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Abstract—The physical methods for RNA secondary structure
prediction are time consuming and expensive, thus methods for com-
putational prediction will be a proper alternative. Various algorithms
have been used for RNA structure prediction including dynamic
programming and metaheuristic algorithms. Musician’s behavior-
inspired harmony search is a recently developed metaheuristic algo-
rithm which has been successful in a wide variety of complex opti-
mization problems. This paper proposes a harmony search algorithm
(HSRNAFold) to find RNA secondary structure with minimum free
energy and similar to the native structure. HSRNAFold is compared
with dynamic programming benchmark mfold and metaheuristic algo-
rithms (RnaPredict, SetPSO and HelixPSO). The results showed that
HSRNAFold is comparable to mfold and better than metaheuristics
in finding the minimum free energies and the number of correct base
pairs.

Keywords—Metaheuristic algorithms, Dynamic programming al-
gorithms, Harmony search optimization, RNA folding, Minimum
Free Energy.

I. INTRODUCTION

T
HE importance of Ribonucleic Acid (RNA) has increased
in the recent years. It was found that RNA performs a

central role within the living cells such as carrying genetic
information (mRNA), interpreting the code (ribosomal RNA),
and transferring genetic code (tRNA). It also performs differ-
ent functions include catalyzing chemical reactions [1], [2],
directing the site specific modification of RNA nucleotides,
controlling gene expression, modulating protein expression
and serving in protein localization [3], [4]. The function
of RNA molecules determines many diseases caused by
RNA viruses. Identifying the secondary structure of an RNA
molecule is the fundamental key to understand its biological
function and predict its tertiary structure [5], [6].

The physical methods to determine the secondary structure
such as x-ray diffraction and NMR spectroscopy are difficult,
time consuming and expensive. Therefore the computational
approach to predict the secondary structure of RNA molecule
is an appropriate alternative.

RNA secondary structure prediction is not a hard problem.
It has been estimated that the number of secondary structures
modeled from the input of n nucleotides is greater than
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1.8n [7]. For example, Saccharomyces cerevisiae (X67579)
5S rRNA with 118 nucleotides in length has an estimated of
1.3 ∗ 1030 secondary structure models. The larger RNA, such
as the Sulfolobus acidocaldarius (D14876) 16S rRNA, with
1493 nucleotides, has an estimated total of 1.3∗10381 possible
secondary structure models.

Currently, two different approaches study the RNA sec-
ondary structures. The first one is the single sequence ap-
proach which predicts the secondary structure by searching the
minimum free energy (MFE). The second is the comparative
sequence analysis. In this approach, the iterative process takes
a sequence, applys accurate sequence alignments data and an-
alyzes the structure that is common to all the sequences in the
database. Most of the developed methods which based on the
free energy minimization either apply dynamic programming
(DP) or a metaheuristics on the domain.

This paper proposes a version of a Harmony Search (HS)
algorithm calls HSRNAFold to predict the RNA secondary
structure with MFE and similar to the known structure. The
performance of HSRNAFold is compared with both DP and
metaheuristic algorithms using standard sets of RNA test
molecules. Section II provides a short overview of RNA
secondary structure algorithms. RNA secondary structure pre-
diction is presented in Section III. HSRNAFold is introduced
in Section IV. The experimental results are presented in
Section V. Conclusions and future work are given in Section
VI.

II. RELATED WORK

The dynamic programming algorithms which based on free
energy minimization of a single RNA sequence has been
studied since the early 1970s. Mathews [8] provided a review
on the revolutions that have occurred in the development of a
number of algorithms. Ruth Nussinov et al. [9] predicted the
RNA secondary structure using DP method by maximizing
the number of base pairs . Then, in 1980, they adapted of
their original method to use a simple nearest-neighbor energy
model to enhance the results [10]. Michael Zuker and Patrick
Stiegler in [11] proposed using a slightly refined DP approach
that models the nearest neighbor energy interactions which
directly incorporates stacking into the prediction.

Later, Zuker et al. proposed the DP algorithm which called
mfold. It is still a popular algorithm to find MFE pseudoknot-
free secondary structure of an RNA molecule. Moreover, it
has become the benchmark for predicting the RNA secondary
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structure. mfold takes the primary RNA sequence as input,
and uses a complex thermodynamic model to evaluate the
free energy of the structures by seeking the pseudoknot-free
secondary structure with the MFE [12] [13]. RNAFold from
the ViennaRNA [14] package predicts the RNA secondary
structure through energy minimization. It reads an RNA se-
quence as input and provides three kinds of DP algorithms
to predict the structure: i) the MFE algorithm to find a
single optimal structure; ii) the partition function algorithm
to calculate the base pair probabilities in the thermodynamic
ensemble; iii) the suboptimal folding algorithm to generate all
suboptimal structures based on MFE.

On the other hand, many metaheuristics algorithms were
proposed such as Genetic Algorithms (GAs), Simulated An-
nealing (SA) and Particle Swarm Optimization (PSO). GAs
have been shown to achieve higher prediction rates of base
pairs than DP [15]. The more recent GAs works in this
area are RnaPredict and its parallelized version P-RnaPredict.
They showed that the quality is comparable to mfold [16]
[17]. SARNA-Predict has been introduced as a SA algorithm.
[5] [18]. It has attempted to predict the RNA secondary
structures with a low free energy and a high number of
correctly predicted base pairs when compared to known native
structures. Recently, SetPSO is a PSO algorithm was proposed
by Neethling and Engelbrecht [6]. Then, HelixPSO, another
version of POS, was proposed by Michael Geis and Martin
Middendorf [19]. Both Algorithms were used to find secondary
structures with MFE.

DP algorithm as mathematical technique can hit the global
optima in the small problems. However, in real world problems
there are some drawbacks. For examples, when the number of
variables increases, the number of evaluations of the recursive
function will also increase exponentially. For RNA Secondary
structure prediction the large number of structure alternatives
make it difficult to determine which one is more correct
[20]. On the other hand, the drawbacks of the most existing
metaheuristics approaches on the RNA secondary structure
domains are: i) they required more mathematics requirements;
ii) they need initial value settings for the decision variables;
ii) derivative information is also necessary and iii) they not
consider all the existing solutions when creating a new one
[21].

Harmony Search (HS) algorithm is an optimization tech-
nique that was developed by Geem [21]. It mimics the
musicians’ improvisation process. The HS algorithm has been
successful in a variety of optimization problems in several op-
timization fields such as: continuous engineering optimization,
vehicle routing, combined heat and power economic dispatch,
water pump switching problem, optimal scheduling of multiple
dam system and transport energy modeling [22].

III. RNA SECONDARY STRUCTURE PREDICTION
RNA molecule consists of a single stranded sequence of

four nucleotides: adenine (A), guanine (G), cytosine (C), or
uracil (U). This linear sequence is the primary structure of
RNA molecule.

The RNA strand can fold back upon itself. During the
folding process, the hydrogen bonds between the different

Fig. 1. RNA secondary structure components: stems (helices), interior
loops, hairpin loop, multi loops and bulges loops. This figure is created using
jViz.RNA [24] for the Deinococcus radiodurans organism.

nucleotides form the base pairs. These hydrogen bonds which
occur mostly between G and C, or A and U are called the
Watson-Crick base pairs and the bond between G and U
is called the wobble base pair. These base pairs; GC, AU,
and GU, and their mirrors, CG, UA, and UG are called the
canonical base pairs. The RNA secondary structure is defined
by a set of base pairs which satisfy the following constraints
[17], [23], [12]:

1) for (i,j), it must be canonical base pairs;
2) each base cannot share more than one base;
3) pairing bases must be at least three bases apart i−j > 3

and
4) two base pairs must not cross, i.e.:i, j

⋂

i
′
, j

′
= Φ or

for all (i, j), (i
′
, j

′
) either i < i

′
< j

′
< j or i

′
< i <

j < j
′

holds.

i) ii) iii) ;
The stability of the RNA secondary structure is quantified

as the amount of free energy being released or used by the
forming base pairs. The stability increases according to the
number of GC versus AU and GU base pairs and the number
of base pairs in a hairpin loop region. The number of unpaired
bases decreases the stability of the structure such as interior
loops, hairpin loop or bulges.

Since RNA folding is subject to the laws of thermodynam-
ics, there is an assumption that the correct structure is a low
energy structure [?]. The stability of the secondary structure
depends on the amount of free energy released to form the base
pairs. Thus, the more negative the free energy of a structure is,
the more stable a particular sequence is formed. This structure
is called the MFE secondary structure [25].

As many researchers have predicted the RNA secondary
structure, several metaheuristic algorithms start by computing
the set H of all the potential helices of an RNA molecule
[19] [20] [26]. A helix is specified by three constraints. 1)
Each helix must have at least three stacked canonical base
pairs. 2) The sequence or loop connecting the two strands
must be at least three nucleotides long. 3) Each helix must
not share its base with others. This is done by iterating over
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Fig. 2. The five steps of HS algorithms.

all pairs of bases and checking if they can be extended to a
helix. If the helix satisfies the constraints, it must be added to
H . After that the algorithm tries to find a subset of H that
defines an optimal secondary structure with the MFE [19] [20]
[26]. The helix size and the type of base pairs contribute to
decrease the free energy of an RNA secondary structure [19].
The native structure usually has a free energy of about 5-10%
from the MFE of the sequence. There are many functions that
compute the free energy of RNA secondary structure based-on
the different thermodynamic models.

IV. HSRNAFOLD

Geem et al in [21] introduced metaheuristic algorithm
inspired by a music performance process involving search for
a better harmony.

Similarities between the music improvisation and the opti-
mization algorithms are summarized as follows [27]: Music
improvisation seeks the best state (fantastic harmony) by
aesthetic estimation, as the optimization algorithms seek the
best state (global optimum) by objective function evaluation.
Aesthetic estimation is determined by a set of pitches played
by the joined instruments, just as objective function (function
evaluation) is determined by a set of values of decision
variables. Aesthetic sound quality (better aesthetic) can be
improved by practice after practice; objective function value
can be improved by iteration after iteration [21] [22] [28] [29].

HS has five steps [21] [22],as shown in Figure 1 and
as explained below: Initialize the problem and algorithm
parameters.

Initialize the harmony memory (HM).
Improvise a new harmony from HM.
Update the harmony memory.
Check the stopping criterion.
The descriptive detail of these steps is presented in Figure

2 and illustrated the following subsections:

A. Initialize the Problem and Algorithm Parameters

Mathematically, the general form of optimization problem
can be specified as follows:

⎧

⎨

⎩

Minimize f(x)
Subject to g(x) > 0, x = {x1, x2, . . . , xn}

h(x) = 0
(1)

Where f(x) is the objective function, and g(x) and h(x) are
the inequality and equality constraint functions respectively; x
is the set of each decision variable xi and N is the number
of decision variables (music instruments).

HS algorithm has four parameters to control the solution
procedure and these parameters must be specified in this step
as follows:

• The harmony memory size (HMS) which represents the
number of solution in the harmony memory (HM). The
harmony memory is a memory location where the entire
solution vectors are stored. This HM is similar to the
genetic pool in the GA [12].

• Harmony memory consideration rate (HMCR) which
represents the probability of picking up values from HM
to the variables.

• Pitch adjusting rate (PAR) which represents the probabil-
ity of further adjusting the pitch with neighboring pitches.

• The number of improvisations (NI) that represents the
number of iterations to be used during the solution
process, or stopping criterion.

In this step, a set of helices His built from a predefined
base pairs pool. The algorithm presented by [19] [20] [26]
was used to generate these helices. The objective of helices
generation is to construct the RNA stems.

B. Initialize the Harmony Memory

Initialize the HM matrix(N ∗M ) where N is the length of
RNA nucleotide and M is HMS. Then fill the HM randomly
by generating the feasible solution vectors. These solutions are
randomly created by subsets of helices from H . Thus, these
solutions must satisfy all RNA secondary structure constraints.
The HMS and their corresponding fitness function values are
shown below:

HM =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x1
1 x1

2 . . . x1
N−1 x1

N

x2
1 x2

2 . . . x2
N−1 x2

N
... . . . . . . . . . . . .

xHMS−1
1 xHMS−1

2 . . . xHMS−1
N−1 xHMS−1

N

xHMS
1 xHMS

2 . . . xHMS
N−1 xHMS

N

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⇒
⇒
⇒
⇒
⇒

f(x1)
f(x2)
...
f(xHMS−1)
f(xHMS)

(2)

Where each xi vector and f(x) represent a feasible RNA
secondary structure and it’s corresponding free energy function
respectively.

Each structure is evaluated by using RNAeval algorithm
from the ViennaRNA and all solutions in the HM are sorted
out based on the free energies progressively.
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TABLE I
TEST RNA SEQUENCES WITH THEIR ORGANISM, CLASS, ACCESSION NUMBER AND SIZE

Organism Accession No. RNA class Size
Saccharomyces cerevisiae X67579 5S rRNA 118

Haloarcula marismortui AF034620 5S rRNA 122
Aureoumbra lagunensis U40258 Group I intron, 16S rRNA 468

Drosophila virilis X05914 16S rRNA 784
Xenopus laevis M27605 16S rRNA 945

Sulfolobus acidocaldarius D14876 16S rRNA 1493

C. Improvise a New Harmony

Generating a new harmony is called ’improvisation’ [21]. A
new harmony vector x

′
= (x

′
1 x

′
2 . . . x

′
N ), is generated based

on three parameters: memory consideration, pitch adjustment
and random selection. It is generated as follows: i) for each
component x

′
i , pike the component of x

′
i randomly from any

of the values in the specified HM range (x
′1
i − x

′HMS
i ) with

the probability of Phmcr. ; ii) the rest of the components
of x

′
i are picked by random value with the probability of

1 − Phmcr. For example, a HMCR of 0.95 indicates that the
probability of HS algorithm to choose the decision variable
value from historically stored values in the HM is 95 % and
the probability of choosing a new random value in the allowed
range is (100- 95) % and iii) change x

′
i has the probability of

Ppar with small amount(bw)of changes taking place, for pitch
adjustments: x

′
i ← x

′
i ± bw ∗ rand(). It has been noted that

the Ppar will be tiny and leads to zero, because changing the
position in the secondary structure usually yields infeasible
structure.

D. Harmony Memory Update

Evaluate the new harmony (structure) x
′
= (x

′
1 x

′
2 . . . x

′
N )

by calculating it’s energy. If the value of its objective function
is better than the objective function of the worst harmony in the
HM, the new harmony is included in the HM and the existing
worst harmony is excluded from the HM. Subsequently, the
vectors are sorted out based-on their free energies.

E. Termination criterion check

The process repeats step IV-C and IV-D until the maximum
number of iterations (number of improvisations) is reached.

The pseudo code of the modified HS algorithm (HSR-
NAFold) is shown in Figure 3.

V. EXPERIMENTAL RESULTS

The implementation of the proposed algorithm was im-
plemented by C#. For the experiments, six different RNA
sequences lengths were used. Since these sequences have
already been used by other authors, HSRNAFold can be
compared with HelixPSO, RnaPredict, SetPSO and mfold.

The test sequences were taken from the comparative RNA
website [30].

These sequences represent good variety of sequence lengths,
organisms, and RNA types. The tested RNA sequences are
listed in Table I together with their organism, accession

Fig. 3. The pseudo code of HSRNAFold algorithm.

number, class and size. Each chosen sequence has a known
structure available for comparison. These structures were
determined by comparative methods.

Table II shows the suitable parameters setting of
HSRNAFold after 50 runs and the parameters that Neethling et
al. and Geis et al. in [6] and [19] used to implement SetPSO,
HelixPSO, and to re-implement RnaPredict.

For the short sequences (lengths 118 and 122) and medium
sequences (lengths 468 and 784) the values for HMSR were
0.95 and 0.90 are used respectively. For the long RNA se-
quence of length (945 and 1492) the values of HMSR were
0.90 and 95 respectively. For PAR parameter the value was
0.50.

HSRNAFold ran over 20 times for all the test sequences
in the search space including the maximal number of he-
lices. Free energies of the best secondary structure that were
found by both HSRNAFold and RnaPredict algorithms after
280000 generations are shown in Table III . It can be seen
that HSRNAFold found a free energy of secondary structure
between (-9.35 and -52.16) kcal/mol. This is better than the
free energy found by RnaPredict.

The free energies of the best secondary structure that was
found by both algorithms, SetPSO and HSRNAFold after
35000 generations are shown in Table IV. It can be seen
that HSRNAFold found secondary structures which have free
energy between (-0.5 and -80.46) kcal/mol is better than the
secondary structures found by SetPSO.

Comparing HSRNAFold with HelixPSO, it is obvious that
HSRNAFold achieved better results in term of finding the
MFE between (-7.25 and -47.26) kcal/mol. Free energies of the
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TABLE II
THE SETTING OF SIZE AND NUMBER OF ITERATION PARAMETERS FOR RNAPREDICT, SETPSO, HELIXPSO, AND HSRNAFOLD

RnaPredict SetPSO HelixPSO HSRNAFold
Size Population size 700 Swarm size 50 Swarm size 500 If No. of helices ¡ = 500 then HMS= H.size Else HMS= 500

No of Iter. 280,000 35000 280,000 280,000

TABLE III
FREE ENERGY ( ΔG IN KCAL/MOL) FOUND BY RNAPREDICT AND
HSRNAFOLD AFTER THE GENERATION OF 280000 SECONDARY

STRUCTURES; THE BEST RESULTS ARE SHOWN IN BOLD.

[!h]

RNA size RnaPredict HSRNAFold
118 - -53.9
122 - -56.62
468 -124.4 -133.75

784 -124.3 -151.26

945 -207.8 -259.96

1493 -633.8 -662.3

TABLE IV
FREE ENERGY ( ΔG IN KCAL/MOL) FOUND BY SETPSO AND

HSRNAFOLD AFTER THE GENERATION OF 35000 SECONDARY
STRUCTURES; THE BEST RESULTS ARE SHOWN IN BOLD.

RNA Size SetPSO HSRNAFold
118 -53.4 -53.9

122 -48.42 -56.62

468 - -133.75

784 -105.8 -151.26

945 -173.3 -253.76

1493 - -662.3

best secondary structure that were found by both algorithms
after 280000 generations are shown in Table V.

TABLE V
FREE ENERGY (ΔG IN KCAL/MOL) OF SECONDARY STRUCTURES FOUND

AFTER 280000 SECONDARY STRUCTURES HAVE BEEN GENERATED BY
HELIXPSO AND HSRNAFOLD; THE BEST RESULTS ARE SHOWN IN BOLD.

RNA Size HelixPSO HSRNAFold
118 - -53.9
122 - -56.62
468 -126.5 -133.75

784 -125.7 -151.26

945 -212.7 -259.96

1493 -653.5 -662.3

On the other hand, HSRNAFold achieved comparable re-
sults compared with the DP benchmark mfold. The free
energies of the best secondary structure that were found by
both algorithms at the end of a run are shown in Table VI.

Figures V and V show that the secondary structure predicted
by HSRNAFold and SetPSO have been compared with the
known secondary structure for the Saccharomyces cerevisiae
sequence. The dark grey lines represent the base pairs for
both the known and predicted structure. The light grey lines
represent the predicted base pair which is not found in the
known structure. The black lines indicate the base pairs in the
known structures which have not been predicted.

TABLE VI
FREE ENERGY (ΔG IN KCAL/MOL) OF SECONDARY STRUCTURES FOUND

AFTER 280000 SECONDARY STRUCTURES HAVE BEEN GENERATED BY
MFOLD AND HSRNAFOLD; THE BEST RESULTS ARE SHOWN IN BOLD.

RNA length mfold HSRNAFold
118 -53.5 -53.9

122 -56.44 -56.62

468 -140.5 -133.75
784 -146.3 -151.26

945 -250.6 -259.96

1493 -803.3 -662.3

It is noted that HSRNAFold could find 33 base pairs out
of 37, which is 89.2% of the known base pairs while SetPSO
28 could only find 28 base pairs out of 37(75.7%). The
result with regards to mfold was 89.2%. From Figure V, it

(a)

(b)
Fig. 5. The secondary structures of Saccharomyces cerevisiae 5S rRNA
(X67579) predicted by HSRNAFold and SetPSO compared to the native
structure. (a) HSRNAFold structure to native structure. (b) SetPSO structure
to native structure.

can be observed that HSRNAFold algorithm performance
is influenced by the length of RNA sequence. That means
finding structure with MFE only needs less iterations for
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(a) (b)

(c) (d)

(e) (f)
Fig. 4. The optimization behavior of HSRNAFold with all test sequences. (a) Saccharomyces cerevisiae over 100 generations;(b) Haloarcula marismortui
over 1000 generations; (c) Aureoumbra lagunensis over 10000 generations; (d) Drosophila virilis over 10000 generations; (e) Xenopus laevis over 100000
generations; and (f) Sulfolobus acidocaldarius over 300000

the short sequences, whereas for the long RNA sequence,
it needs a more iterations. For all sequences, they required
short time (iterations) to find the optimum solution except
Sulfolobus acidocaldarius. For example, the number of
iterations required to find the minimum free energies of
Saccharomyces cerevisiae and Sulfolobus acidocaldarius are
around 30 and 300000 iterations respectively. As noted in
Figure 5, the trend goes down gradually towards the optimum
solution in the first iterations. Then, it slowly approaches the
optimum solution in the last iterations. This behavior can be
demonstrated in the initial iterations whereby the diversity is
seen to be high. Consequently, the opportunity to generate

better solution can be optimally attained. In last iterations, the
convergence in the search space is seen to be high. Therefore,
the opportunity to generate good solution than the worst
solution in the search space is less. As a result, generating
a better solution will lead to the increase of the number of
iteration to reach the optimum solution.

VI. CONCLUSION

In this paper, a harmony search algorithm (HS) called
HSRNAFold is presented to find the RNA secondary structure
with MFE. Compared to DP and metaheuristics algorithms,
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HSRNAFold is found to be comparable with mfold. It achieved
better results than GA and PSO in predicting the RNA sec-
ondary structure with MFE and similar to the known structure.

On the other hand, HSRNAFold requires long time to reach
the optimum solution with the large sequences compared to
the small sequences.

For future work, refinement of the helix generation
algorithm and study on the effect of the HS parameters to
enhance the results should be investigated. Code optimization,
effect of parameters adaptation and the possibility to hybridize
HS with other optimization algorithms to enhance the HS
performance is needed to be studied.
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