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Abstract— We present a novel construction of 16-QAM code-
words of length n = 2k . The number of constructed codewords
is 162×[4k−1×k−k+1] . When these constructed codewords are
utilized as a code in OFDM systems, their peak-to-mean envelope
power ratios (PMEPR) are bounded above by 3.6 . The principle
of our scheme is illustrated with a four subcarrier example.

Index Terms— Extended Rudin-Shapiro construction, orthog-
onal frequency division multiplexing (OFDM), peak-to-mean
envelope power ratio (PMEPR).

I. INTRODUCTION
Orthogonal frequency-division multiplexing (OFDM) has

increasingly become an attractive technique for the high-bit-
rate transmission in a radio environment [6]. A principal
impediment to implementing OFDM is the high peak-to-mean
envelope power ratios (PMEPR) of the transmitted signals.
Given QAM (quadrature amplitude modulation) constellations
are widely used in OFDM, it is therefore imperative to study
the reduction of PMEPR, especially when symbols are chosen
from QAM constellations [3].

A variety of creative ways are proposed to reduce PMEPR
of OFDM signals [4], [2], [7], [12], [13]. Of these methods, a
promising one introduced in [2] uses block coding, where the
desired data codeword is embedded in a larger codeword and
only a subset of those larger codewords with low PMEPR
bounds is used. This method requires one to perform an
exhaustive search for identifying the codewords having low
PMEPR bounds in a code, and use a large lookup table
for encoding and decoding. For high QAM constellations,
these drawbacks could make the implementation of it dif-
ficult. One way to overcome these drawbacks is to use the
code constructed from Golay complementary codewords [5].
A generalization of Golay complementary codewords with
symbols chosen from 16-QAM is reported in [3] where
(16+12k)(k!/2)4k+1 codewords of length 2k are constructed
with their PMEPR bound bounded above by 3.6 . However, for
bandwidth-efficient long codes, the code rate of this approach
drops dramatically.

In this paper, we present a novel scheme of systematically
constructing a set of OFDM signals with their subcarriers
modulated by the symbols chosen from a 16-QAM constel-
lation. A total 162 × [4k−1 × k− k + 1] distinct codewords of
length n = 2k having their PMEPRs bounded above by 3.6
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are constructed. In contrast with [3], our approach is based
on a novel way of extending the Rudin-Shapiro (RS) con-
struction (different from [8], [9]). Utilizing this extended RS
construction, we develop a procedure to construct a set of the
polynomials. The constructed polynomials are then exploited
to produce 16-QAM codewords with desired PMEPR bounds.

The paper is organized as follows. In Section II, we
introduce some notations, review the background materials
developed in [10], [11] and then formulate the problem. In
Section III, a four-carrier example is utilized to illustrate
our construction procedure. In Section IV, the general case
is discussed. Proofs of some properties are contained in
Appendix I and Appendix II.

II. PRELIMINARIES

The transmitted OFDM signal is the real part of

Sc(t) =
n∑

m=1

cme−j2π(f0+m�f)t , (1)

where �f is an integer multiple of the OFDM symbol rate
and f0 is the lowest carrier frequency. c = (c1 , . . . , cn) is the
complex modulating vector whose entries are taken from a 16-
QAM constellation. An admissible modulating vector is called
a codeword and the ensemble of all the possible codewords
constitutes the code C . The mean power of Sc(t) during a
symbol period T is

1
T

∫ T

0

|Sc(t)|2dt = ‖c‖2 �
n∑

m=1

|cm|2 , (2)

and the mean envelope power Pav(C ) of a code C is

Pav(C )=
1
T

∑
c∈C

∫ T

0

p(c)|Sc(t)|2dt =
∑
c∈C

p(c)‖c‖2 , (3)

where p(c) is the probability of transmitting codeword c . The
peak-to-mean envelope power ratio (PMEPR) of a codeword
c is defined as

PMEPR(c) �
maxt∈[0,T ] |Sc(t)|2

Pav(C )
. (4)

Our goal is to systematically construct a set of codewords
whose PMEPRs are bounded above by 3.6 where entries of
these codewords are modulated by a 16-QAM constellation.

Throughout our discussion, we impose the restriction n =
2k (k positive integer) and use C

∗ � C−{0} and S1 � {z ∈
C : |z| = 1} where C denotes the set of complex numbers.
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Fig. 1. Construction of 16-QAM symbols from two QPSK symbols

A. The Extended Rudin-Shapiro Construction

The extended Rudin-Shapiro map Φαβγ introduced in [10],
[11] is defined as follows: Given any polynomial Q(z) ,Φαβγ

is
Φαβγ(Q(z)) � 1

γ

[
αQ(γz2) + βz−1Q(−γz2)

]
, (5)

where we require α , β ∈ C
∗ , and γ ∈ S1 .

In [11], we confine parameters α , β , γ ∈ S1, develop a
procedure to construct Pk of degree 2k and prove
|Pk(z ; αk , βk , γk , . . . , α1 , β1 , γ1)|2
+|Pk(−z ; αk , βk , γk , . . . , α1 , β1 , γ1)|2=2k+1 , ∀ z ∈ S1(6)

for any choices of αk , βk , γk , . . . , α1 , β1 , γ1 ∈ S1 .

III. A SIMPLE EXAMPLE

A four-carrier OFDM signal of (1) where the entries of
(c1 , c2 , c3 , c4) are chosen from a 16-QAM constellation is
used to illustrate our construction procedure. Instead of per-
forming an exhaustive search, as originally described in [2],
the procedure we present can efficiently identify a set of
codewords whose PMEPR bounds are bounded above by 3.6 .

A. A construction procedure

Based on the procedure developed in [11] or our derivation
of Section D, we have a polynomial of degree 4 represented
as:

P2(z ; α2 , β2 , γ2 , α1 , β1)
= γ2α2α1z

4 + γ2β2α1z
3 − α2β1z

2 + β2β1z . (7)

According to [1], any point on the 16-QAM constellation
can be written as

q(μ , ν) = aejπ/4ξμ + bejπ/4ξν (8)

This representation of a 16-QAM symbol in terms of two
QPSK symbols is shown in Fig. 1 . Assuming all the 16-
QAM symbols are equiprobable, we require a = 2/

√
5 and

b = 1/
√

5 for the constellation to have unit average energy.
Thus, for our example, it can be verified that Pav = 4 .

In equation (7), we choose parameters as follows:
α1= aejπ/4ξμ + bejπ/4ξν

β1= aejπ/4ξμ̃ + bejπ/4ξν̃

α2= ξλ

β2= ξτ

γ2= ξκ

(9)

where μ , ν , μ̃ , ν̃ , τ , κ and λ are chosen from Z4 .
Thus, equation (7) becomes

P2(z ; α2 , β2 , γ2 , α1 , β1)
= γ2α2α1z

4+γ2β2α1z
3−α2β1z

2+β2β1z

= γ2α2(aejπ/4ξμ+bejπ/4ξν)z4+γ2β2(aejπ/4ξμ+bejπ/4ξν)z3

−α2(aejπ/4ξμ̃+bejπ/4ξν̃)z2+β2(aejπ/4ξμ̃+bejπ/4ξν̃)z
= ξκξλ(aejπ/4ξμ+bejπ/4ξν)z4+ξκξτ(aejπ/4ξμ+bejπ/4ξν)z3

+ξ2ξλ(aejπ/4ξμ̃+bejπ/4ξν̃)z2+ξτ (aejπ/4ξμ̃+bejπ/4ξν̃)z
= ejπ/4ξμ+κ+λ(a+bξν−μ)z4 + ejπ/4ξμ+κ+τ (a+bξν−μ)z3

+ejπ/4ξμ̃+λ+2(a+bξν̃−μ̃)z2+ejπ/4ξμ̃+τ (a+bξν̃−μ̃)z . (10)

We define Ω2,1 as the set of all codewords generated by
equation (10) when parameters μ , ν , μ̃ , ν̃ , τ , κ and λ run
over Z4 , i.e.,

Ω2,1 =
⋃

μ , ν∈Z4
ν̃ , μ̃∈Z4

τ , κ , λ∈Z4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎣

ejπ/4ξμ+κ+λ(a + bξν−μ)
ejπ/4ξμ+κ+τ (a + bξν−μ)
ejπ/4ξμ̃+λ+2(a + bξν̃−μ̃)
ejπ/4ξμ̃+τ (a + bξν̃−μ̃)

⎤
⎥⎥⎦

T
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (11)

We can also choose the parameters of (7) in a way differ-
ent from (9) to produce more codewords with low PMEPR
bounds. Further discussion on this issue, especially, on how
to tuning parameter γ is presented in another paper.

Here, another choice for the set of parameters in (7) is
α1= ξλ

β1= ξτ

α2=aejπ/4ξμ + bejπ/4ξν

β2=aejπ/4ξμ̃ + bejπ/4ξν̃

γ2= ξκ

(12)

where μ , ν , μ̃ , ν̃ , τ , κ and λ are chosen from Z4 . Substitut-
ing (12) for parameters in (7), we similarly define Ω2,2 , i.e.,

Ω2 = Ω2,1

⋃
Ω2,2 . (13)

B. PMEPR bounds
Now, we compute PMEPR upper bounds for the codewords

of (13). For this purpose, we first prove the following lemma.
Lemma 1: If |α2| = |β2| and γ2 ∈ S1, then the polynomial
(7) satisfies
max
z∈S1

|P2(z ; α2, β2, γ2, α1, β1)|2≤4(|α1|2+|β1|2)|β2|2. (14)

The proof of Lemma 1 is contained in Appendix I.
Corollary 1: If |α1| = |β1| and γ2 ∈ S1, then the polynomial
(7) satisfies
max
z∈S1

|P2(z ; α2, β2, γ2, α1, β1)|2≤4(|α2|2+|β2|2)|β1|2. (15)

The proof of this corollary is similar to Lemma 1 .
Because of

|aejπ/4ξμ+bejπ/4ξν | = |ejπ/4ξμ(a+bξν−μ)|= |a+bξν−μ|(16)

and (recalling a = 2/
√

5 , b = 1/
√

5 and ξ = ej π
2 )

|a + bξi|2 =

⎧⎨
⎩

|a + b|2 = 1.8 , if i = 0
|a|2 + |b|2 = 1 , if i ∈ {1 , 3}
|a − b|2 = 0.2 , if i = 2

, (17)

in view of (9), it follows

|α1|2 + |β1|2 ∈ {3.6 , 2.8 , 2.0 , 1.2 , 0.4} . (18)

Utilizing (18) and (9), we can therefore derive
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(|α1|2+|β1|2)|β2|2 = (|α1|2+|β1|2) ≤ 3.6 (19)

which and Lemma 1 yield
max
z∈S1

|P2(z ; α2 , β2 , γ2 , α1 , β1)|2 ≤ 3.6 × 4 . (20)

Recalling Pav = 4 , we prove
PMEPR(c) ≤ 3.6 (21)

for every codeword c ∈ Ω2,1 .
Utilizing Corollary 1, we can similarly prove (21) for every

codeword c ∈ Ω2,2 . In view of (13), we therefore prove (21)
for every codeword c ∈ Ω2 .

C. The size of Ω2

To compute the size of Ω2, we first find the sizes of Ω2,1 ,
Ω2,2 and Ω2,1

⋂
Ω2,2 , and then obtain the size of Ω2 .

Property 1: When α1 , β1 , α2 , β2 and γ2 defined by either
(9) or (12) are used, the sizes of Ω2,1 , Ω2,2 and Ω2,1

⋂
Ω2,2

are respectively 162 × 4 , 162 × 4 and 162 .
Proof: In view of (7), every codeword of Ω2 can be expressed
as

c =(γ2α1α2 γ2β2α1 − α2β1 β2β1) (22)

where α1 , β1 , α2 , β2 and γ2 are from either (9) or (12) .
Case 1: Compute the size of Ω2,1 . In this case, the parameters
defined in (9) are used, which suggests that both α1 and
β1 are points on the 16-QAM constellation (Fig. 1) and the
rest parameters are selected from a 4-PSK constellation, i.e.,
{1 , −1 , j , −j} . Rewriting (22) as α2(γ2α1 γ2

β2
α2

α1 −
β1

β2
α2

β1) , we observe that the first, third and fourth entry
can independently be changed through α1 , β1 and β2

α2
respec-

tively. Thus, every choice of α1 , β1 and β2
α2

yields a distinct
codeword in Ω2,1 . Since there are 16 choices for each of α1

and β1 and 4 choices for β2
α2

, the size of Ω2,1 is equal to
162 × 4 .
Case 2: Compute the size of Ω2,2 . In this case, the parameters
defined in (12) are used. A similar argument as Case 1 can
prove that the size of Ω2,2 is equal to 162 × 4 too.
Case 3: To compute the size of Ω2,1

⋂
Ω2,2 , we assume

(γ2α1α2 γ2β2α1 −α2β1 β2β1)=(γ̃2α̃1α̃2 γ̃2β̃2α̃1 −α̃2β̃1 β̃2β̃1),(23)

where α1 , β1 , α2 , β2 and γ2 represent the parameters defined
by (9) but α̃1 , β̃1 , α̃2 , β̃2 and γ̃2 are the parameters defined
by (12) . The equation (23) suggests

γ2α1α2 = γ̃2α̃1α̃2 (24)

γ2β2α1 = γ̃2β̃2α̃1 . (25)

Dividing (24) by (25), we obtain
γ2α1α2

γ2β2α1
=

α2

β2
=

γ̃2α̃1α̃2

γ̃2β̃2α̃1

=
α̃2

β̃2

. (26)

Since α2 and β2 are defined by (9), we have α2
β2

= ξμ for
some μ ∈ Z4 . Combining this with (26), we obtain

α̃2 = ξμβ̃2 . (27)

Now, we are ready to estimate the size of Ω2,1

⋂
Ω2,2 .

• When |α̃2| > 1 , for each fixed α̃2 there are only 4 choices
of β̃2 (Fig. 1) satisfying (27) . Since we have 4 choices for
each of α̃2 , the total number of choices of these parameters
satisfying (27) are 4 × 4 = 16 .

• When |α̃2| < 1 , a similar argument as |α̃2| > 1 yields
another 16 possible choices of parameters.
• When |α̃2| = 1 , there are 8 distinct choices for each of α̃2

or β̃2 . For each choice of α̃2 , however, there only 4 choices
of β̃2 (Fig. 1) satisfying (27) . Thus, there are total 8×4 = 32
choices of these parameters satisfying (27) .

Combining Case 1-Case 3, we obtain 16 + 16 + 32 = 64
codewords satisfying (27) . On the other hand, rewriting the
codewords in Ω2,2 as β̃1(γ̃2

α̃1

β̃1
α̃2 γ̃2β̃2

α̃1

β̃1
− α̃2 β̃2) , we

observe that for each pair of α̃2 and β̃2 satisfying (27) , there
are 4 choices of α̃1

β̃1
. Therefore, the size of Ω2,1

⋂
Ω2,2 is

4×64 = 256 . In view of (13) and results from Case 1–Case 3,
the number codewords in Ω2 is at least 162×4+162×4−256 =
162 × (4 × 2 − 1) = 1792.

D. Derivation of P2(z ; α2 , β2 , γ2 , α1 , β1)
P2(z ; α2 , β2 , γ2 , α1 , β1) can be derived through the

following 3 steps.
Step 1: For the sake of consistence, we choose α0 = β0 =
γ0 = 1 . Start with P0(z) = z .
Step 2: Substituting P0(z) = z for Q(z) in (5), we compute
P1(z ; α1 , β1 , γ1) � Φα1β1γ1(P0(z))

=
1
γ1

[
α1P0(γ1z

2) + β1z
−1P0(−γ1z

2)
]

=
1
γ1

[
α1γ1z

2 + β1z
−1(−γ1z

2)
]

=α1z
2 − β1z , (28)

where both α1 and β1 belong to C
∗ . Since P1 is independent

of γ1 , we use P1(z;α1, β1) to represent P1(z;α1, β1, γ1) from
now on. Utilizing (28), for all z ∈ S1, we compute

|P1(z ; α1 , β1)|2 + |P1(−z ; α1 , β1)|2
= |α1z

2 − β1z|2 + |α1(−z)2 − β1(−z)|2
= (α1z

2− β1z)(α1z
2− β1z)∗+(α1z

2+β1z)(α1z
2+ β1z)∗

= |α1z
2|2 − β1z(α1z

2)∗ − (β1z)∗α1z
2 + |β1z|2

+|α1z
2|2 + β1z(α1z

2)∗ + (β1z)∗α1z
2 + |β1z|2

= 2|α1|2|z2|2 + 2|β1|2|z|2 = 2(|α1|2 + |β1|2) (29)

for all z ∈ S1 . From (29), it follows
max
z∈S1

{|P1(z ; α1 , β1)|2 + |P1(−z ; α1 , β1)|2
}

= 2(|α1|2 + |β1|2) (30)

for any z ∈ S1 and for any choice of α1 , β1 ∈ C
∗ .

Step 3: As Step 2, substituting P1(z ; α1 , β1 , γ1) = α1z
2 −

β1z for Q(z) in (5), we compute

P2(z ; α2 , β2 , γ2 , α1 , β1)
� Φα2β2γ2(P1(z ; α1 , β1))

=
[α2P1(γ2z

2 , α1 , β1) + β2z
−1P1(−γ2z

2 , α1 , β1)]
γ2

=
[α2(α1(γ2z

2)2−β1γ2z
2)+β2z

−1(α1(−γ2z
2)2−β1(−γ2z

2))]
γ2

=
1
γ2

[α1α2γ
2
2z4−α2β1γ2z

2+β2(α1γ
2
2z3+β1γ2z)]

=α1α2γ2z
4 + α1β2γ2z

3 − α2β1z
2 + β1β2z . (31)

for any choices of α2 , β2 , α1 and β1 ∈ C
∗ and γ2 in S1 .
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IV. 16-QAM CODEWORDS OF LENGTH n = 2k HAVING

LOW PMEPR BOUNDS

In this section, we extend the procedure developed in
previous section to construct 16-QAM codewords of length
n = 2k with low PMEPR bounds. Our procedure is proceeded
in the following steps:
Step 1: For k = 2 , as shown in previous section,
we construct polynomial P2 . Then, we define Ω2 (equa-
tion (13)) comprising of all the codewords produced by
P2(z ; α2 , β2 , γ2 , α1 , β1) when the parameters defined by
(9) and (12) are employed. We show that the PMEPR bounds
for all the codewords of Ω2 are bounded above by 3.6 .
Furthermore, we prove that the size of Ω2 is 162×(4×2−1) .
Step 2: For k = l , assume that we have constructed polyno-
mial Pl of degree 2l .

Define the following l sets of the parameters
αl, βl, γl, . . . , α2, β2, γ2, α1, β1 as

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = q(μ, ν)
β1 = q(μ̃, ν̃)
α2 = ξλ1

β2 = ξτ1

γ2 = ξκ1

...
αl = ξλl−1

βl = ξτl−1

γl = ξκl−1

. . . (l)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = ξλ1

β1 = ξτ1

α2 = ξλ2

β2 = ξτ2

γ2 = ξκ1

...
αl−1 = ξλl−1

βl−1 = ξτl−1

γl−1 = ξκl−2

αl = q(μ, ν)
βl = q(μ̃, ν̃)
γl = ξκl−1

(32)

where μ , ν , μ̃ , ν̃ , τ1 , κ1 , λ1 , . . . , τl−1 , κl−1 and λl−1 are
chosen from Z4 . As done in (11), we replace the parameters of
Pl(z ; αl , βl , γl , . . . , α2 , β2 , γ2 , α1 , β1) with (i) of (32)
(1 ≤ i ≤ l) and then define Ωl,i as the set comprising of
all the codewords produced by this polynomial. The set Ωl is
defined as

Ωl =
l⋃

i=1

Ωl,i . (33)

Induction also assumes that the sizes of Ωl,i (1 ≤ i ≤ l) and
Ωl respectively are 162 × 4l−1 and 162 × (4l−1 × l − l + 1) .
Step 3: For k = l+1 , let Pl represent the polynomial of degree
n = 2l constructed in Step 2 . Employing (5), we construct the
polynomial of degree n = 2l+1 as follows:

Pl+1(z ; αl+1 , βl+1 , γl+1 , . . . , α2 , β2 , γ2 , α1 , β1)

=
1

γl+1

[
αl+1Pl(γl+1z

2) + βl+1z
−1Pl(−γl+1z

2)
]
. (34)

Lemma 2: If γi ∈ S1 for all i with 2 ≤ i ≤ l + 1 and |αi| =
|βi| for all i (1 ≤ i ≤ l + 1) but some i0 with 1 ≤ i0 ≤ l + 1 ,
then the polynomial (34) satisfies

max
z∈S1

|Pl+1(z ; αl+1 , βl+1 , γl+1 , . . . , α2 , β2 , γ2 , α1 , β1)|2

≤ 2l+1(|αi0 |2+|βi0 |2)
l+1∏

i=1 , i �=i0

|βi|2 . (35)

The proof of Lemma 2 is contained in Appendix II.

Define the following l + 1 sets of the parameters
αl+1, βl+1, γl+1, . . . , α2, β2, γ2, α1, β1 as

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = q(μ, ν)
β1 = q(μ̃, ν̃)
α2 = ξλ1

β2 = ξτ1

γ2 = ξκ1

...
αl+1 = ξλl

βl+1 = ξτl

γl+1 = ξκl

. . . (l + 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = ξλ1

β1 = ξτ1

α2 = ξλ2

β2 = ξτ2

γ2 = ξκ1

...
αl = ξλl

βl = ξτl

γl = ξκl−1

αl+1 = q(μ̃, ν̃)
βl+1 = q(μ̃, ν̃)
γl+1 = ξκl

(36)

where μ , ν , μ̃ , ν̃ , τ1 , κ1 , λ1 , . . . , τl , κl and λl are
chosen from Z4 . As done in (11), we replace the parame-
ters of Pl+1(z ; αl+1 , βl+1 , γl+1 , . . . , α2 , β2 , γ2 , α1 , β1)
with (i) of (36) (1 ≤ i ≤ l+1) and then define Ωl+1,i as the set
comprising of all the codewords produced by this polynomial.
The set Ωl+1 is defined as

Ωl+1 =
l+1⋃
i=1

Ωl+1,i . (37)

A. PMEPR bounds

We first show that the PMEPR bounds of the codewords in
Ωl+1,1 are bounded above by 3.6 . Recalling (17), we have

|α1|2 + |β1|2 ∈ {3.6 , 2.8 , 2.0 , 1.2 , 0.4} . (38)

Utilizing (35) of Lemma 2 and noticing βi ∈ S1 for all i
(2 ≤ i ≤ l + 1) , we prove

max
z∈S1

|Pl+1(z ; αl+1 , βl+1 , γl+1 , . . . , α2 , β2 , γ2 , α1 , β1)|2

≤ 2l+1(|α1|2+|β1|2)
l+1∏
i=2

|βi|2 ≤ 2l+1 × 3.6 . (39)

Since the codewords of Ωl+1 has length n = 2l+1 , we have
Pav = 2l+1 which yields

PMEPR(c) ≤ 3.6 (40)

for every codeword c ∈ Ωl+1,1 . Utilizing Lemma 2, we can
follow a similar argument to prove (40) for any codeword in
Ωl+1,i (1 ≤ i ≤ l + 1) . Thus, in view of (37), it follows that
equation is valid for any codeword in Ωl+1 .

B. The size of Ωl+1

To estimate the size of Ωl+1, we first need to prove the
following property.

Property 2: The coefficients of the polynomial
Pk(z ; αk , βk , γk , . . . , α2 , β2 , γ2 , α1 , β1) associated
with z2k

and z2k−1 are respectively

f(γk , . . . , γ2)
∏k

i=1 αi h(γk , . . . , γ2)βk

∏k−1
i=1 αi (41)

where f and h both represent products of the powers of γi

(2 ≤ i ≤ k) .
Proof: We proceed our proof through induction.
• For k = 2 , in view of (7), Property 2 is valid for the
coefficients of P2 associated with z4 and z3 .



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1680

• For k = l , assume that the coefficients of
Pl(z ; αl , βl , γl , . . . , α2 , β2 , γ2 , α1 , β1) associated
with z2k

and z2k−1 are respectively

f(γl , . . . , γ2)
∏l

i=1 αi h(γl , . . . , γ2)βl

∏l−1
i=1 αi (42)

where f and h are defined as stated in Property 2 .
• For k = l + 1 , from equation (34), we see that the
coefficients of Pl+1 associated with z2k

and z2k−1 are respec-
tively equal to the leading coefficients of αl+1

γl+1
Pl(γl+1z

2) and
βl+1
γl+1

Pl(−γl+1z
2) . Thus, utilizing the induction assumption

(42) , we compute the coefficients of Pl+1 associated with
z2l+1

and z2l+1−1 respectively as follows:
αl+1
γl+1

γ2l

l+1f(γl, . . . , γ2)
∏l

i=1 αi=f̂(γl+1, . . . , γ2)
∏l+1

i=1 αi

βl+1
γl+1

(−γl+1)2
l

f(γl, . . . , γ2)
∏l

i=1αi=ĥ(γl+1, . . . , γ2)βl+1

∏l
i=1αi

(43)

This completes our proof.
Now, we are ready to estimate the size of Ωl+1. To do that,

we first prove the following property.
Property 3: When the parameters of
Pl+1(z ; αl+1 , βl+1 , γl+1 , . . . , α2 , β2 , γ2 , α1 , β1) are
replaced with the numbers from (i) of (36) (1 ≤ i ≤ l + 1) ,
the sizes of Ωl+1,i and (

⋃l
i=1 Ωl+1,i)

⋂
Ωl+1,l+1 respectively

are 162 × 4l and 162 .
Proof: We proceed with our proof through the following cases.
Case 1: Compute the size of Ωl+1,i (1 ≤ i ≤ l) . In this
case, the set (i) of (36) is selected, which suggests that βl+1

αl+1

belongs to {1 , −1 , j , −j} . In (34), we see that a choice
of {Pl , βl+1

αl+1
} yields a distinct Pl+1 (A similar proof for the

parameters chosen from a BPSK constellation can be found
in [10]) . From the induction assumption of Step 2, there are
162×4l−1 distinct Pl (the size of Ωl,i) which suggests that the
number of codewords in Ωl+1,i is 162 × 4l−1 × 4 = 162 × 4l .
Case 2: Compute the size of Ωl+1,l+1 . In this case, the set
(l+1) of (36) is selected, which implies that all the parameters
but αl+1 and βl+1 are selected from a 4-PSK constellation.
When all the parameters chosen from a 4-PSK constellation,
following the same induction argument of Step 1–Step 3 or
utilizing a similar argument in [10], we can prove that there
are 4l+1 distinct Pl of degree 2l . In addition, a straightforward
argument can show that when the argument of βl+1

αl+1
is not π

2 ,
a choice of {Pl , βl+1 , αl+1} yields a distinct Pl+1 . From
Fig. 1, for each choice of αl+1 , there are 4 choices of βl+1 that
meet this requirement. Thus, there are 4l+1×16×4 = 162×4l

choices of {Pl , βl+1 , αl+1} which yield distinct Pl+1 . The
size of Ωl+1,l+1 is 162 × 4l .
Case 3: Compute the size of (

⋃l
i=1 Ωl+1,i)

⋂
Ωl+1,l+1 . For

any codeword of (
⋃l

i=1 Ωl+1,i)
⋂

Ωl+1,l+1 , we have

Pl+1(z;αl+1, βl+1, γl+1, . . . , α2, β2, γ2, α1 , β1)
= Pl+1(z ; α̃l+1, β̃l+1, γ̃l+1, . . . , α̃2 , β̃2 , γ̃2 , α̃1 , β̃1) (44)

where αi , βi , γi (1 ≤ i ≤ l + 1) are from (t) of (36) (1 ≤
t ≤ l) and α̃i , β̃i , γ̃i (1 ≤ i ≤ l+1) are from (l+1) of (36) .
Equation (44) suggests that the individual summands of these
two polynomials must be equal. In particular, the coefficients
associated with z2l

and z2l−1
must be equal, which, in view

of (41) of Property 2, yields

f(γl+1 , . . . , γ2)
l+1∏
i=1

αi = f(γ̃l+1 , . . . , γ̃2)
l+1∏
i=1

α̃i (45)

h(γl+1, . . . , γ2)βl+1

l∏
i=1

αi = h(γ̃l+1, . . . , γ̃2)β̃l+1

l∏
i=1

α̃i (46)

For these parameters are nonzero, dividing (45) by (46) renders

f(γl+1, . . . , γ2)
∏l+1

i=1 αi

h(γl+1, . . . , γ2)βl+1

∏l
i=1 αi

=
f(γ̃l+1, . . . , γ̃2)

∏l+1
i=1 α̃i

h(γ̃l+1, . . . , γ̃2)β̃l+1

∏l
i=1 α̃i

(47)Simplifying this equation, we obtain
f(γl+1 , . . . , γ2)
h(γl+1 , . . . , γ2)

αl+1

βl+1
=

f(γ̃l+1 , . . . , γ̃2)
h(γ̃l+1 , . . . , γ̃2)

α̃l+1

β̃l+1

(48)

Since parameters γi , γ̃i , αl+1 and βl+1 are all chosen from
a 4 constellation (not from (l + 1) of (36)) , and functions f
and g are products of powers of γi (2 ≤ i ≤ l + 1) , we have

{f(γl+1, . . . , γ2)
h(γl+1, . . . , γ2)

αl+1

βl+1
,
f(γ̃l+1, . . . , γ̃2)
h(γ̃l+1, . . . , γ̃2)

}⊆{1,−1,−j, j} .(49)

Combining (48)–(49), it follows that

α̃l+1 = ξμβ̃l+1 , μ ∈ Z4 . (50)

Clearly, equation (50) is similar to (27). Therefore, an argu-
ment similar to the one for computing the size of Ω2,1

⋂
Ω2,2

proves that the size of (
⋃l

i=1 Ωl+1,i)
⋂

Ωl+1,l+1 is 162 . Thus,
the number of distinct codewords contained in Ωl is at least
162 × 4l × (l + 1) − 162l = 162 × [4l × (l + 1) − l] .

V. CONCLUSION

We present a novel construction of 16-QAM codewords
of length n = 2k . The number of constructed codewords is
162 × [4k−1 × k− k + 1] . When these constructed codewords
are utilized as a code in OFDM systems, their peak-to-mean
envelope power ratios (PMEPR) are bounded above by 3.6 .
The principle of our scheme is illustrated with a four subcarrier
example.

APPENDIX I
PROOF OF LEMMA 1

The proof of Lemma 1: From (5) and γ2 ∈ S1, it follows

|P2(z ; α2, β2, γ2, α1, β1)|2+|P2(−z ; α2, β2, γ2, α1, β1)|2

=
|α2P1(γ2z

2 ; α1, β1)+β2z
−1P1(−γ2z

2 ; α1, β1)|2
|γ2|

+
|α2P1(γ2(−z)2;α1, β1)−β2z

−1P1(−γ2(−z)2; α1, β1)|2
|γ2|

= |α2|2|P1(γ2z
2 ; α1 , β1)|2

+α2P1(γ2z
2 ; α1 , β1)[β2z

−1P1(−γ2z
2 ; α1 , β1)]∗

+[α2P1(γ2z
2 ; α1 , β1)]∗β2z

−1P1(−γ2z
2 ; α1 , β1)

+|β2|2|z−1P1(−γ2z
2;α1, β1)|2+|α2|2|P1(γ2z

2; α1, β1)|2
−α2P1(γ2z

2 ; α1 , β1)[β2z
−1P1(−γ2z

2 ; α1 , β1)]∗

−[α2P1(γ2z
2 ; α1 , β1)]∗β2z

−1P1(−γ2z
2 ; α1 , β1)

+|β2|2|z−1P1(−γ2z
2 ; α1 , β1)|2

=2|α2|2|P1(γ2z
2;α1, β1)|2+2|β2|2|z−1||P1(−γ2z

2;α1, β1)|2.(51)

By requiring |α2| = |β2| , equation (51) becomes

2|β2|2(|P1(γ2z
2; α1, β1)|2+|P1(−γ2z

2; α1, β1)|2) . (52)
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On the other hand, since z ∈ S1 and γ2 ∈ S1 suggest γ2z
2 ∈

S1 , from (29) it follows

|P1(γ2z
2; α1, β1)|2+|P1(−γ2z

2;α1, β1)|2=2(|α1|2+|β1|2) , (53)

∀ z∈S1 . Combining (52) and (53), we prove

|P2(z ; α2, β2, γ2, α1, β1)|2+|P2(−z ; α2, β2, γ2, α1, β1)|2
= 4(|α1|2+|β1|2)|β2|2 (54)

which suggests
max
z∈S1

|P2(z ; α2 , β2 , γ2 , α1 , β1)|2

≤ max
z∈S1

{|P2(z ; α2 , β2 , γ2 , α1 , β1)|2

+|P2(−z ; α2 , β2 , γ2 , α1 , β1)|2
}

= 4(|α1|2 + |β1|2)|β2|2 (55)

APPENDIX II
PROOF OF LEMMA 2

Without loss of generality, we use induction to prove the
case where the parameters are chosen from (1) of (36) .
Step 1: For k = 2, we have proved that when |α2| = |β2| and
γ2 ∈ S1 , equation (54) is valid in Appendix I, i.e.

|P2(z ; α2, β2, γ2, α1, β1)|2+|P2(−z ; α2, β2, γ2, α1, β1)|2
= 4(|α1|2+|β1|2)|β2|2 . (56)

Step 2: For k ≤ l, assume that when |αi| = |βi| and γi ∈ S1

with i ∈ {2 , . . . , l} , we have

|Pl(z; αl, βl, γl, . . . , α2, β2, γ2, α1, β1)|2
+|Pl(−z;αl, βl, γl, . . . , α2, β2, γ2, α1, β1)|2

= 2l(|α1|2+|β1|2)
l∏

i=2

|βi|2 (57)

for z ∈ S1 .
Step 3: For k = l + 1, we compute

|Pl+1(z ; αl+1, βl+1, γl+1, ..., α1, β1)|2
+|Pl+1(−z ; αl+1, βl+1, γl+1, ..., α1, β1)|2

=
|αl+1Pl(γl+1z

2) + βl+1z
−1Pl(−γl+1z

2)|2
|γl+1|

+
|αl+1Pl(γl+1(−z)2)−βl+1z

−1Pl(−γl+1(−z)2)|2
|γl+1|

=
[
αl+1Pl(γl+1z

2) + βl+1z
−1Pl(−γl+1z

2)
]

×[
αl+1Pl(γl+1z

2)+βl+1z
−1Pl(−γl+1z

2)
]∗

+
[
αl+1Pl(γl+1z

2)−βl+1z
−1Pl(−γl+1z

2)
]

×[
αl+1Pl(γl+1z

2)−βl+1z
−1Pl(−γl+1z

2)
]∗

= |αl+1|2|Pl(γl+1z
2)|2

+αl+1Pl(γl+1z
2)[βl+1z

−1Pl(−γl+1z
2)]∗

+βl+1z
−1Pl(−γl+1z

2)[αl+1Pl(γl+1z
2)]∗

+|βl+1z
−1|2|Pl(−γl+1z

2)|2+|αl+1|2|Pl(γl+1z
2)|2

−αl+1Pl(γl+1z
2)[βl+1z

−1Pl(−γl+1z
2)]∗

−βl+1z
−1Pl(−γl+1z

2)[αl+1Pl(γl+1z
2)]∗

+|βl+1z
−1|2|Pl(−γl+1z

2)|2
= 2|αl+1|2|Pl(γl+1z

2)|2+2|βl+1|2|z−1|2|Pl(−γl+1z
2)|2

=2|αl+1|2|Pl(γl+1z
2)|2+2|βl+1|2|Pl(−z2)|2, ∀z∈S1.(58)

for all z ∈ S1 . Since |αl+1| = |βl+1| , the above equation

becomes
2

(|Pl(γl+1z
2)|2 + |Pl(−γl+1z

2)|2) |βl+1|2 . (59)

Noticing that |αi| = |βi| and γi ∈ S1 (i ∈ {2 , . . . , l})
and γl+1z

2 ∈ S1 for any z ∈ S1 , we apply the induction
assumption (57) of Step 2 to (59) and obtain

|Pl(γl+1z
2)|2+|Pl(−γl+1z

2)|2=2l(|α1|2+ |β1|2)
l∏

i=2

|βi|2,∀z ∈ S1 .

(60)
Combining (60) and (59), we prove that

|Pl+1(z ; αl+1, βl+1, γl+1, ..., α1, β1)|2
+|Pl+1(−z ; αl+1, βl+1, γl+1, ..., α1, β1)|2

=2l+1(|α1|2 + |β1|2)
l∏

i=2

|βi|2|βl+1|2

=2l+1(|α1|2 + |β1|2)
l+1∏
i=2

|βi|2 (61)

which renders
max
z∈S1

|Pl+1(z ; αl+1 , βl+1 , γl+1 , α1 , β1)|2

≤ max
z∈S1

{|Pl+1(z ; αl+1 , βl+1 , γl+1 , α1 , β1)|2

+|Pl+1(−z ; αl+1 , βl+1 , γl+1 , α1 , β1)|2
}

≤ 2l+1(|α1|2 + |β1|2)
l+1∏
i=2

|βi|2 (62)

for all z ∈ S1 and the parameters chosen from (1) of (36) .
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