
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

800

Abstract—A robot simulator was developed to measure and

investigate the performance of a robot navigation system based on
the relative position of the robot with respect to random obstacles in
any two dimensional environment. The presented simulator focuses
on investigating the ability of a fuzzy-neural system for object
avoidance. A navigation algorithm is proposed and used to allow
random navigation of a robot among obstacles when the robot faces
an obstacle in the environment. The main features of this simulator
can be used for evaluating the performance of any system that can
provide the position of the robot with respect to obstacles in the
environment. This allows a robot developer to investigate and
analyze the performance of a robot without implementing the
physical robot.

Keywords—Applications of Fuzzy Logic and Neural Networks
in Robotics, Artificial Intelligence, Embedded Systems, Mobile
Robots, Robot Navigation, Robotics.

I. INTRODUCTION
HE field of mobile robotics has received considerable
attention from researchers during the past two decades.

Many methods have been proposed and implemented for robot
navigation in various environments [1], and many robot
competitions at various experience levels are held that are
based on path finding and target identification [2], [3]. One
robotic system configuration that has received special
attention from researchers is where a neural-fuzzy or fuzzy-
neural system is used to guide a mobile robot [4], [5]. In these
systems, the data collected about the environment by electro-
mechanical sensors is fed into a fuzzy-logic or neural-network
system. After the raw data is normalized and fed into the
fuzzy-logic (or neural-network) system for pre-processing, the
output will be used as input to the second system, the neural-
network (or fuzzy-logic), for some form of decision making.

 Actual implementation of these or other methods in real
robots is expensive, time consuming, and in the case of
negative results, wasteful. It is important that a proposed
method is simulated to measure its success before the actual
investment in developing the system is made. A simulator for
a mobile robot must be capable of simulating within various
environments, emulating the electromechanical sensors, and
moving the robot in specific paths, among other features. The
simulator proposed and implemented in this article addresses

M. A. Folcik, MSEE, was with the University of New Haven, West Haven,
CT 06516 USA. He is now with Food Automation Service Techniques, Inc.,
Stratford, CT 06615 (e-mail: mfolc1@newhaven.edu).

B. Karimi, Ph.D., is with the University of New Haven, West Haven, CT
06516 USA. (phone: 203-932-7164; fax: 203-931-6091; e-mail:
bkarimi@newhaven.edu).

many of these characteristics.
 One important parameter for a robot to make the right

decision regarding the next course of action is the knowledge
of the relative position of the robot with respect to random
obstacles in the environment, in order to avoid them or
identify a target. An obstacle in this context is defined as
anything that may inhibit the intended actions of the mobile
robot. In order to measure the degree of the success in such
cases, a simulator capable of accepting the inputs, generating
the outputs, and verifying that the generated output is good
(for identifying the relative location of obstacles and avoiding
them) is needed. The developed simulator has been
implemented with a system consisting of a fuzzy-logic layer
followed by a neural-network layer. The main focus of this
article is on the development and features of the simulator and
not the fuzzy-neural system, which has to be discussed and
dealt with separately, although the general framework is
presented to clearly exemplify the features of the simulator.
The data presented to the simulator about the position of the
robot with respect to obstacles can be from the given sample
system in this article or any other method used for this
purpose. This may require some modification to the simulator
as the presented simulator also integrates the fuzzy-neural
features of the system. The features and the problems faced
and solved that are discussed in this article can be used as
guidelines for developing similar simulators for evaluating the
performance of similarly designed systems.

II. SAMPLE SYSTEM UNDER INVESTIGATION
Fig. 1 is the general model of a fuzzy-neural system

proposed by the authors for which the simulator was
developed. Fig. 2 shows the membership function used for the
Fuzzy-Logic section. The inputs to fuzzy section are the
analog outputs of the robot’s sensors which will be
preprocessed by the fuzzy-logic and ultimately fed into the
neural-network. The system used in this simulator accepts
inputs from three distance sensors, in cm. One sensor is placed
such that it faces 90º counterclockwise from the front of the
robot; the second sensor faces directly forward; and the third
sensor faces 90º clockwise from the front of the robot. In
general, the number and type of sensors are not restricted to
what is used in this article as an example. Table I shows the
state format, state names, and description of every possible
scenario that this robot with three distance sensors can be in.
Fig. 3 is a visual representation of the information in Table I.
The output of the neural network can be either binary values
or an integer value, and in this work, an integer value is used.

A Simulator for Robot Navigation Algorithms
Michael A. Folcik and Bijan Karimi

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

801

0

1

0 50 100 150 200 250

Tr
ut
h

Distance (cm)

Near Far

Dynamic Region

Fuzzy Near
Fuzzy Far

.

The membership function for the fuzzy system is developed

such that input values below some constant “fuzzy near” value
are simply assigned a fuzzy output of “NEAR”, input values
above some constant “fuzzy far” value are assigned a fuzzy
output of “FAR”, and inputs between these two constants are
assigned some non-crisp value between “NEAR” and “FAR”,
representing the truth of the input as it relates to being crisp
“NEAR” or crisp “FAR”.

The “Dynamic Region” of Fig. 2 does not have to be a
simple linear function. This can be any curve that the designer
wishes.

III. ARMS: A ROBOT MAZE SIMULATOR
A robot simulator utility was produced using C# and Visual

Studio 2008 in order to measure the ability of a system to
identify the current position of a robot within an environment.
ARMS, shown in Fig. 4, is a graphical user interface (GUI)
that shows the movement of the mobile robot along with other
valuable system information. The robot in this simulator uses
the system presented above to navigate within a specified
environment. The simulator models the realistic motions and
actions of the robot – it can turn left or right by rotating about
its center, and it can move forward. Also, the simulator
models the distance sensor values by calculating the distance
between the sensor and the nearest obstacle in a straight line.
The distances from the center of the robot to the front of the
sensors are adjustable in order to effectively change the size or
shape of the robot.

In this simulator the environment is mapped using a

bitmap, and the robot is moved around within the pixels of the
environment. So, the trigonometry is limited to integer math
resulting in occasionally losing resolution on some paths. This
can cause the robot to “see through” an obstacle. To overcome
this problem in the simulator, the obstacles must be made
“thick” enough for the robot to see them. In a real scenario,
however, this rounding error will not occur and the robot will
not be able to violate the boundaries of a physical obstacle.

 No Objects Object on Left

 Object on Right Objects Left & Right

 Object in Front Objects Left & Front

 Objects Front & Right Surrounded

State Suggestion Stage
Sensor Data Conversion

Stage

3 Layer Back
Propagating

Neural Network

Fuzzy Logic
System 1

Fuzzy Logic
System 2

Fuzzy Logic
System N

N Analog Sensor Inputs
(Decimal Value)

D1 - DN

State Approximation
(Integer Value)

Fuzzy Values
(Decimal, 0 to 1)

.

.

.

Fig. 1 Block diagram of fuzzy-neural system

Fig. 3 State Images. Each cell represents one “pixel”. Black means an
object is “NEAR”, white means an object is “FAR”.

TABLE I
STATE NAMES & SYMBOLS FOR DESCRIBING THE

POSITION OF A MOBILE ROBOT WITH THREE DISTANCE
SENSORS

State
(binary) Description Symbol

FFF No Objects NO
FFN Object on Right OR
FNF Object in Front OF
FNN Objects Front &

Right
OFR

NFF Object on Left OL
NFN Objects Left & Right OLR
NNF Objects Left & Front OLF
NNN Surrounded S

The binary states above are represented with F = 0
(for FAR) and N = 1 (for NEAR). Each bit represents
the value of one of the distance sensors on the
example robot.

Fig. 2 Membership function for the fuzzy system

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

802

Fig. 4 Screenshot of ARMS

IV. FEATURES OF THE SIMULATOR
As stated before, the simulator models the realistic motions

and actions of the physical robot – the simulator robot can
turn left or right by rotating about its center and it can move
forward. Also, the simulator models the sensor distance by
calculating the distance between the sensor and the nearest
obstacle in a straight line. The distances from the center of the
robot to the front of the sensors are adjustable in order to
effectively change the size or shape of the robot.

To place the robot and begin simulation, the user must click
anywhere on the environment map. Once placed, the robot
may be rotated left by pressing the left arrow on the keyboard,
rotated right by pressing the right arrow on the keyboard, or
moved forward by pressing the up arrow on the keyboard. The
user is able to load custom environment maps by pressing the
[Load Image] button, and after simulating, the user can press
the [Save Image] button to save the image with the robot path
or sensor coverage results. The custom environment maps
must be 248 by 248 pixels in size in standard bitmap format.
The maps can contain color, but only black pixels will be
detected as obstacles.

The default algorithm that navigates the robot in ARMS is a
non-deterministic algorithm. This was done to show that any
algorithm may be used, and even a poor algorithm might
produce results. The largest challenge with applying the
classic navigation algorithms to mobile robots is no longer the
computational power required, but instead it has become
identifying where the robot is. By coupling some navigation
algorithm with this fuzzy-neural system, a mobile robot may
be intelligently navigated around random obstacles with
accuracy, repeatability, and confidence.

 ARMS is very useful for tuning and tweaking the fuzzy-
neural system described in this article. Rather than being
concerned with a real robot, loading code onto it, and running
it in a maze, ARMS is a starting point where the initial values
can be set up for the fuzzy-neural system. It can be easily
modified to support different robots with a different amount of

sensors or different types of sensors. Since the artificial neural
network is written in C and simply called from ARMS, the
exact neural network used for training and analysis with
ARMS can be used on the physical robot, considering it can
be programmed in C.

Below are details for each control and feature in ARMS.
This simulator was designed to be a flexible option for many
generic two dimensional environments, so more functionality
can be added as necessary.

A. Load Image button
This button opens a dialog window that allows the user to

select and choose an image to use for the environment map.
Upon opening the image, the map will be instantly displayed
and all robot path, sensor coverage, and sensor path data will
be removed from the environment.

B. Save Image button
Pressing this button will open a dialog window that allows

the user to save the current environment map to a file. The
saved image will include any robot path, sensor coverage, and
sensor path markings that are currently on the map. This
feature is useful for keeping track of simulation progress and
for reporting.

C. ANN (Artificial Neural Network) toggle button
This feature generates a state identification value from the

values of the distance sensors on the robot, by running them
through the fuzzy-neural system discussed earlier. Each time
the robot is moved, whether by mouse click or an arrow key,
this value is recalculated. The sensor values are filtered using
the fuzzy logic system, and the resulting values are fed as
arguments into a separate executable program, which has the
neural network code written in C. This program takes the
three sensor values and runs them through the pre-trained
neural network with six neurons in the hidden layer. This
program was trained to an accuracy of 10-8 with the eight
unique states and the trained neuron weights were saved as
constants so that training does not have to occur each time the
program is run. The neural network is not computationally
intense, so its execution should be transparent on most modern
processors.

D. Play[>] toggle button
By pressing this button, ARMS allows the user to run a

motion simulation. This will run the navigation algorithm used
by the simulator.

E. Log option
One other potentially useful feature in ARMS is the ability

to log the sensor data to a file (along with the user’s opinion
of the current state, if desired). By pressing the [Log] button,
this logging is enabled, and the sensor data is printed to the
file each time the robot’s position changes. This might be
useful for data collection or path analysis. For example, this
feature was used to generate large amounts of real data which
was crucial in designing and testing the fuzzy logic system.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

803

F. Robot button
This button opens up another window that allows

customization of the current robot. In this case, it allows the
user to adjust the distance between the center of the robot and
the front of the distance sensors. This effectively changes the
size of the robot.

G. Reset button
Pressing this button clears all robot path, sensor path, and

sensor coverage markings on the map and resets the
environment to its initial state. The robot remains untouched.

H. The [More/Less] toggle button
This option expands the GUI window to show more

advanced options and information. It displays the sensor path,
sensor coverage, robot path, and animation speed options, as
well as adjustments for the fuzzy near and far values. In
addition, the angle of the robot, the inputs to the neural
network, the last processed (weak) state, the last strong state
and its strength, and the momentum values of the robot. The
last weak state is the last state returned from the neural
network, while the last strong state is the last state that the
robot acted upon. In a simple system, these should be the same
state, but this approach is used to filter out incorrect states
given by the neural network. If the robot acted upon each
state that it came upon, it would frequently get caught in local
loops: situations where the robot could never advance from
because it toggles between one state and another. Since the
robot in this implementation of the simulator only acts upon
the last strong state, this means that the robot must have seen
this state some number of consecutive times, and each of these
consecutive times increases the likelihood of truly being in
that state (thereby double checking the neural network which
we accept can be wrong). Similarly, the momentum values
(forward, left, and right) keep the robot from changing its
actions too frequently, and they also help the robot to navigate
around difficult obstacles that it would normally avoid. For
instance, if the robot has been travelling down a straight
hallway and has built up a lot of forward momentum, the
robot will want to continue moving forward even if there is an
obstacle in front of it. Now, this obstacle is most likely the end
of the hallway, but perhaps it is not. If the robot at least
attempts to continue forward past this obstacle, it will be able
to get closer to it and determine whether it is truly a wall or
not. Momentum gets added and subtracted with different
weights depending on the severity of the situation; if the robot
is extremely close to an obstacle in the direction it is heading,
momentum will be subtracted very rapidly to avoid collision.
However, if the robot is not in immediate danger of collision
with respect to the distance to the obstacle, then the
momentum will not be subtracted as quickly.

İ. Help [?] button
Pressing the help button opens up a help window with the

program information (revision, author, etc.).

J. Exit button
This button cleanly exits the program.

K. Sensor path option
When the sensor path option is selected, ARMS will show

the path of each sensor on the current robot. A sensor path in
ARMS is a line that goes directly from each sensor to the
nearest obstacle. When the [ANN] system is enabled, the
sensor paths vary in color depending on the values being fed
into the artificial neural network. When the path is green, it
means that the sensor is currently reading a crisp “far” value;
when the path is red, it means that the sensor is currently
reading a crisp “near” value, and any shade between red and
green means that the sensor is in a fuzzy state.

L. Sensor coverage option
Turning this feature on will mark every obstacle that any

sensor on the robot picks up with red pixels. This is useful for
mapping systems to determine if the robot has seen a certain
area of its environment during its lifetime. It does this by
drawing a red pixel on the edge of every obstacle that a sensor
sees. These red pixels do not become obstacles themselves;
they are transparent to the robot’s sensors.

M. Robot path option
This option will draw the path of the robot in its

environment in purple. This is useful when running the
program for an extended period of time to determine the
search coverage of the current algorithm in the current
environment.

N. Fuzzy near/far value sliders
Two crucial variables to adjust for optimal performance in a

particular environment are the fuzzy logic near and far values.
In systems where each sensor uses different values, each
sensor must be calibrated individually because each sensor
may have a different opinion for what is “near” to it and what
is “far” from it. In this implementation of ARMS, however,
the “near” and “far” values are global. It should be noted that
these two sliders change their possible range with respect to
each other so that the “near” value can never be greater than
the “far” value.

O. Sensor Distances
The raw analog sensor values are displayed on the lower

left of the GUI window. Along with these values (shown as a
set) is a grayscale image representing the values in the fuzzy
logic system. White represents fuzzy “far”, or “no object”,
black represents fuzzy “near”, or “object detected”, and
varying shades of gray represent values in between. This
image is how the robot sees its world; since its three distance
sensors are its only knowledge of the environment, this is the
image that it sees at any point in time.

V. ACCURACY OF THE SYSTEM
The fuzzy-neural system proposed and implemented can be

described as a Monte Carlo algorithm, defined as a
"randomized algorithm that may produce incorrect results, but
with bounded error probability”, as opposed to a Las Vegas
algorithm, which is defined as a "randomized algorithm that
always produces correct results, with the only variation from

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

804

one run to another being its running time” [6]. In other words,
Monte Carlo algorithms are fast but not perfect, while Las
Vegas algorithms take an indeterminate amount of time, but
are guaranteed to be correct. Since the embedded controllers
that typically control mobile robots have relatively low
performance compared to their desktop cousins, a Monte
Carlo algorithm suffices in a situation that does not always
require accurate results. Although the system proposed in this
text is not a true randomized algorithm, it is also not a crisp
classical algorithm.

VI. IMPLEMENTATION OF THE SYSTEM
The C code for implementing the neural network is based

upon the discussion by John Bullinaria [7], and includes the
simple feed forward multi-layer artificial neural-network with
back propagation for the offline training. This implementation
allows for a variable number of neurons in the input, hidden,
and output layers. The code can be compiled in training mode
which will train the network and print out a block of C source
code which will initialize all weight values. The user can
simply copy this block of code from the console window in
which training was run, and paste it into the robot’s source
code to be recompiled for use in the robot.

VII. TESTING THE SYSTEM
Once the state approximation system was implemented and

debugged, the system was thoroughly tested with ARMS to
prove that it is a good solution. Various environments were
made with photo editing software and the robot was run inside
each of them. Fig. 9 shows the navigation algorithm used for
implementation.

The idea behind these tests is that if the arbitrary navigation
algorithm chosen allows the robot to operate in a variety of
environments, and that algorithm is based upon the fuzzy-
neural system proposed in this article, then the fuzzy-neural
system must be feeding useful and correct data to the
navigation algorithm. The environment in Fig. 4 represents a
real-world scenario. There are many small obstacles scattered
randomly around the environment, which consists of oddly
shaped and somewhat broken walls. The robot successfully
navigated around the maze without colliding with any
obstacles and without repeating its path. Although not
repeating its path is not a constraint in the design of the fuzzy-
neural system, it was part of the goal of the design of the
navigation algorithm used in these trials.

Fig. 5 is an exact scale replica of the standard 2009 Trinity
Firefighting Competition Maze [3]. The circle with the H
represents the “Home” position, where the robot must start
and finish its course. The goal is to hunt for a candle in one of
the four “rooms” and extinguish it in as little time as possible.
The robot was placed on the Home circle, aimed directly
south, and run. The robot did not make the most efficient tour
around the maze, but it did visit each room, and the likelihood
of finding a candle would have been very high.

Fig. 6 shows the path of the robot through an oddly shaped
maze, starting and ending in the upper left corner. Since this
maze has a lot of tight spaces and the walls are not flat, the
robot occasionally gets confused and makes some incorrect

turns, but usually manages to overcome this confusion
because of the momentum and state weights.

This system is useful for applications that are not maze
based, too. Fig. 7 is an example environment with random
obstacles and barriers. The robot randomly traverses around
the obstacles and provides relatively good coverage of the
environment after only a few passes around the perimeter of
the environment. This shows that the randomized navigation
algorithm is suitable for a wide variety of applications, and the
fact that the randomized algorithm works is dependent on the
fuzzy-neural system producing proper state identification
values. Fig. 8 is yet another example of the robot in a dynamic
environment. The robot has relatively good coverage, again,
and did not collide with any obstacles.

VIII. CONCLUSION
By running these simulations, it is clear that the fuzzy-

neural system is taking sensor data and producing usable, and
mostly correct, state approximations. The robot can detect and
preemptively avoid obstacles, as well as navigate through
small hallways, investigate openings, and change its course
depending on what is surrounding it. Coupled with a powerful
navigation algorithm, this system will be sure to produce
excellent results.

REFERENCES
[1] Mobile Robotics. (2009, September 7). Retrieved September 27, 2009,

from Wikipedia: http://en.wikipedia.org/wiki/Mobile_robotics
[2] FIRST Robotics. (2009, May 13). FIRST At A Glance. Retrieved

September 27, 2009, from USFIRST.org:
http://www.usfirst.org/aboutus/content.aspx?id=160

[3] Trinity College. (2009, September 26). Firefighting Home Robot
Contest. Retrieved September 27, 2009, from Trinity College:
http://www.trincoll.edu/events/robot/

[4] Tahboub, K. K., & Al-Din, M. S. (2009). A Neuro-Fuzzy Reasoning
System for Mobile Robot Navigation. Jordan Journal of Mechanical and
Industrial Engineering , 3 (1), 77-88.

[5] Zein-Sabatto, S., Sekmen, A., & Koseeyaporn, P. (2003). Fuzzy
Behaviors for Control of Mobile Robots. Systemics, Cybernetics and
Informatics, 1 (1), 68-74.

[6] Black, P. E. (1999). Algorithms and Theory of Computation Handbook.
Boca Raton, FL: CRC Press LLC.

[7] Bullinaria, J. A. (2002, November 18). Implementing a Neural Network
in C. Retrieved September 2, 2009, from School of Computer Science;
The University of Birmingham, UK:
http://www.cs.bham.ac.uk/~jxb/NN/nn.html

Michael A. Folcik graduated from the University of New Haven, West
Haven, CT 06516 USA with a Bachelor of Science in computer
engineering in 2009, and with a Master of Science in electrical
engineering in 2010, with a focus on computer engineering and artificial
intelligence. He had experience with designing and implementing
various mobile robots while at the University of New Haven, and
founded an undergraduate robotics club. He currently works as an
Innovation Engineer at Food Automation Service Techniques, Inc. in
Stratford, CT 06615 USA, with a focus on robust embedded firmware.
His current research interests are artificial intelligence and robotic
navigation.

Bijan Karimi is a professor of Computer Engineering in the department
of Electrical and Computer Engineering and Computer Science at
University of New Haven, West Haven, CT 06516. He has conducted
research in the areas of Neural Networks, Systolic Arrays, Digital Logic
Testing, Digital Image Processing, and Robot Design and Navigation.
He is the originator and the supervisor for the Robotics Club at the
University of New Haven.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

805

Determine
current state

Object Front &
Left

Surrounded

Object Front &
Right

Object Right

No Objects

Object Front

Object Left

Objects Left &
Right

Continue Forward

20% Chance

Turn Left

80% Chance

90% Chance

10% Chance

Turn Right

90% Chance

80% Chance

20% Chance

10% Chance

60% Chance

40% Chance

60% Chance

40% Chance

Fig. 9. Default Navigation Algorithm State Machine

a b c

d e

