMELBLAU FUNCTION

GA with restartings
Perfor-
mance

Criterion

Classic
GA

Every
ten

genera-
tions

Every
twenty
genera-

tions

Every
thirty

genera-
tions

Every
forty

genera-
ions

Every
fifty

genera-
tions

Fitness
function

value
Number of evaluations

<1.0e-4 114064 7779 8612 11401 16944 15925

<1.0e-8 178481 30576 31712 37852 22950 25547

<1.0e-12
Not able

after
4000000

2225732 118509 141107 96773 91626

Number of
evaluations Fitness function value

10000 2.11e-02 1.37e-05 2.43e-05 3.91e-04 3.02e-03 1.57e-03

50000 2.02e-02 5.29e-09 6.67e-09 2.09e-09 1.19e-09 2.62e-09

100000 9.71e-03 1.34e-09 1.64e-10 2.24e-10 7.12e-13 7.11e-13

From the above tables, one can easily come to the
conclusion that the proposed technique enhances significantly
the performance of the classic GA. The restarting procedure
manages to achieve a better global exploration of the solution
space while executing fewer fitness function evaluations. This
is more obvious especially when the function to be optimized
has many local optima like the second De Jong function and
the Himmelblau function.

IV. CONCLUSIONS AND FUTURE WORK

As experimental results show, the proposed technique
manages to significantly enhance the performance of the
classic GA, especially in optimizing “hard” functions with
many local optima. It would be very interesting to check the
efficiency and performance of the proposed GA with
restartings to other difficult test functions and NP-Hard
problems like the TSP problem. These issues will be the main
scope of our future work.

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning, Reading, Mass.: Addison-Wesley, 1989.
[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs, 3rd ed., N. Y.: Springer-Verlag, 1996.
[3] M. Mitchell, An Introduction to Genetic Algorithms (Complex Adaptive

Systems), Cambridge, Massachusetts, London, England: A Bradford
Book, The MIT Press, 1998.

[4] H. A.. van der Vorst, “Computational Methods for large Eigenvalue
Problems”, in Handbook of Numerical Analysis, vol. 8, P. G. Ciarlet
and J. L. Lions, Eds. Amsterdam: North-Holland (Elsevier), pp. 3-179,
2002.

[5] Y. Saad, Numerical methods for large eigenvalue problems,
Manchester, UK: Manchester University Press, 1992.

[6] S. G. Petition, “Parallel subspace method for non-Hrmitian eigen-
problems on the connection machine (CM2)”, Applied Numerical

Mathematics, vol.10, pp. 19-36, 1992.
[7] D. C. Sorensen, “Implicit application of polynomial filters in a k-step

Arnoldi method”, SIAM J. Matrix Anal. Applic., vol. 13(1), pp. 357-
385, 1992.

[8] K. De Jong, “An analysis of the behaviour of a class of genetic adaptive
systems”, PhD thesis, University of Michigan, 1975.

[9] D. M. HimmelBlau, Applied Linear Programming, McGraw-Hill, 1972.
[10] GAlib - A C++ Library of Genetic Algorithm Components, Matthew

Wall, Massachusetts Institute of Technology (MIT). Available:
http://lancet.mit.edu/ga/

