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On the Fast Convergence of DD-LMS DFE
using a good strategy initialization

Y.Ben Jemâa and M.Jaidane

Abstract—In wireless communication system, a Decision Feed-
back Equalizer (DFE) to cancel the intersymbol interference (ISI) is
required. In this paper, an exact convergence analysis of the (DFE)
adapted by the Least Mean Square (LMS) algorithm during the train-
ing phase is derived by taking into account the finite alphabet context
of data transmission. This allows us to determine the shortest training
sequence that allows to reach a given Mean Square Error (MSE).
With the intention of avoiding the problem of ill-convergence, the
paper proposes an initialization strategy for the blind decision directed
(DD) algorithm. This then yields a semi-blind DFE with high speed
and good convergence.

Keywords—Adaptive Decision Feedback Equalizer, Performance
Analysis, Finite Alphabet Case, Ill-Convergence, Convergence speed.

I. INTRODUCTION

W Ireless communications systems support a wide range
of high-quality services that require high transmission

rates. However, the propagation characteristics of wireless
communication channels make it difficult to achieve high
speed data transmission at low error rates because of the
presence of ISI. To combat the effect of ISI, the classical
technique of adaptive equalization is often suggested as a
possible method.
In this paper we analyze Decision Feedback Equalizers that are
usually considered as a good compromise between complexity
and performance [8][4]. The European wireless local-area-
network system (HIPERLAN) is a typical example of high
speed wireless communication application that adopts DFE to
overcome the adverse effect of multipath ISI [16].
However, the functioning of the DFE equalizer is in general
disturbed by the problem of ill-convergence preventing a
correct equalization of the channel[11]. This situation can
be solved by using a training sequence. Indeed, in wireless
communications cellular systems (GSM or UMTS), a short
training sequence is included in each transmitted frame in or-
der to help the equalizer to improve its tracking capability. The
training sequence is employed in order to adapt the equalizer
weights into an opened-eye condition using the LMS adaptive
algorithm. Then the equalizer is changed to the DD mode, in
which the effective information is transmitted. In order to have
high convergence speed, the length of the training sequence
must be minimized. In this paper, we determine the algorithm
parameters that give the shortest training sequence and ensure
a good equalization.
For this purpose, performance analysis of the DFE equalizer
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must be developed. In this paper, we propose a new ap-
proach using mathematical tools allowing an exact analysis
of adaptive equalizers in the finite alphabet case [6]. In
particular, an exact convergence analysis of the DFE equalizer
during the training phase is deduced without any constraining
or unrealistic hypothesis. Using this exact analysis, we can
deduce quantitative and qualitative results for DFE design. In
particular, we propose a good convergence strategy of the DFE
equalizer after a very short training sequence.
In order to assess such results, this paper is organized as
follows: in section 2, we describe the system model and the
DFE equalizer. In section 3, we present an exact analysis
approach tailored for digital transmission context. We use this
approach to give an exact convergence analysis of the DFE
equalizer during the training phase. In section 4, we study
the problem of local minima and ill-convergence in order to
analyze different behavior of the DFE which is be done in
section 5. In fact, in this section, two situations are analyzed:
− when local minima of the error surface are not attainable, we
determine the shortest training sequence that allows to reach
a fixed bit error rate (BER).
− when local minima are reachable, we propose a good
initialization guidelines that ensure desirable convergence after
a very short training sequence.

II. PROBLEM FORMULATION AND GENERAL HYPOTHESIS

We consider a data transmission system over a transversal
channel and a DFE equalizer as depicted in figure 1. The
channel is assumed to be invariant during the transmission and
it is characterized by its impulse response F = [f1, ..., fL−1].
The received baseband signal sampled at the symbol rate at
time n is:

cn = an +
L−1∑
k=1

fkan−k + bn −
L−1∑
k=1

hkân−k (1)

Where L is the channel constraint length, {an} is the trans-
mitted data which remain to a finite alphabet set (for example
{±1}, {±1,±j}) depending on the modulation, {ân} is
the received data after decision (ân = sign(cn)), Hn =
[h1, ..., hL−1] is the parameter vector of the DFE equalizer
and bn is the additive noise assumed to be zero-mean noise
independent of an with variance σ2

b .
The adaptation of the DFE equalizer is assured by the

Decision Directed (DD) algorithm [15]. During the training
sequence we have :⎧⎨

⎩
cn = an + FT An + bn − HT

n An

en = cn − an

Hn+1 = Hn + μenA∗
n

(2)
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Fig. 1. The transmission system including a Decision Feedback Equalizer

where en is the decision error, An = [an−1, ..., an−L+1]T and
μ is a positive step size of the (DD) algorithm.
The DFE is described by the mean behavior and the evolution
of the covariance of the deviation vector Vn = Hn−F . So, the
DFE behavior can be described by the following recursions:

E(Vn+1) = E((I − μA∗
nAT

n )Vn)
E(Vn+1V

H
n+1) = μ2σ2

bE(A∗
nAT

n )+
E((I − μA∗

nAT
n )VnV H

n (I − μA∗
nAT

n )H)
(3)

Since An and Vn are dependent, it is difficult to solve equation
(3) [1] [2] [3]. To overcome this problem, we here propose to
apply an original approach based on the finite alphabet input
[6] [7][13].

III. ANALYSIS OF THE DFE : AN EXACT APPROACH

A. The finite alphabet approach formulation

In digital transmission context, the input signal an remains
in a finite alphabet set such as QAM signal... Consequently,
the observation vector An remains also in a finite alphabet
set A = {W1,W2, ..., WN} with cardinality N . For example

N = 4 and A =
{(

1
1

)
,

(
1
−1

)
,

(−1
−1

)
,

(−1
1

)}
if L = 1 and

an is a BPSK signal {±1}. Since An is stationary, it can be
modeled by a discrete-time Markov chain {θ(n)} with finite
state space {1, 2, ..., N}[14]:

An = Wθ(n)

This Markov chain is characterized by its probability transition
matrix P = [Pij ] and its stationary probability vector π∞.
The finite alphabet approach consists, since there is N possi-
bilities of Wθ(n), in splitting the vector E(Vn) and the matrix
E(VnV H

n ) in N components defined by :

qj(n) = E(Vn1θ(n)=j)
Qj(n) = E(VnV H

n 1θ(n)=j)

respectively where 1θ(n)=j is the indicator function. So, we
have:

E(Vn) =
N∑

j=1

qj(n)

E(VnV H
n ) =

N∑
i=1

Qj(n)

(4)

The system is governed by the following recursions :

qj(n + 1) =
N∑

i=1

E(Vn+11θ(n+1)=j1θ(n)=i)

Qj(n + 1) =
N∑

i=1

E(Vn+1V
H
n+11θ(n+1)=j1θ(n)=i)

According to (3), we have :

qj(n + 1) =
N∑

i=1

E(MnVn1θ(n+1)=j1θ(n)=i)

Qj(n + 1) = μ2σ2
b

N∑
i=1

E(A∗
nAT

n1θ(n+1)=j1θ(n)=i)+

N∑
i=1

E(MnVnV H
n MH

n 1θ(n+1)=j1θ(n)=i)

Where Mn = (I − μA∗
nAT

n )
Since An remains in a finite alphabet set, Mn remains also
in a finite alphabet set {Mi = I − μW ∗

i WT
i }, and then we

obtain:

qj(n + 1) =
N∑

i=1

MiE(Vn1θ(n+1)=j1θ(n)=i)

Qj(n + 1) = μ2σ2
b

N∑
i=1

W ∗
i WT

i E(1θ(n+1)=j1θ(n)=i)+

N∑
i=1

MiE(VnV H
n 1θ(n+1)=j1θ(n)=i)MH

i

Since the input is caracterized by a Markov chain, we have :

E(Vn1θ(n+1)=j1θ(n)=i) = PijE(Vn1θ(n)=i) = Pijqi(n)

E(VnV H
n 1θ(n+1)=j1θ(n)=i) = PijE(VnV H

n 1θ(n)=i) = PijQi(n)

E(1θ(n+1)=j1θ(n)=i) = Pijπ∞

Hence,

qj(n + 1) =
N∑

i=1

(I − μW ∗
i WT

i )qi(n)Pij

Qj(n + 1) =
N∑

i=1

(MiQi(n)MH
i Pij) + Zj

(5)

With Zj = μ2σ2
b

N∑
i=1

W ∗
i WT

i Pijπ∞.

In order to rewrite (5) in linear form, we introduce the useful
notations :

q̃(n) = [q1(n)T , q2(n)T , ..., qN (n)T ]T

Q̃(n) = [vec(Q1(n))T , vec(Q2(n))T , ..., vec(QN (n))T ]T

Z̃(n) = [vec(Z1)T , vec(Z2)T , ..., vec(ZN )T ]T

Where vec(.) is the operator that transforms matrix (m, n) in
vector of length mn.
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Referring to [12] in order to use Kronecker product, the
compact formulae is:

q̃(n + 1) = Λq̃(n)
Q̃(n + 1) = ΓQ̃(n) + Z̃

(6)

Where
Λ = (PT ⊗ I)diag(I − μW ∗

i WT
i )

Γ = (PT ⊗ I)diag((I − μW ∗
i WT

i ) ⊗ (I − μW ∗
i WT

i ))
(7)

Γ and Λ contain all relevant informations about the DFE in
the training phase.
Since these matrices are constants and depend only on the step
size and statistical properties of the input signal, performances
of the algorithm depend only on eigenvalues of these matrices.

B. Transient analysis
According to equation (6), the exact transient behavior of

the DFE during the training phase is characterized by :

q̃(n) = Λnq̃(0)
Q̃(n) = ΓnQ̃(0) + (Γ − I)−1(Γn − I)Z̃

(8)

We can then determine exactly :
• The critical step size μc defined as the step from which

the algorithm diverges. This is found when Γ has an
eigenvalue λ higher than 1. So, we can determine μc

as follows :

μc = arg(λmax(μ) = 1)

• The optimal step size μopt defined as the step that gives
the maximal speed convergence then the shortest training
sequence. this is found when Γ has all eigenvalues small.
So, we can determine μopt as follows :

μopt = arg(min(λmax(μ)))

The quantity λmax(μopt) fixes the speed of convergence.
Simulation results

For simplicity, we consider in this simulation :
• A BPSK constellation {±1} characterized by the follow-

ing transition matrix:

p =
[

0.7 0.3
0.3 0.7

]
It is important to note that the input sequence is corre-
lated.

• A noise with power equal to unit.
• A non minimum phase channel with order 2.

In this case μc = 0.98 and μopt = 0.5. These values are
exactly determined from figure 2.

IV. DESIGN OF DFE WITH SHORT TRAINING SEQUENCE

In this section, we propose to design an optimal DFE
equalizer :

• DFE with short training sequence in order to speed up
the convergence, this is assured by a good choice of the
algorithm parameters (step size...).

• DFE that Converges to global minima. In fact, the prob-
lem of ill-convergence can be avoided by using a good
strategy initialization of the DFE parameters.
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Fig. 2. Largest eigenvalue of Γ versus step size μ

A. Polytopes and local minima

In the context of channel equalization in the presence of
finite alphabet signals, criteria of optimization applied to the
DFEs, present a multimodal error surface, having several
minima [5]. Among them, we distinguich, on the one hand,
the global minimum corresponding to the desired minimum
and, on the other hand, the local minima (undesirable minima)
preventing the convergence of the algorithm.
The cost function error surfaces are obtained by concatenating
polytopes which are related to the partition of the space of the
parameter vector Hn. The interest of this partition is that each
polytope cannot present more than one convergence point.
In the case of a quadratic criterion, these surfaces are piecewise
quadratic and two situations can occur :

• Case 1 : error surface without local minima (figure 3):
when these parabolas can present minima that do not
belong to the associated polytopes, minima are said to
be not attainables.
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Fig. 3. Error surface of DD cost function for a first order equalizer and a
minimum phase channel

• Case 2 : error surface with local minima (figure 4):
when these parabolas present minima that belong to the
associated polytopes, it is the worst case because minima
are attainables.

Some kinds of models are used in order to describe channel
behaviors, among them a statistical model using Markov chain
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Fig. 4. Error surface of DD cost function for a first order equalizer and a
non minimum phase channel

to describe transition from state to state related to the channel
impulse response variations. The transition matrix depends on
the transmission medium.
For example, to describe Land Mobile Satellite channel, we
can consider three state Markov chain tries to account for dif-
ferent shadowing events. Each three possible channel impulse
response are of order 2 [9].

B. Minimal length of the training sequence

In case 1, when the minima are not attainables , there is no
problem of ill-convergence. So, we can determine the shortest
training sequence that allows to reach a fixed BER = BER0.
It is important to note that there is a relationship between
BER and MSE, so if the BER is fixed the MSE is also
fixed [8][10].
Both the training sequence and the MSE depend on Γ,
consequently, they depend on the alphabet, the step size and
the transition matrix P .
From(2), we can deduce the MSE at the iteration k (Appendix
A) as follows:

MSE(k) = σ2
b +

N∑
i=1

WH
i ⊗ WT

i vec(Qi(k)) (9)

The goal here is to determine the smallest value of k such as
MSE(k) = MSE0.
For simplicity, let us consider a particular equalization scheme
with filter length L = 1 and i.i.d inputs belonging to a fixed
alphabet which remains in {±1}. The noise is with variance
σ2

b equal to 1.
According to (7), Γ in this case is equal to :

Γ = (1 − μ)2
[

1/2 1/2
1/2 1/2

]

and Z̃ =
μ2

2
[1, 1]T .

We must firstly determine μ such as MSE = MSE0.
If we introduce the quantity Excess MSE (EMSE) defined
as :

EMSE =
MSE − σ2

b

σ2
b

According to (8) and (9), at the iteration k EMSE is equal
to:

EMSE(k) =
−μ

μ − 2
+ (1 − μ)2k((a + b) +

μ

μ − 2
)

Where a and b are the components of the vector Q̃(0).
If we fixe MSE = MSE0, we have then :

EMSE0 +
μ

μ − 2

(a + b) +
μ

μ − 2

= (1 − μ)2k

We deduce k as a function of μ:

k =
Ln(

(μ − 2)EMSE + μ

(μ − 2)(a + b) + μ
)

Ln((1 − μ)2)

With Ln(.) is the nuperian logarithm function.
The quantity k can be minimized and the smallest value is
exactly the length of the training sequence nf which can be
determined as follows :

nf = minμ∈[0,2](k(μ))

The step size μ0 that gives the shortest training sequence is
then :

μ0 = arg(min(k(μ)))

Simulation result
We want to design a DFE which gives at the end of the training
sequence EMSE0 = 0.1, we suppose Q̃(0) = [−10, 100].
According to the last study, this is possible if we choose
μ = 0.165 and the length of the shortest training sequence
is equal to 26. In figure (5), perfect agreement between
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Fig. 5. EMSE versus time

simulation and theoretical results illustrates the exactness of
the new approach.
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C. Initialization Strategy for DFE equalizer

1) Formulation of the problem: To avoid the ill-
convergence (convergence to undesired minima) of the DFE,
the DFE parameters must belong to regions (said polytopes
P) corresponding to correct decisions. The width of this
polytope is not related to the adaptation. When the cardinality
of the alphabet and the lengths of the equalizer and the
channel increase, the polytope of correct decision becomes
more narrow.
Note that for a good initialization, only a general a priori
knowledge of the good polytope is needed.
Blind algorithms are developed with a general a priori knowl-
edge of the input data structure. Due to the fact that in finite
alphabet case we can analyze precisely the transient behavior
of the DFE during the training phase, the main idea here is to
propose the following initialization strategy with a general a
priori knowledge of the channel allowing a good convergence
to the global minima.

• First, after a short training sequence with imposed length
nf (some ten iterations) we determine an initialization domain
which ensures that the equalizer parameter Hn enters in the
mean sense, in the polytope corresponding to correct decisions.
Note that the exact convergence to the minimum of the
polytope is not needed, so it is possible to shorten the length
of the training sequence. When nf is small and the a priori
knowledge on the channel is poor, this initialization domain
is limited.

• Secondly, when the equalizer enters in the good polytope,
the adaptation must verify that the equalizer remains in this
polytope. This more restrictive condition is related to the a
priori knowledge of the noise power on the channel. Higher is
the noise power, more restrictive is the adaptation step domain.
Exact analytical results can be deduced from equation (7). The
size of the matrices increases drastically with the length of the
equalizer and the cardinality of the data. However, numerical
but exact conclusions can be deduced. We assign the following
conditions:

E(Hnf
) ∈ P

E(|Hnf
− E(Hnf

)|2) <
1
α

distance(E(Hnf
),H)

(10)

where α > 1 is a coefficient that limits the variations ampli-
tude of Hn inside the polytope, H is the limiting hyperplanes
of P .
Note that in this analysis, we doesn’t consider the trivial
case where an adequate choice of the step size leads to a
convergence in one iteration.

2) Practical case: In order to illustrate the idea, the case
of an equalizer of length 1 and an alphabet {±1} with
the transition matrix P such as pij = 1/2, is considered.
We demonstrate in appendix B that the polytope of correct
decision is then I = [−1 + F, 1 + F ]. Consequently, H must
be in [−1+F, 1+F ] in order to eliminate the ill-convergence
problem and equation(10) becomes :

−1 + F < E(Hnf
) < 1 + F

E(|Hnf
− E(Hnf

)|2) <
1
α

min(1 + F − E(Hnf
), 1 − F + E(Hnf

))
(11)

If the a priori knowledge on the channel is f1 < F < f2,
we prove in appendix C that the initial value of the equalizer
parameter H0 must lie in a domain D defined by :⎧⎪⎨

⎪⎩
[f2 − 1

|(1 − μ)|nf
, f1 +

1
|(1 − μ)|nf

]

1 − (
2

(f2 − f1)
)1/nf < μ < μ′

μ′ depends on equation (10), here μ′ = 2.
In order to enter in the good polytope in the mean sense. A
choice of the initial value of the equalizer parameters in this
domain eliminates the ill-convergence problem (in the mean
sense).
Simulation results
For example, if we suppose that −5 < F < 5 and we impose
nf = 16, we must choose 0.1 < μ < 2 (see figure 6). If we

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−30

−20

−10

0

10

20

30

step size

D
om

ai
n 

of
 in

iti
al

 c
on

di
tio

ns

Fig. 6. The domain D of initial conditions allowing a correct convergence
for all step size value

fixe μ = 0.2 then we obtain −30 < H0 < 30. We represent
in figure 7, the evolution of the equalizer parameters for two
cases : good initialization when H0 belongs to D and bad
initialization when H0 is not in D.
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Fig. 7. evolution of the DFE Parameter versus time when it is goodly
initialized (continuous line) and not goodly initialized (discontinuous line)
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The equalizer with very short training sequence (nf = 16)
gives surely a correct decision (in the mean sense) in the blind
mode if the equalizer initialization is in the domain D.

V. CONCLUSION

The design of semi-blind decision feedback equalizer with
short training sequence is developed through an exact conver-
gence analysis during the training phase. This study is possible
because the input sequence belongs to a finite alphabet set.
We calculate the shortest training sequence that allows to
reach a given MSE and we propose a convergence strategy
for the blind decision directed (DD) algorithm that avoid ill-
convergence of the DFE.

Appendix A
The goal is the calculus of MSE at the iteration k.
The error ek is defined as :

ek = FT Ak + bk − HT
k Ak (12)

So,
MSE(k) = E(| − V T

k Ak + bk|2) (13)

Since the noise bk is assumed to be zero-mean, iid and
independent of Ak, we have:

MSE(k) = σ2
b + E((V T

k Ak)2) (14)

Since Ak belongs to a finite alphabet set, we have:

MSE(k) = σ2
b +

N∑
i=1

E(AT
k VkV H

k A∗
k1θ(k)=i)

= σ2
b +

N∑
i=1

WT
i Qi(k)W ∗

i

Using the tensor algebra properties [12] (vec(A.B.C) =
(CT ⊗ A)vec(B)), we have :

MSE(k) = σ2
b +

N∑
i=1

WH
i ⊗ WT

i vec(Qi(k)) (15)

Appendix B
The goal is the determination of the polytope I corresponding
to the correct decision. This polytope must verify :

a(n) = â(n)

Where â(n) is the received symbol at iteration n after decision
(â(n) = sign(cn))
Because â(n) = sign(a(n) + Fa(n − 1) − Hâ(n − 1)), we
obtain:

a(n) = sign(a(n) + Fa(n − 1) − Hâ(n − 1))

This is possible only when :

|Fa(n − 1) − Hâ(n − 1)| < |a(n)|
Since an ∈ {±1}, we have |a(n)| = 1, so :

−1 + F < H < 1 + F

Appendix C
The goal is to determine the initialization domain of the
equalizer that eliminates the ill-convergence problem.
According to equation (8), we have :

q̃(n) = Λnq̃(0)

=
1
2
(1 − μ)n

[
1 1
1 1

]
q̃(0)

(16)

If we denote respectively c and d the components of vector
q̃(0), we have referring to equation (4) :

E(Hn) = (c + d)(1 − μ)n + F (17)

Since E(H0) = (c + d) + F , we can deduce from equation
(11), the domain D of initial conditions :

F − 1
|1 − μ|nf

< E(H0) < F +
1

|1 − μ|nf
(18)

If the a priori knowledge on the channel is f1 < F < f2,
equalizer parameter H0 must lie in a domain D defined by :⎧⎪⎨

⎪⎩
[f2 − 1

|(1 − μ)|nf
, f1 +

1
|(1 − μ)|nf

]

1 − (
2

(f2 − f1)
)1/nf < μ < μ′
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