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Traveling wave solutions for the (3+1)-dimensional
breaking soliton equation by (G′

G )-expansion method
and modified F-expansion method
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Abstract—In this paper, using (G′
G

)-expansion method and mod-
ified F-expansion method, we give some explicit formulas of exact
traveling wave solutions for the (3+1)-dimensional breaking soliton
equation. A modified F-expansion method is proposed by taking full
advantages of F-expansion method and Riccati equation in seeking
exact solutions of the equation.
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I. INTRODUCTION

IN many different fields of science and engineering, it
is very important to obtain exact or numerical solutions

of nonlinear partial differential equations. It is well known
that nonlinear phenomena are very important in a variety
of scientific fields, especially in fluid mechanics, solid state
physics, plasma physics, plasma waves and chemical physics.
Searching for exact and numerical solutions, especially for
traveling wave solutions, of nonlinear equations in mathemat-
ical physics plays an important role in soliton theory [1], [2].
Recently many new approaches to nonlinear equations were
proposed, such as the homotopy perturbation method [3], [4],
[5], [6], [7], the variational iteration method [8], [9], [10],
parameter expansion method [11], [12], [13], [14], spectral
collocation method [15], [16], [17], [18], [19], homotopy
analysis method [20], [21], [22], [23], [24], [25], and the Exp-
function method [26], [27], [28], [29], [30], [31]. In this paper,
we solve a (3+1)-dimensional breaking soliton equation by
the (G′

G )-expansion method and modified F-expansion method,
and obtain some exact and new solutions for it.

The(2+1)-dimensional breaking soliton equation has the
following form

uxt − 4uxyux − 2uxxuy − uxxxy = 0, (1)

this equation describes the (2+1)-dimensional interaction of
the Riemann wave propagated along the y-axis with a long
wave propagated along the x-axis [32]. Wazwaz [33] presented
an extension to equation (1) by adding the last three terms
with y replaced by z. By his work, one enables to establish
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the following (3+1)-dimensional breaking soliton equation

uxt − 4 ux (uxy + uxz) − 2 uxx (uy + uz)−

(uxxxy + uxxxz) = 0,
(2)

where u = u(x, y, z, t) : Rx × Ry × Rz × Rt → R.

In this paper, by means of the (G′
G )-expansion method

and modified F-expansion method, we obtain some exact
traveling wave solutions for equation (2).
The outline of this paper is as follows. In the following
section we have a brief review on the (G′

G )-expansion. In
Section III we apply the (G′

G )-expansion method on equation
(2) to obtain some traveling wave solution for the equation.
In Section IV a review on the modified F-expansion method
is presented. We obtain some traveling wave solutions for
equation (2) by the modified F-expansion method in Section
V. The paper is concluded is Section VI.

II. THE (G′
G )-EXPANSION METHOD

Wang et al. [34] proposed the (G′
G )-expansion method to

solve nonlinear partial differential equations, where G = G(ξ)
satisfies a second order linear ordinary differential equation.
In this section we describe the (G′

G )-expansion method to
find traveling wave solutions of nonlinear evolution equations.
Suppose that a nonlinear equation, say in two independent
variables x, t, is given by

P (u, ut, ux, utx, uxx, · · · ) = 0, (3)

where u = u(x, t) and P is a polynomial of u and its
derivatives in which the highest order derivatives and
nonlinear terms are involved. The main steps of the (G′

G )-
expansion method are as follows:

• First. Suppose that

u(x, t) = u(ξ), ξ = x + wt (4)

the traveling wave variable (4) permits us reducing (3) to
an ordinary differential equation (shortly ODE) for u =
u(ξ) such as

P (u, u′, u′′, u′′′, · · · ) = 0, (5)

• Second. Now, we suppose that the solution of (5) can be
expressed by a polynomial in (G′

G ) as

u(ξ) = αm(
G′

G
)m + . . . (6)
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where G = G(ξ) satisfies the second order linear ODE
in the following form

G′′ + λ G′ + μG = 0 (7)

αm, . . . , λ and μ are constants to be determined later,
αm �= 0. The unwritten part in (6) is also a polynomial
in (G′

G ), the degree of which is generally equal to or less
than m − 1. The positive integer m can be determined
by considering the homogeneous balance between the
highest order derivatives and nonlinear terms appearing
in (5).

• Third. Substituting (6) into (5) and using the second
order linear ODE (7), collecting all terms with the
same order of (G′

G ) together, the left-hand side of (5)
is converted into another polynomial in (G′

G ). Equating
each coefficients of this polynomial to zero, yields a set
of algebraic equations for αm, . . . , λ and μ.

• Fourth. Assuming that the constants αm, . . . , λ and μ
can be obtained by solving the algebraic equations in item
Third. Since we know the general solutions of the second
order linear ODE (7), then substituting αm, . . . , w and the
general solutions of (7) into (6) yields the traveling wave
solutions of the nonlinear equation (3).

III. APPLICATION OF THE (G′
G )-EXPANSION METHOD FOR

THE (3+1)-DIMENSIONAL BREAKING SOLITON EQUATION

In this section, we apply the (G′
G )-expansion method to

construct the traveling wave solutions for (3+1)-dimensional
breaking soliton equation

uxt − 4 ux (uxy + uxz) − 2 uxx (uy + uz)−

(uxxxy + uxxxz) = 0.
(8)

Some exact solutions for (8) were presented in [35] by the
three-wave method. To apply the (G′

G )-expansion method on
this equation, we suppose that

u(x, y, z, t) = u(ξ), ξ = kx + my + nz + wt (9)

k, m, n, w are constants that to be determined later.

By substitute eq. (9) into eq. (8), we obtain

w u′′ − 6 k(m + n) u′ u′′ − k2 (m + n)u(4) = 0. (10)

Integrating (10) once, we have

w u′ − 3 k(m + n) (u′)2 − k2 (m + n)u(3) = c (11)

where c is the integration constant that can be determined later.

Suppose that the solutions of the ODE (11) can be expressed
by a polynomial in (G′

G ) as follows:

u(ξ) =
m∑

i=0

ai (
G′

G
)i (12)

where ai are constants, G = G(ξ) satisfies the following
second order linear ODE

G′′ + λ G′ + μG = 0, (13)

where λ and μ are constants.

By balancing the order of (u′)2 and u(3) in eq. (11),
we have 2m + 2 = m + 3 then m = 1. So we can write

u(ξ) = a1 (
G′

G
) + a0 , a1 �= 0 (14)

a1 , a0 are constants to be determined later.

Then it follows:

u′(ξ) = −a1 (
G′

G
)2 − a1 λ (

G′

G
) − a1 μ (15)

u′′ = 2 a1 (
G′

G
)3 + 3a1λ (

G′

G
)2 + a1 (λ2 − 2 μ) (

G′

G
) + λ μ a1

(16)
and

u′′′ = −6 a1 (G′
G )4 − 12 a1 λ (G′

G )3 − a1 (8μ + 7λ2)(G′
G )2

−a1 (λ3 + 8λμ)(G′
G ) − a1(λ2μ + 2μ2).

(17)
Substituting eq. (14) into eq. (11) and collecting all terms with
the same power of (G′

G ) together, equating each coefficient
to zero, yields a set of simultaneous algebraic equations as
follows:

(G′
G )4 : 6 k2m − 3 ka1m − 3 ka1n + 6 k2n = 0

(G′
G )3 : 12 k2nλ − 6 ka1nλ − 6 ka1mλ + 12 k2mλ = 0

(G′
G )2 : −6 ka1mμ − 3 ka1nλ2 − 3 ka1mλ2 − w + 7 k2mλ2

+8 k2mμ − 6 ka1nμ + 8 k2nμ + 7 k2nλ2 = 0

(G′
G )1 : 8 k2mλ μ − 6 ka1mλ μ − 6 ka1nλ μ+

k2mλ3 + k2nλ3 − wλ + 8 k2nλ μ = 0

(G′
G )0 : a1

(−3 ka1mμ2 + k2mλ2μ + k2nλ2μ
)−

a1

(
wμ − 3 ka1nμ2 + 2 k2mμ2 + 2 k2nμ2

)− c = 0.

Solving the above algebraic equations by using Maple,
we get:

a0 = a0, a1 = 2 k, c = 0, w = −(4 k2μ −k2λ2)(m+n) (18)

where k, n,m, a0 are arbitrary constants.
Substituting(18) into eq. (14), we have

u(ξ) = 2k (
G′

G
) + a0 (19)
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where ξ = kx + my + nz − (4 k2μ − k2λ2)(m + n) t.
Substituting the general solutions of eq. (13) into eq. (19),
we obtain:

Case i: When λ2 − 4μ > 0

u1(ξ) = −kλ + k
√

λ2 − 4μ×
(C1 sinh 1

2

√
λ2−4μξ+C2 cosh 1

2

√
λ2−4μξ

C1 cosh 1
2

√
λ2−4μξ+C2 sinh 1

2

√
λ2−4μξ

) + a0

where

ξ = kx + my + nz − (4 k2μ − k2λ2)(m + n) t,

and C1, C2, k, m, n and a0 are arbitrary constants.
In particular, if C1 = 1, C2 = 0, k = m = n = 1, λ = 2, μ =
0, then we have

u(x, y, z, t) = −2 + 2 tanh(x + y + z + 8t) + a0.

Case ii: When λ2 − 4μ < 0

u2(ξ) = −kλ + k
√

4μ − λ2×
(−C1 sin 1

2

√
4μ−λ2ξ+C2 cos 1

2

√
4μ−λ2ξ

C1 cos 1
2

√
4μ−λ2ξ+C2 sin 1

2

√
4μ−λ2ξ

) + a0

where

ξ = kx + my + nz − (4 k2μ − k2λ2)(m + n) t,

and C1, C2, k, m, n, a0 are arbitrary constants.
In particular, if

C1 = 1, C2 = 0, k = m = n = 1, λ = 0, μ = 1,

then we have

u(x, y, z, t) = −2 tanh(x + y + z − 8t) + a0.

Case iii: When λ2 − 4μ = 0

u3(ξ) =
k(2 C2 − C1 λ − C2 λ ξ)

C1 + C2 ξ
+ a0

where

ξ = kx + my + nz − (4 k2μ − k2λ2)(m + n) t,

and C1, C2, k, m, n, a0 are arbitrary constants.
In particular, if

C1 = 1, C2 = 1, k = m = n = 1, λ = 2, μ = 1,

then we have

u(x, y, z, t) =
2

1 + x + y + z
+ a0

IV. THE MODIFIED F-EXPANSION METHOD

We simply describe the modified F -expansion method. To
do this we follow descriptions which has presented in [36].
Consider a given nonlinear partial differential equation with
independent variables x1, x2, . . . , xl, t and dependent variable
u as:

P (u, ut, ux1 , ux2 , · · · , utt, · · · ) = 0, (20)

in general, the function P is a polynomial in u and its various
partial derivatives, which we seek its traveling wave solutions
by taking

u(x1, x2, . . . , xl, t) = u(ξ), ξ = k1(x1+k2 x2+. . .+kl xl+w t)
(21)

where k1, k2, . . . , kl and w are unknown constants to be
determined. Inserting (21) into (20) yields an ODE for u(ξ)
as

P (u, u′, u′′, u′′′, . . .) = 0 (22)

conversely, we suppose that u(ξ) can be expressed as

u(ξ) = a0 +
N∑

i =−N

ai F i(ξ), (aN �= 0) (23)

where a0 and ais are constants to be determined. F (ξ) satisfies
Riccati equation

F ′(ξ) = A + B F (ξ) + C F 2(ξ) (24)

where A,B,C are constants to be determined. Integer N
can be determined by considering the homogeneous balance
between the governing nonlinear term(s) and highest order
derivatives of u(ξ) in (22).
Substituting (23) into (22), and using (24), the left-hand side
of (22) can be converted into a finite series in F p(ξ) for
p = −N, . . . ,−1, 0, 1, . . . , N . Equating each coefficient of
F p(ξ) to zero yields a system of algebraic equations for ai,
i = −N, . . . ,−1, 0, 1, . . . , N , kj , j = 1, . . . , l and w.
Then solving the obtained system of algebraic equations,
with the aid of a symbolic computations like Mathematica
or Maple, ai, kj , w can be expressed by A,B,C or the
coefficients of (22). Finally, by substituting these results
into (23), we can obtain the general form of traveling wave
solutions to (22).
From the general form of traveling wave solutions of equation
(24) listed in Table I, we can give a series of soliton-like
solutions, trigonometric function solutions, and exponential
function solutions to (20); cf. [36].

TABLE I
SOLUTIONS OF EQUATION (24) GIVEN IN [36].

A B C F (ξ)

0 1 -1 1
2 + 1

2 tanh( ξ
2 )

0 -1 1 1
2 − 1

2 coth( ξ
2 )

1
2 0 − 1

2 coth(ξ) ± csch(ξ), tanh(ξ) ± isech(ξ)
1 0 -1 tanh(ξ),coth(ξ)
1
2 0 1

2 sec(ξ) + tan(ξ), csc(ξ) − cot(ξ)

− 1
2 0 − 1

2 sec(ξ) − tan(ξ), csc(ξ) + cot(ξ)
1(-1) 0 1(-1) tan(ξ),cot(ξ)
0 0 �= 0 − 1

C ξ+m
(m is arbitrary constant)

arbitrary constant 0 0 A ξ

arbitrary constant �= 0 0
exp(B)−A

B
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V. NEW EXACT SOLUTIONS TO THE (3+1)-DIMENSIONAL

BREAKING SOLITON EQUATION BY THE MODIFIED

F-EXPANSION METHOD

In this section, we apply the F-expansion method to con-
struct the traveling wave solutions for the mentioned (3+1)-
dimensional breaking soliton equation, that is,

uxt − 4 ux (uxy + uxz) − 2 uxx (uy + uz)−
(uxxxy + uxxxz) = 0,

(25)

we suppose that

u(x, y, z, t) = u(ξ), ξ = k(x + my + nz + wt) (26)

k, m, n, w are constants that to be determined later. By sub-
stituting eq. (26) into eq. (25), we obtain

w u′′ − 6 k(m + n) u′ u′′ − k2 (m + n)u(4) = 0. (27)

By balancing the order of u′ u′′ and u(4) in eq. (27), we have
2N + 3 = N + 4 then N = 1. So we can write

u(ξ) = a0 + a−1 F−1(ξ) + a1 F (ξ) (28)

a0 , a1 , a−1 are constants to be determined later. Sub-
stituting (28) into (27), and using (24), the left-hand
side of (27) can be converted into a finite series in
F p(ξ), for p = −5, . . . ,−1, 0, 1, . . . , 5. Equating each
coefficient of F p(ξ) to zero yields a system of algebraic
equations for a−1, a0, a1,m, n,w. In fact, we have

F 5 : −12 kma1
2C3 + 24 k2na1C

4 − 12 kna1
2C3+

24 k2ma1C
4

F 4 : 60 k2na1C
3B − 30 kma1

2BC2 + 60 k2ma1C
3B−

30 kna1
2BC2

F 3 : −24 kma1
2B2C − 24 kna1

2B2C + 50 k2na1C
2B2+

2 wa1C
2 − 24 kna1

2AC2 + 50 k2ma1C
2B2−

24 kma1
2AC2 + 40 k2na1C

3A + 12 kna1a−1C
3+

40 k2ma1C
3A + 12 kma1a−1C

3

F 2 : 60 k2ma1C
2AB − 36 kna1

2ABC + 3 wa1BC+
24 kna1a−1BC2 − 36 kma1

2ABC+
24 kma1a−1BC2+
60 k2na1C

2AB + 15 k2ma1CB3 + 15 k2na1CB3−
6 kma1

2B3 − 6 kna1
2B3

F 1 : k2na1B
4 + 12 kma1a−1B

2C + k2ma1B
4+

22 k2na1CB2A + 2 wa1CA + 12 kna1a−1B
2C+

16 k2na1C
2A2 − 12 kma1

2AB2 + 16 k2ma1C
2A2+

12 kna1a−1AC2 − 12 kna1
2A2C + wa1B

2

+22 k2ma1CB2A − 12 kma1
2A2C+

12 kma1a−1AC2 − 12 kna1
2AB2

F 0 : 6 kma−1
2BC2 + wa−1BC + k2ma1B

3A+
8 k2ma1BCA2 + k2ma−1B

3C + 8 k2ma−1ABC2+
8 k2na1BCA2 + 6 kna−1

2BC2 − 6 kma1
2A2B

+wa1BA − 6 kna1
2A2B + 8 k2na−1ABC2+

k2na1B
3A + k2na−1B

3C

F−1 : −12 kna1a−1A
2C + 12 kna−1

2B2C−
12 kma1a−1AB2 + k2ma−1B

4 − 12 kma1a−1A
2C+

12 kma2
−1AC2 − 12 kna1a−1AB2 + wa−1B

2+
22 k2ma−1AB2C + 12 kna2

−1AC2+
12 kma2

−1B
2C + 16 k2ma−1A

2C2 + k2na−1B
4+

22 k2na−1AB2C + 16 k2na−1A
2C2 + 2 wa−1AC

F−2 : −24 kna1a−1A
2B − 24 kma1a−1A

2B+
15 k2na−1AB3 + 3 wa−1AB + 15 k2ma−1AB3+
60 k2na−1A

2BC + 60 k2ma−1A
2BC+

36 kma2
−1ABC + 6 kma2

−1B
3 + 6 kna2

−1B
3+

36 kna2
−1ABC

F−3 : 50 k2ma−1A
2B2 + 24 kma2

−1AB2 + 24 kna2
−1AB2+

40 k2ma−1A
3C − 12 kna1a−1A

3 + 24 kna2
−1A

2C−
12 kma1a−1A

3 + 2 wa−1A
2 + 50 k2na−1A

2B2+
24 kma2

−1A
2C + 40 k2na−1A

3C

F−4 : 60 k2ma−1A
3B + 60 k2na−1A

3B+
30 kma−1

2A2B + 30 kna2
−1A

2B

F−5 : 12 kna2
−1A

3 + 24 k2ma−1A
4 + 12 kma2

−1A
3+

24 k2na−1A
4.

Solving the obtained algebraic equations by using Maple,
we have the following solutions:

Case 1: when A = 0, we have

a0 = a0, a−1 = 0, a1 = 2 C k,m = m,
n = n, w = −k2B2 (n + m) (29)

Case 2: when B = 0, we have

a0 = a0, a−1 = −2 kA, a1 = 2 kC,m = m,
n = n, w = 16 k2AC(m + n)

a0 = a0, a−1 = −2 kA, a1 = 0,m = m,
n = n, w = 4 k2AC(m + n)

(30)

Case 3: when A = B = 0, we have

a0 = a0, a−1 = − w
6Ck(m+n) , a1 = 2C k,

m = m,n = n, w = w
(31)

A. The soliton-like solutions:

1) When A = 0, B = 1, C = −1, from Table I and Case 1,
we have

u1 = a0 − k − k tanh[
1
2
k(x + my + nz − k2 (n + m) t)]
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2) When A = 0, B = −1, C = 1, from Table I and
Case 1, we have

u2 = a0 + k − k coth[
1
2
k(x + my + nz − k2 (n + m) t)]

3) When A = 1
2 , B = 0, C = − 1

2 , from Table I and
Case 2, we have

u3 = a0 − k coth[k(x + my + nz − k2 (n + m) t)]

∓kcsch[k(x + my + nz − k2 (n + m) t)]

u4 = a0 − k tanh[k(x + my + nz − k2 (n + m) t)]

∓k i sech[k(x + my + nz − k2 (n + m) t)]

4) When A = 1, B = 0, C = 1, from Table I and
Case 2, we have

u5 = a0 + 2k tanh[k(x + my + nz + 16k2 (n + m) t)]

−2k coth[k(x + my + nz + 16k2 (n + m) t)]

B. The trigonometric function solutions:

1) When A = C = 1
2 , B = 0, from Table I and Case 2, we

have
u6 = a0 + k sec[k(x + my + nz + k2 (n + m) t)]

+k tan[k(x + my + nz + k2 (n + m) t)]

u7 = a0 + k csc[k(x + my + nz + k2 (n + m) t)]

−k i cot[k(x + my + nz + k2 (n + m) t)]

2) When A = C = − 1
2 , B = 0, from Table I and

Case 2, we have

u8 = a0 − k sec[k(x + my + nz + k2 (n + m) t)]

+k tan[k(x + my + nz + k2 (n + m) t)]

u9 = a0 − k csc[k(x + my + nz + k2 (n + m) t)]

−k i cot[k(x + my + nz + k2 (n + m) t)]

C. The rational solution:

When A = B = 0, C �= 0, from Table I and Case 3, we
have

u10 = a0 + w
6Ck(m+n) [Ck(x + my + nz + wt) + m]−

2Ck
Ck(x+my+nz+wt)+m

VI. CONCLUSIONS

In this paper, by means of the (G′
G )-expansion method

and modified F-expansion method, some exact traveling wave
solutions for the (3+1)-dimensional breaking soliton equation
are obtained. These methods are very simple and with the aid
of a symbolic computation like Maple or Mathematica are easy
and straightforward methods which can be applied to other
nonlinear partial differential equations. It must be noted that,
all obtained solutions have checked in the (3+1)-dimensional
breaking soliton equation. All solutions satisfy in the equation.
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