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Abstract—In this paper, we study the application of Extreme 

Learning Machine (ELM) algorithm for single layered feedforward 
neural networks to non-linear chaotic time series problems.  In this 
algorithm the input weights and the hidden layer bias are randomly 
chosen. The ELM formulation leads to solving a system of linear 
equations in terms of the unknown weights connecting the hidden 
layer to the output layer. The solution of this general system of 
linear equations will be obtained using Moore-Penrose generalized 
pseudo inverse. For the study of the application of the method we 
consider the time series generated by the Mackey Glass delay 
differential equation with different time delays, Santa Fe A and 
UCR heart beat rate ECG time series. For the choice of sigmoid, 
sin and hardlim activation functions the optimal values for the 
memory order and the number of hidden neurons which give the 
best prediction performance in terms of root mean square error are 
determined. It is observed that the results obtained are in close 
agreement with the exact solution of the problems considered 
which clearly shows that ELM is a very promising alternative 
method for time series prediction.  

 
    Keywords—Chaotic time series, Extreme learning machine, 
Generalization performance. 
 

I.  INTRODUCTION 
RTIFICIAL Neural Networks (ANNs) have been 
extensively applied for pattern classification and 

regression problems. The major reason for the success of 
ANNs is their ability in obtaining a non-linear approximation 
model function describing the association between the 
dependent and independent variables using the given input 
samples. Since ANNs adaptively select the model from the 
features presented in the input data, they are applied to a 
large number of classes of problems of importance like 
optical character recognition [7], face detection [11], gene 
prediction [14], credit scoring [6] and time series forecasting 
[12], [17].Though ANNs have many advantages such as 
better approximation capabilities and simple network 
structures, however, it suffers from several problems such as 
presence of local minima's, imprecise learning rate, selection 
of the number of hidden neurons and over fitting. Moreover, 
the gradient descent based learning algorithms such as Back 
Propagation (BP) will generally lead to slow convergence 
during the training of the networks. 
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Time series forecasting is an important and challenging 
problem of regression. In the regression problem by 
analyzing the given input samples the best fit functional 
model describing the relationship between the dependent 
and independent variables is obtained.  

There are many prediction models exist in the literature 
[4], [9], [12] for time series. The important and widely used 
among them are Auto Regressive Integrated Moving 
Average (ARIMA) [1], ANNs [12], [17] and Support Vector 
Regression (SVR) [8], [9], [13], [15] methods. Among the 
above methods, ARIMA assumes the existence of a linear 
relationship in the time series values, i.e. its prediction value 
will be a linear function of the past observations and 
therefore it is not always suitable for complex real world 
problems [18]. Also it is proposed to combine several 
methods in order to obtain improved forecasting accuracy. 
For the study of a hybrid approach of combining ARIMA 
and ANN for time series forecasting we refer the reader to 
[18].  For time series involving seasonality, combining 
Seasonal time series ARIMA (SARIMA) and ANN is 
discussed in [16] and for the study of a combined SARIMA 
and SVR approach see [3]. 

Huang et al [5] have proposed a new learning algorithm 
for Single hidden Layer Feedforward Neural Network 
(SLFN) architecture called Extreme Learning Machine 
(ELM) which overcomes the problems caused by gradient 
descent based algorithms such as BP applied in ANNs. In 
this algorithm the input weights and the hidden layer bias 
are randomly chosen. The ELM formulation leads to solving 
a system of linear equations in terms of the unknown 
weights connecting the hidden layer to the output layer. The 
solution of this general system of linear equations is 
obtained using Moore-Penrose generalized pseudo inverse 
[10]. In this work we discuss briefly the ELM algorithm and 
study its feasibility of application for chaotic time series 
prediction problems.  

Throughout this paper, we assume all vectors to be 
column vectors. For any two vectors x, y in the m-
dimensional real space mℜ , we denote the inner product of 
the two vectors by yx .′  where x′  is the transpose of the 
vector x and the norm of a vector by .|||| ⋅  The paper is 
organized as follows. In Section 2, we define Moore-
Penrose generalized inverse, the minimum norm least 
squares solution of a general linear system of equations and 
state the relation between them. In Section 3, we revive the 
ELM algorithm for SLFN. For the application of this 
algorithm we considered Mackey Glass delay differential 
equation with different time delays, Santa Fe-A and UCR 
heart beat rate (ECG) time series in Section 4 and the results 
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obtained using ELM have been compared with exact 
solutions. Finally, we conclude our paper in Section 5. 

 
II.  MOORE - PENROSE GENERALIZED INVERSE 

The solution of a general linear system of equations 
yAx = , 

where A  may be a singular or rectangular matrix can be 
obtained by the use of the  Moore-Penrose generalized 
pseudo inverse. 
Definition 2.1 [10]: A matrix G  of size mn×  is called 
the Moore-Penrose generalized pseudo inverse of a given 
matrix A  of size nm× , if  

GAGAAGAGGGAGAAGA ==== '' )(,)(,, . 

In this case, we will denote G by +A . 
Definition 2.2: For the given general linear system of 
equations yAx =  where A  is a matrix of size nm× and y 
is a vector in Rm, a vector x* in Rn is called a least squares 
solution if  

|| Ax* – y || = 
x

min  || Ax – y || 

Definition 2.3: The vector x* in Rn   is called a minimum 
norm least squares solution of the general linear 
system yAx = , if x* must be a least squares solution and 
further among all least squares solutions x in Rn   

||x*||   ≤  ||x|| 
must be true. 
Theorem 2.1 [10]: Let G be a matrix of size mn× . Then 
x* = Gy is a minimum norm least squares solution of the 
general linear system yAx =  if and only if G = A+, the 
Moore-Penrose generalized inverse of A.  
   From the above theorem it is clear that x* = A+ y is the 
unique minimum norm least squares solution. 
 

III. EXTREME LEARNING MACHINE ALGORITHM 
Let us consider an SLFN having L number of hidden 

neurons. Let (.,.,.)G  be a real valued function so that 

),,( xbwG ii  be the output of the thi  hidden neuron with 

bias ℜ∈ib  corresponding to the input vector mx ℜ∈  and 

the weight vector '
1 ),...,( imii www =  where isw  is the 

weight of the connection between the thi  hidden neuron  
and ths  neuron of the input layer. It is well known that for 
feed-forward neural networks, the output function )(⋅f   
will be given by  

),,()(
1

xbwGxf ii

L

i
i∑

=

= β  , 

where k
ikii ℜ∈= '

1 ),...,( βββ   is the weight vector 

connecting the thi  hidden neuron with the k th neuron of the 
output layer. Note that for the case of additive hidden 
neurons, (.,.,.)G  will take the following form: 

).(),,( iiii bxwgxbwG +′= , 

where ℜ→ℜ:g  will be the activation  function. In this 
work, we assume the case of additive hidden neurons. 

Suppose, we are given the training data set  
{ } Miii yx ,...,2,1),( =  where  m

imii xxx ℜ∈= '
1 ),...,(  

denotes the input vector and  k
ikii yyy ℜ∈= '

1 ),...,(  is 

its corresponding output vector and M  is the total number 
of input data patterns. Further assume that the values of the 
weight vectors m

iw ℜ∈    and the bias ℜ∈ib  are 

randomly assigned. Then, the standard SLFN with L  
number of hidden neurons approximates the input samples 
with zero error if and only if there exists k

i ℜ∈β   so that 

),,(
1

jii

L

i
ij xbwGy ∑

=

= β   Mj ,...,2,1=∀ .        (1) 

The above set of equations can be rewritten in the following 
matrix form as: 

YH =β                                       (2) 
where 
 

           (3) 

                    (4) 
 
Note that the  thi  column of H will be the output of the thi  
hidden neuron for the inputs Mxxx ,...,, 21 . Further, observe 
that the matrix H  need not be a square matrix. 

Under the assumption that the activation function 
)(⋅g is infinitely differentiable, it has been shown in [5] that 

for fixed input weight vectors iw  and biases ib , the least 

squares solution β  for the matrix equation )2(  with 
minimum norm of output weights β  can be obtained and 
that the smallest training error can be reached by the 
solutionβ . Moreover, the solution β  of the matrix 
equation )2(  will be given by 

YH +=β̂  

where +H  is the Moore-Penrose generalized pseudo 
inverse  of the matrix H. Further, it has been reported in [5] 
that ELM tends to produce better generalization performance 
than BP with the main advantage being the decrease in 
computational time while training the network. 

Training an SLFN is equivalent to obtaining a minimum 
norm least squares solution of the matrix equation YH =β . 
In the course of learning, once the input weights and the 
hidden layer biases are randomly chosen they will not be 
adjusted at all. By Theorem 2.1, the smallest norm least-
squares solution of the above learning machine is obtained 
when 

YH +=β̂  
Since sin and sigmoid are infinitely differentiable 

functions the ELM algorithm can be successfully applied by 
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choosing any one of them as an activation function. 
However, we studied the application of ELM algorithm also 
using hardlim activation function in all our experiments.  

The ELM algorithm for SLFN can be stated [5] as 
follows: 
 Input: Training set { } Miii yx ,...,2,1),( =  where 

m
ix ℜ∈ and k

iy ℜ∈ ; L  the number of hidden neurons 

and the activation function )(⋅g . 
1. For Li ,...,2,1=  randomly assign the input weight 

vector m
iw ℜ∈  and bias ℜ∈ib .  

2. Determine the matrix H defined by the equation )3( . 

3. Calculate +H . 
4. Calculate the output weights matrix β  by 

YH +=β̂ , 
where Y  is given by the equation )4( . 
Output: The Single hidden Layer Feedforward neural 
Network (SLFN) with the determined output weight vectors 

k
i ℜ∈β  for the randomly chosen weight 

vectors m
iw ℜ∈ and biases ℜ∈ib   for Li ,...,2,1= .  

 For any input sample mx ℜ∈ the output value y can 
be calculated using the following formula: 

   ).(ˆ
1

ii

L

i
i bxwgy +′= ∑

=

β  

where iw , ib and the activation function g(.) are input and 

the weight vectors k
i ℜ∈β  are the output of the ELM 

algorithm.  
 

IV. EXPERIMENTS AND RESULTS 
 

A.  Preprocessing of the Data 
Time series prediction is the problem of determining a 

function having the underlying relationship between the 
previous values and the next value. Suppose N  
observations Niix ,...,2,1)}({ =τ  of the time series )(tx  are 
given with time delayτ . In all our experiments first the 
original data is normalized with zero mean and standard 
deviation equals to one. Then the normalized data is 
transformed into auto corrected data, i.e. for a given positive 
integer value m  and  )(,...,1 mNi −=  we define the auto 
corrected input vector 

m
i mixixixx ℜ∈′−++= )))1((),...,)1((),(( τττ  consists 

of the previous signal values.  Here m is called the 
embedding dimension or memory order. The normalized 
auto corrected input vectors and their corresponding output 
values can be represented in the following matrix form  

 

       (5) 
 

and 

                                  (6) 
 
respectively. Note that m  determines the dimension of the 
input vectors of the ELM algorithm. The time series 
prediction problem may be stated as: for  Mi ,...,1=   we 

predict the target signal value ℜ∈+= ))(( τmixyi  

corresponding to the auto corrected input vector m
ix ℜ∈ . 

Observe that the number of neurons in the output layer is 
.1=k   

In order to demonstrate the effectiveness of ELM learning 
algorithm we have taken the time series generated by the 
Mackey Glass delay differential equation with different 
delays[2], Santa Fe A and UCR heart beat rate chaotic time 
series datasets. We have performed our experiments by 
choosing the sigmoid, sin and hardlim activation functions 
in the ELM learning algorithm. We use the Root Mean 
Square Error (RMSE) to evaluate the prediction performance 
of ELM. This is calculated using the following formula 
given by: 

,)~( 2

1

1
i

n

i
in yyRMSE −= ∑

=

 

where  n  is the number of test data and iy  and iy~  are the 
actual and predicted values of the time series respectively. 
For Mackey Glass and Santa Fe A heart beat rate time series 
datasets, the first 70% of the total number of data values for 
training and the remaining data values for testing are used.  
However, for UCR time series dataset 60% of the total 
number of sample values for training and the remaining 
samples for testing are used. In all our experiments we 
applied the ELM source code1 written in Matlab.  

For choosing the memory order )(m  and the number of 
hidden neurons )(L  of the ELM network parameters, we 
vary m  and L  over a set of predefined values and 
determine the pair of values for m and L which gives the 
best performance based on the criteria of the RMSE on the 
test set. This is performed for each of the transfer functions, 
i.e. for sigmoid, sin and hardlim functions, and the best 
results obtained are reported. 

 
B.  MG17, MG30  Time  Series   
Consider the Mackey-Glass time delay differential 

equation [2,8] given by           
                             

10)(1
)()()(
τ
τ
−+
−

+−=
∂

∂
tx

txatbx
t
tx

 , 

 where a, b are parameters and τ  is the time delay.  We 
study the application of ELM algorithm on two time series 
generated 
 

                                                 
1 http://www.ntu.edu.sg/home/egbhuang 
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Fig. 1 The Mackey Glass Time Series with time delay 17=τ  
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Fig. 2 The Mackey Glass Time Series with time delay 30=τ  
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Fig. 3 Predicted result for 5=m  when using sin and sigmoid activation functions for MG17  time series 

corresponding to the time period from 1052 to 1201 
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 Fig. 4 Predicted result for 7=m  when sin and sigmoid activation functions are used for MG30 time series  

corresponding  to the time period from 1052 to 1201 
 
 
by the above differential equation  which are widely used as 
benchmark data set values for analyzing the generalization 
ability of the method of prediction. For this, consider the  
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Fig. 5 Error plot for MG17 time series when different activation 
functions are used with memory order  5=m  
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Fig. 6 Error plot for MG30 time series when different activation 

functions are used with memory order  7=m  
 
chaotic time series [2,8] generated using the parameter values 
a=0.2, b=0.1 and 30,17=τ  where τ  is the time delay. Let 
us call these time series corresponding to 30,17=τ  as 

17MG and 30MG  respectively.  
In order to avoid the initialization transients, the initial 

3500 samples are discarded [8]. We considered 1050 data 
points corresponding to the sample time period from 3501 to 
4550 for training and the sample time period from 4551 to 
5000 for testing. In Fig. 1 and Fig. 2 we have shown the time 
series data values from 1 to 1500 (after discarding the initial 

3500 samples) for MG17 and MG30 time series respectively 
where the first 1050 samples are taken for training and the 
remaining 450 samples for testing. Experiments were 
performed using all the activation functions namely sin, 
sigmoid and hardlim functions. As it was discussed earlier, the 
best prediction performance for MG17 time series was obtained 
by varying the memory order }9,7,5{=m and the number of 
hidden neurons }41,...,3,1{=L  for the choice of each one of 
the above activation functions. It was found that the best 
prediction performance was obtained for the sigmoid 
activation function having its corresponding values of m and L 
being m = 5 and L = 37 respectively. In Fig. 3 we have shown 
the actual and the predicted time series of MG17 for the time 
period from 1052 to 1201. The RMSE curve is plotted for all 
the activation functions with the memory order m=5 on the 
test data set in Fig. 5. 

Similarly for MG30 times series, by varying the memory 
order }9,7,5{=m and the number of hidden 
neurons }77,...,3,1{=L  for the choice of each one of the 
activation functions, the best prediction performance was 
obtained again for the sigmoid activation function but  the 
corresponding values of the memory order and the number of 
hidden neurons being 7=m   and  77=L respectively. In 
Fig. 4 we have shown the actual and the predicted time series 
of MG30 for the time period from 1052 to 1201. Also we have 
plotted the RMSE curve obtained for each of the activation 
functions with the memory order m=7 on the test data set in 
Fig. 6. 

 
C.  Santa Fe-A Time Series  
This is a laser time series data set shown in Fig. 7 recorded 

from a Far-Infrared-Laser in a chaotic state, which is 
approximately described by three coupled non-linear ordinary  
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Fig. 7 The Santa Fe A Laser Time Series 
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Fig. 8 Predicted result for 5=m  when using sin and sigmoid activation functions on Santa Fe-A time series corresponding to the time period 

from 702 to 851 
 

differential equations2. The data set contains 1000 data points 
(See Fig. 7). Among them the first 700 data points will be used 
for training and the remaining 300 points for testing. By 
varying m = {3,5,7} and L = {1,3,…,81} it was determined 
that the best prediction performance was obtained for the sin 
activation function for which the corresponding values of the 
memory order and the number of hidden neurons being m=5 
and L= 49 respectively. In Fig. 8, we have plotted the actual 
and the predicted values for sin and sigmoid activation 
functions corresponding to the time period from 702 to 851. 
Finally, for m = 5 we have shown the RMSE values for all the 
activation functions in Fig. 9. 
 

D. UCR Time Series Datasets 
We repeat our experiments on time series datasets from a 

diverse set of domains available from UCR Time Series Data 
Mining Archive3. We consider two important time series 
datasets both of human heart beat. 
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Fig. 9 Error plot for Santa Fe-A time series for each of the activation 

function is used with memory order  5=m  
 

i. The Time Series of Human Heart Beat  
First let us consider the ECG time series of human heart 

beat dataset shown in Fig. 10. ECGs are time series of the 
electrical potential between two points on the surface of the 

                                                 
2 This Time Series is available on: httt://www-
psych.stanford.edu/~andreas/Time-Series/SantaFe.html 
3 http://www.cs.ucr.edu/~eamonn/time_series_data. 

body caused by a beating heart. This time series data set 
consists of 3751 sample values. In our experiment data points 
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Fig. 10 UCR time series of human   heart beat electro cardio- gram 

 
from 1 to 2251 are taken as the training set and the remaining 
points from 2252 to 3751 as the test set. As it was explained 
earlier, by varying the memory order }8,7,6,5,4,3{=m  and 
the number of hidden neurons }41,...,1{=L , the best 
prediction performance was obtained for the choice of sigmoid 
activation function for which the corresponding values of the 
memory order and the number of hidden neurons being 

5=m  and 41=L  respectively. From Fig. 11 we observe 
that the predicted values are in close agreement with the actual 
values. 
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Fig. 11 Predicted and actual values of human   heart beat ECG time 
series for the choice of sigmoid activation function where 5=m  

and L = 41 
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ii. The Time Series of Human Heart Beat (Second dataset)  
This is the second ECG time series used in our experiment 

and is shown in Fig. 12. It consists of 3750 data values. In this 
example, data values from 1 to 2251 are considered for 
training and the remaining data values from 2252 to 3750 as 
the test set. By varying the memory order }8,7,6,5,4,3{=m  
and the number of hidden neurons }81,...,1{=L ,the best 
prediction performance was obtained for the choice of sigmoid 
activation function having its corresponding values of the 
memory order and the number of hidden neurons being 

6=m  and 61=L  respectively. 
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Fig. 12 UCR time series (second dataset) of human   heart beat 

electro- cardiogram 
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Fig. 13 Predicted and actual values of human   heart beat (second 

dataset) ECG time series for the choice of sigmoid activation function 
where 6=m  and L = 61 

 
Fig. 13 illustrates the predicted and the actual values for the 

test set where the predicted values obtained using ELM and 
the actual values are shown in thin and thick solid lines 
respectively. The results show that the predicted values are in 
close agreement with the actual values.  
 

V.  CONCLUSION 
In this paper, we studied the application of Extreme 

Learning Machine algorithm for chaotic time series generated 
by the Mackey Glass delay differential equation with different 
time delays, Santa Fe A and UCR heart beat rate ECG time 
series. We performed our experiments using sigmoid, sin and 
hardlim activation functions and demonstrated that the ELM 
algorithm using sin and sigmoid activation functions can 
achieve high prediction accuracy. Also from our study we 

conclude that ELM is a promising method for time series 
prediction problems.  
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