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Abstract—A robot simulator was developed to measure and 

investigate the performance of a robot navigation system based on 
the relative position of the robot with respect to random obstacles in 
any two dimensional environment. The presented simulator focuses 
on investigating the ability of a fuzzy-neural system for object 
avoidance. A navigation algorithm is proposed and used to allow 
random navigation of a robot among obstacles when the robot faces 
an obstacle in the environment. The main features of this simulator 
can be used for evaluating the performance of any system that can 
provide the position of the robot with respect to obstacles in the 
environment. This allows a robot developer to investigate and 
analyze the performance of a robot without implementing the 
physical robot. 
 

Keywords—Applications of Fuzzy Logic and Neural Networks 
in Robotics, Artificial Intelligence, Embedded Systems, Mobile 
Robots, Robot Navigation, Robotics. 

I. INTRODUCTION 
HE field of mobile robotics has received considerable 
attention from researchers during the past two decades. 

Many methods have been proposed and implemented for robot 
navigation in various environments [1], and many robot 
competitions at various experience levels are held that are 
based on path finding and target identification [2], [3]. One 
robotic system configuration that has received special 
attention from researchers is where a neural-fuzzy or fuzzy-
neural system is used to guide a mobile robot [4], [5]. In these 
systems, the data collected about the environment by electro-
mechanical sensors is fed into a fuzzy-logic or neural-network 
system. After the raw data is normalized and fed into the 
fuzzy-logic (or neural-network) system for pre-processing, the 
output will be used as input to the second system, the neural-
network (or fuzzy-logic), for some form of decision making.  

 Actual implementation of these or other methods in real 
robots is expensive, time consuming, and in the case of 
negative results, wasteful. It is important that a proposed 
method is simulated to measure its success before the actual 
investment in developing the system is made. A simulator for 
a mobile robot must be capable of simulating within various 
environments, emulating the electromechanical sensors, and 
moving the robot in specific paths, among other features. The 
simulator proposed and implemented in this article addresses 
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many of these characteristics.  
 One important parameter for a robot to make the right 

decision regarding the next course of action is the knowledge 
of the relative position of the robot with respect to random 
obstacles in the environment, in order to avoid them or 
identify a target. An obstacle in this context is defined as 
anything that may inhibit the intended actions of the mobile 
robot. In order to measure the degree of the success in such 
cases, a simulator capable of accepting the inputs, generating 
the outputs, and verifying that the generated output is good 
(for identifying the relative location of obstacles and avoiding 
them) is needed. The developed simulator has been 
implemented with a system consisting of a fuzzy-logic layer 
followed by a neural-network layer. The main focus of this 
article is on the development and features of the simulator and 
not the fuzzy-neural system, which has to be discussed and 
dealt with separately, although the general framework is 
presented to clearly exemplify the features of the simulator. 
The data presented to the simulator about the position of the 
robot with respect to obstacles can be from the given sample 
system in this article or any other method used for this 
purpose. This may require some modification to the simulator 
as the presented simulator also integrates the fuzzy-neural 
features of the system. The features and the problems faced 
and solved that are discussed in this article can be used as 
guidelines for developing similar simulators for evaluating the 
performance of similarly designed systems. 

II. SAMPLE SYSTEM UNDER INVESTIGATION 
Fig. 1 is the general model of a fuzzy-neural system 

proposed by the authors for which the simulator was 
developed. Fig. 2 shows the membership function used for the 
Fuzzy-Logic section. The inputs to fuzzy section are the 
analog outputs of the robot’s sensors which will be 
preprocessed by the fuzzy-logic and ultimately fed into the 
neural-network. The system used in this simulator accepts 
inputs from three distance sensors, in cm. One sensor is placed 
such that it faces 90º counterclockwise from the front of the 
robot; the second sensor faces directly forward; and the third 
sensor faces 90º clockwise from the front of the robot. In 
general, the number and type of sensors are not restricted to 
what is used in this article as an example. Table I shows the 
state format, state names, and description of every possible 
scenario that this robot with three distance sensors can be in. 
Fig. 3 is a visual representation of the information in Table I. 
The output of the neural network can be either binary values 
or an integer value, and in this work, an integer value is used. 
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The membership function for the fuzzy system is developed 

such that input values below some constant “fuzzy near” value 
are simply assigned a fuzzy output of “NEAR”, input values 
above some constant “fuzzy far” value are assigned a fuzzy 
output of “FAR”, and inputs between these two constants are 
assigned some non-crisp value between “NEAR” and “FAR”, 
representing the truth of the input as it relates to being crisp 
“NEAR” or crisp “FAR”. 

The “Dynamic Region” of Fig. 2 does not have to be a 
simple linear function. This can be any curve that the designer 
wishes. 

III. ARMS: A ROBOT MAZE SIMULATOR 
A robot simulator utility was produced using C# and Visual 

Studio 2008 in order to measure the ability of a system to 
identify the current position of a robot within an environment. 
ARMS, shown in Fig. 4, is a graphical user interface (GUI) 
that shows the movement of the mobile robot along with other 
valuable system information. The robot in this simulator uses 
the system presented above to navigate within a specified 
environment. The simulator models the realistic motions and 
actions of the robot – it can turn left or right by rotating about 
its center, and it can move forward. Also, the simulator 
models the distance sensor values by calculating the distance 
between the sensor and the nearest obstacle in a straight line. 
The distances from the center of the robot to the front of the 
sensors are adjustable in order to effectively change the size or 
shape of the robot. 

In this simulator the environment is mapped using a  
 
 

 

 
 
 
 
 
bitmap, and the robot is moved around within the pixels of the 
environment. So, the trigonometry is limited to integer math 
resulting in occasionally losing resolution on some paths. This 
can cause the robot to “see through” an obstacle. To overcome 
this problem in the simulator, the obstacles must be made 
“thick” enough for the robot to see them. In a real scenario, 
however, this rounding error will not occur and the robot will 
not be able to violate the boundaries of a physical obstacle.  
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Fig. 1 Block diagram of fuzzy-neural system 

Fig. 3 State Images. Each cell represents one “pixel”. Black means an 
object is “NEAR”, white means an object is “FAR”. 

TABLE I 
STATE NAMES & SYMBOLS FOR DESCRIBING THE 

POSITION  OF A MOBILE ROBOT WITH THREE DISTANCE 
SENSORS 

State 
(binary) Description Symbol 

FFF No Objects NO 
FFN Object on Right OR 
FNF Object in Front OF 
FNN Objects Front & 

Right 
OFR 

NFF Object on Left OL 
NFN Objects Left & Right OLR 
NNF Objects Left & Front OLF 
NNN Surrounded S 

The binary states above are represented with F = 0 
(for FAR) and N = 1 (for NEAR). Each bit represents 
the value of one of the distance sensors on the 
example robot. 

Fig. 2 Membership function for the fuzzy system 
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Fig. 4 Screenshot of ARMS 

IV. FEATURES OF THE SIMULATOR 
As stated before, the simulator models the realistic motions 

and actions of the physical robot – the simulator robot can 
turn left or right by rotating about its center and it can move 
forward. Also, the simulator models the sensor distance by 
calculating the distance between the sensor and the nearest 
obstacle in a straight line. The distances from the center of the 
robot to the front of the sensors are adjustable in order to 
effectively change the size or shape of the robot.  

To place the robot and begin simulation, the user must click 
anywhere on the environment map. Once placed, the robot 
may be rotated left by pressing the left arrow on the keyboard, 
rotated right by pressing the right arrow on the keyboard, or 
moved forward by pressing the up arrow on the keyboard. The 
user is able to load custom environment maps by pressing the 
[Load Image] button, and after simulating, the user can press 
the [Save Image] button to save the image with the robot path 
or sensor coverage results. The custom environment maps 
must be 248 by 248 pixels in size in standard bitmap format. 
The maps can contain color, but only black pixels will be 
detected as obstacles. 

The default algorithm that navigates the robot in ARMS is a 
non-deterministic algorithm. This was done to show that any 
algorithm may be used, and even a poor algorithm might 
produce results. The largest challenge with applying the 
classic navigation algorithms to mobile robots is no longer the 
computational power required, but instead it has become 
identifying where the robot is. By coupling some navigation 
algorithm with this fuzzy-neural system, a mobile robot may 
be intelligently navigated around random obstacles with 
accuracy, repeatability, and confidence. 

 ARMS is very useful for tuning and tweaking the fuzzy-
neural system described in this article. Rather than being 
concerned with a real robot, loading code onto it, and running 
it in a maze, ARMS is a starting point where the initial values 
can be set up for the fuzzy-neural system. It can be easily 
modified to support different robots with a different amount of 

sensors or different types of sensors. Since the artificial neural 
network is written in C and simply called from ARMS, the 
exact neural network used for training and analysis with 
ARMS can be used on the physical robot, considering it can 
be programmed in C. 

Below are details for each control and feature in ARMS. 
This simulator was designed to be a flexible option for many 
generic two dimensional environments, so more functionality 
can be added as necessary. 

A. Load Image button 
This button opens a dialog window that allows the user to 

select and choose an image to use for the environment map. 
Upon opening the image, the map will be instantly displayed 
and all robot path, sensor coverage, and sensor path data will 
be removed from the environment. 

B. Save Image button 
Pressing this button will open a dialog window that allows 

the user to save the current environment map to a file. The 
saved image will include any robot path, sensor coverage, and 
sensor path markings that are currently on the map. This 
feature is useful for keeping track of simulation progress and 
for reporting. 

C. ANN (Artificial Neural Network) toggle button 
This feature generates a state identification value from the 

values of the distance sensors on the robot, by running them 
through the fuzzy-neural system discussed earlier. Each time 
the robot is moved, whether by mouse click or an arrow key, 
this value is recalculated. The sensor values are filtered using 
the fuzzy logic system, and the resulting values are fed as 
arguments into a separate executable program, which has the 
neural network code written in C. This program takes the 
three sensor values and runs them through the pre-trained 
neural network with six neurons in the hidden layer. This 
program was trained to an accuracy of 10-8 with the eight 
unique states and the trained neuron weights were saved as 
constants so that training does not have to occur each time the 
program is run. The neural network is not computationally 
intense, so its execution should be transparent on most modern 
processors. 

D. Play[>] toggle button 
By pressing this button, ARMS allows the user to run a 

motion simulation. This will run the navigation algorithm used 
by the simulator.  

E. Log option 
One other potentially useful feature in ARMS is the ability 

to log the sensor data to a file (along with the user’s opinion 
of the current state, if desired). By pressing the [Log] button, 
this logging is enabled, and the sensor data is printed to the 
file each time the robot’s position changes. This might be 
useful for data collection or path analysis. For example, this 
feature was used to generate large amounts of real data which 
was crucial in designing and testing the fuzzy logic system. 
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F. Robot button 
This button opens up another window that allows 

customization of the current robot. In this case, it allows the 
user to adjust the distance between the center of the robot and 
the front of the distance sensors. This effectively changes the 
size of the robot. 

G. Reset button 
Pressing this button clears all robot path, sensor path, and 

sensor coverage markings on the map and resets the 
environment to its initial state. The robot remains untouched. 

H. The [More/Less] toggle button 
This option expands the GUI window to show more 

advanced options and information. It displays the sensor path, 
sensor coverage, robot path, and animation speed options, as 
well as adjustments for the fuzzy near and far values. In 
addition, the angle of the robot, the inputs to the neural 
network, the last processed (weak) state, the last strong state 
and its strength, and the momentum values of the robot.  The 
last weak state is the last state returned from the neural 
network, while the last strong state is the last state that the 
robot acted upon. In a simple system, these should be the same 
state, but this approach is used to filter out incorrect states 
given by the neural network.  If the robot acted upon each 
state that it came upon, it would frequently get caught in local 
loops: situations where the robot could never advance from 
because it toggles between one state and another. Since the 
robot in this implementation of the simulator only acts upon 
the last strong state, this means that the robot must have seen 
this state some number of consecutive times, and each of these 
consecutive times increases the likelihood of truly being in 
that state (thereby double checking the neural network which 
we accept can be wrong). Similarly, the momentum values 
(forward, left, and right) keep the robot from changing its 
actions too frequently, and they also help the robot to navigate 
around difficult obstacles that it would normally avoid. For 
instance, if the robot has been travelling down a straight 
hallway and has built up a lot of forward momentum, the 
robot will want to continue moving forward even if there is an 
obstacle in front of it. Now, this obstacle is most likely the end 
of the hallway, but perhaps it is not. If the robot at least 
attempts to continue forward past this obstacle, it will be able 
to get closer to it and determine whether it is truly a wall or 
not. Momentum gets added and subtracted with different 
weights depending on the severity of the situation; if the robot 
is extremely close to an obstacle in the direction it is heading, 
momentum will be subtracted very rapidly to avoid collision. 
However, if the robot is not in immediate danger of collision 
with respect to the distance to the obstacle, then the 
momentum will not be subtracted as quickly. 

İ. Help [?] button 
Pressing the help button opens up a help window with the 

program information (revision, author, etc.). 

J. Exit button 
This button cleanly exits the program. 

K. Sensor path option 
When the sensor path option is selected, ARMS will show 

the path of each sensor on the current robot. A sensor path in 
ARMS is a line that goes directly from each sensor to the 
nearest obstacle. When the [ANN] system is enabled, the 
sensor paths vary in color depending on the values being fed 
into the artificial neural network. When the path is green, it 
means that the sensor is currently reading a crisp “far” value; 
when the path is red, it means that the sensor is currently 
reading a crisp “near” value, and any shade between red and 
green means that the sensor is in a fuzzy state. 

L. Sensor coverage option 
Turning this feature on will mark every obstacle that any 

sensor on the robot picks up with red pixels. This is useful for 
mapping systems to determine if the robot has seen a certain 
area of its environment during its lifetime. It does this by 
drawing a red pixel on the edge of every obstacle that a sensor 
sees. These red pixels do not become obstacles themselves; 
they are transparent to the robot’s sensors. 

M. Robot path option 
This option will draw the path of the robot in its 

environment in purple. This is useful when running the 
program for an extended period of time to determine the 
search coverage of the current algorithm in the current 
environment. 

N. Fuzzy near/far value sliders 
Two crucial variables to adjust for optimal performance in a 

particular environment are the fuzzy logic near and far values. 
In systems where each sensor uses different values, each 
sensor must be calibrated individually because each sensor 
may have a different opinion for what is “near” to it and what 
is “far” from it. In this implementation of ARMS, however, 
the “near” and “far” values are global. It should be noted that 
these two sliders change their possible range with respect to 
each other so that the “near” value can never be greater than 
the “far” value. 

O. Sensor Distances 
The raw analog sensor values are displayed on the lower 

left of the GUI window. Along with these values (shown as a 
set) is a grayscale image representing the values in the fuzzy 
logic system. White represents fuzzy “far”, or “no object”, 
black represents fuzzy “near”, or “object detected”, and 
varying shades of gray represent values in between. This 
image is how the robot sees its world; since its three distance 
sensors are its only knowledge of the environment, this is the 
image that it sees at any point in time. 

  

V. ACCURACY OF THE SYSTEM 
The fuzzy-neural system proposed and implemented can be 

described as a Monte Carlo algorithm, defined as a 
"randomized algorithm that may produce incorrect results, but 
with bounded error probability”, as opposed to a Las Vegas 
algorithm, which is defined as a "randomized algorithm that 
always produces correct results, with the only variation from 
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one run to another being its running time” [6]. In other words, 
Monte Carlo algorithms are fast but not perfect, while Las 
Vegas algorithms take an indeterminate amount of time, but 
are guaranteed to be correct. Since the embedded controllers 
that typically control mobile robots have relatively low 
performance compared to their desktop cousins, a Monte 
Carlo algorithm suffices in a situation that does not always 
require accurate results. Although the system proposed in this 
text is not a true randomized algorithm, it is also not a crisp 
classical algorithm. 

VI. IMPLEMENTATION OF THE SYSTEM 
The C code for implementing the neural network is based 

upon the discussion by John Bullinaria [7], and includes the 
simple feed forward multi-layer artificial neural-network with 
back propagation for the offline training. This implementation 
allows for a variable number of neurons in the input, hidden, 
and output layers. The code can be compiled in training mode 
which will train the network and print out a block of C source 
code which will initialize all weight values. The user can 
simply copy this block of code from the console window in 
which training was run, and paste it into the robot’s source 
code to be recompiled for use in the robot.  

VII. TESTING THE SYSTEM 
Once the state approximation system was implemented and 

debugged, the system was thoroughly tested with ARMS to 
prove that it is a good solution. Various environments were 
made with photo editing software and the robot was run inside 
each of them. Fig. 9 shows the navigation algorithm used for 
implementation. 

The idea behind these tests is that if the arbitrary navigation 
algorithm chosen allows the robot to operate in a variety of 
environments, and that algorithm is based upon the fuzzy-
neural system proposed in this article, then the fuzzy-neural 
system must be feeding useful and correct data to the 
navigation algorithm. The environment in Fig. 4 represents a 
real-world scenario. There are many small obstacles scattered 
randomly around the environment, which consists of oddly 
shaped and somewhat broken walls. The robot successfully 
navigated around the maze without colliding with any 
obstacles and without repeating its path. Although not 
repeating its path is not a constraint in the design of the fuzzy-
neural system, it was part of the goal of the design of the 
navigation algorithm used in these trials. 

Fig. 5 is an exact scale replica of the standard 2009 Trinity 
Firefighting Competition Maze [3]. The circle with the H 
represents the “Home” position, where the robot must start 
and finish its course. The goal is to hunt for a candle in one of 
the four “rooms” and extinguish it in as little time as possible. 
The robot was placed on the Home circle, aimed directly 
south, and run. The robot did not make the most efficient tour 
around the maze, but it did visit each room, and the likelihood 
of finding a candle would have been very high. 

Fig. 6 shows the path of the robot through an oddly shaped 
maze, starting and ending in the upper left corner. Since this 
maze has a lot of tight spaces and the walls are not flat, the 
robot occasionally gets confused and makes some incorrect 

turns, but usually manages to overcome this confusion 
because of the momentum and state weights. 

This system is useful for applications that are not maze 
based, too. Fig. 7 is an example environment with random 
obstacles and barriers. The robot randomly traverses around 
the obstacles and provides relatively good coverage of the 
environment after only a few passes around the perimeter of 
the environment. This shows that the randomized navigation 
algorithm is suitable for a wide variety of applications, and the 
fact that the randomized algorithm works is dependent on the 
fuzzy-neural system producing proper state identification 
values. Fig. 8 is yet another example of the robot in a dynamic 
environment. The robot has relatively good coverage, again, 
and did not collide with any obstacles. 

VIII. CONCLUSION 
By running these simulations, it is clear that the fuzzy-

neural system is taking sensor data and producing usable, and 
mostly correct, state approximations. The robot can detect and 
preemptively avoid obstacles, as well as navigate through 
small hallways, investigate openings, and change its course 
depending on what is surrounding it. Coupled with a powerful 
navigation algorithm, this system will be sure to produce 
excellent results.  
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