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Abstract—In this paper, we consider nested sliding mode control 
of SISO nonlinear systems, perturbed by bounded matched and 
unmatched uncertainties. The systems are assumed to be in strict-
feedback form. A step wise procedure is introduced to obtain the 
controller. In each step, a continuous sliding mode controller is 
designed as virtual control law. Then the next step sliding surface is 
defined by using this virtual controller. These sliding surfaces are 
selected as nonlinear static functions of the system states. Finally in 
the last step, smooth static state feedback control law is determined 
such that the output reaches the desired set-point while the system is 
forced arbitrary close to the intersection of sliding surfaces and the 
states remain bounded. 

Keywords—. Sliding mode control, Strict-feedback form, 
Unmatched uncertainty, output regulation.

I. INTRODUCTION

In the conventional Sliding Mode Control (SMC), the 

control of an thn  order dynamical system is effectively 
replaced by the controllers design for two lower order 
systems. Thus each sliding mode controller design contains 
two steps: 1) Design a discontinuous control term to force the 
system states onto the sliding mode in finite time (reaching 
phase), 2) design the sliding surface such that the reached 
states slide to the origin (sliding motion). Sliding surfaces in 
SMC can be chosen static linear as in [1]-[4], dynamic linear 
as in [7], static nonlinear as in [5] and [6], and dynamic 
nonlinear as in [8]. 

The ideal sliding mode control provides robustness against 
matched uncertainties; it means that if a discontinuous switch 
is used in the SMC (ideal SMC), regardless of any matched 
uncertainties and disturbances, system states slide to the 
origin, [1] and [2]. In continuous SMC, effects of matched 
disturbances and uncertainties in the closed-loop system can 
be reduced arbitrarily by tuning the continuous switch 
sharpness, [1] – [3] and [5]. 

Generally this desirable sliding action can not be 
maintained, if the uncertainties and disturbances are 
unmatched. Some control methodologies such as [7] and [8] 
have been developed to combat this problem. In [7] the 
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problem is addressed for linear systems with the dynamic 
sliding surface, whereby the so called 'reaching phase' 
dynamics are of higher order. In [8], higher order sliding 
mode control is considered for nonlinear systems in strict-
feedback form, perturbed by bounded and unmatched 
disturbances. These methods have the advantage that any 
external disturbances only affect the system reaching phase, 
and not the sliding motion. But these methods only concern 
the external disturbances and do not guarantee the closed-loop 
stability or any other performance in the presence of 
unmatched uncertainties. 

This paper introduces a new methodology to achieve set-
point regulation with arbitrary attenuation level against any 
bounded matched and unmatched uncertainties for the 
nonlinear systems in strict-feedback form. The method is 
based on the continuous sliding mode control and 
backstepping design. In each step of the design procedure, a 
continuous sliding mode controller is designed as virtual 
control law for the next state. In this method any unmatched 
uncertainty can be seen as a matched uncertainty due to its 
virtual control input. In the last step, the obtained control law 
attenuates the effects of all uncertainties. The attenuation level 
of each uncertainty depends on the sharpness of its related 
continuous switch. All the sliding surfaces in this procedure 
are selected as nonlinear static functions as in [5]. 

The reminder of the paper is organized as follows: section 
II contains the problem formulation and used notations. In 
section III the design procedure of the nested sliding mode 
controller is introduced and discussed. Finally, in section IV 
an analytic example is employed to show the effectiveness of 
the proposed method which clearly indicates the advantages 
gained by the nested SMC. The paper ends with some 
concluding remarks in Section V. 

II. PROBLEM STATEMENT

Suppose the perturbed nonlinear system is in the strict-
feedback form (1). 
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where 1
T n

nx x x R  is the state vector, y R

and u R  are the output and control input, respectively. 

, : i
i if g R R  for 1, ,i n  are known and sufficiently 

smooth functions, and 1( , , ) 0,i ig x x

1

T i

ix x R . : ; 1, ,i
i R R i n  are bounded 

uncertainties. ; 1, , 1i i n  are called unmatched 

uncertainties and n  is called matched uncertainties. 

The goal is to design the control law that regulates the 
output y  of system (1) to arbitrary small neighborhood of the 

set-point dy . Also state boundedness is desired. 

Before proceeding, it is important to formally list the 
notation and terminology used through the paper. 

The thi  subsystem will be presented by the following 
functions and vectors definitions: 

1
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i ix x x
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Continuous switch function used instead of signum in 
design steps is defined by (2) and depicted in Fig.1. 

12
( ) tansigm x x  (2) 

Fig1. ( )sigm x  as a continuous switch function 

III. DESIGN PROCEDURE

Design of Nested SMC for system (1) consists of n  steps. 
In the first step sliding surface is chosen as the difference 
between output and desired set-point to guarantee output 
regulation. In each of the other steps, continuous sliding mode 
controller with nonlinear sliding surface is designed as virtual 
controllers. The difference between this virtual control law 
and the next state forms the next step sliding surface. 

Step1: Suppose the dynamic of 1 1x x  subsystem (3) with 

virtual control signal 2 1 1( )x x  and sliding surface (4). 

1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( )x f x g x x x  (3) 

1 1d ds y y x y  (4) 

in this system 1  is matched uncertainty. If a sufficiently 

smooth function 1 1( )x  that satisfies inequality (5) exists, the 

continuous sliding mode control law for this system will be 
(6). 

1 1 1 1 1( ) ( )x x b  (5) 

where 1b  is an arbitrary positive scalar. 
1

1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( )x g x f x x sigm s  (6) 

where 1 0  is a parameter for tuning the sharpness and 

smoothness of the continuous switching function. It means by 
increasing 1 , the continuous function 1 1( )sigm s  approaches 

the ideal discontinuous signum nonlinearity 1 1sgn( )s .

Lyapunov function 2
1 11 2V s  shows the robust stability of 

system (3) with controller (6). 

1 1 1 1 1 1( )V s f g  (7) 

By replacing (6) in (7), 

1 1 1 1 1 1( ( ) )V s sigm s  (8) 

if 1  are chosen sufficiently large, 1 1( )sigm s  could be 

approximated by 1sgn( )x . Thus: 

1 1 1 1 1

1 1 1
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s

Using inequality (5) leads to: 

1 1 1V b s  (9) 

(9) shows that y  converges to dy  ( 1x  met the sliding 

surface 1s ) in finite time. It can be easily shown this time is 

less than 1(0)ix b .

Now if 2 1 1( )x x  the 1x  subsystem will be robustly 

regulated. Thus 2 2 1 1( )s x x  is selected for the next 

sliding surface (step2). 

Step i: Suppose ix  subsystem (10) and set 1 ( )i i ix x

as virtual control. 
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in system (10) 1i and i  are unmatched and matched 

uncertainties, respectively. 
In step i-1 virtual control law 1 1( )i ix  has been designed 

for ix , thus (11) is selected for thi  sliding surface. 

1 1( )i i i is x x  (11) 

by this surface definition the robust stabilizing controller 
(12) is obtained. 
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where i  is a sufficiently smooth function which satisfies 

(13). 

1
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ib  is a positive scalar constant. 

Lyapunov function 2 2i iV S  can show the states of (10) 

reach the sliding manifold (11). 

1
1 1 1

1

i
i i i i i i i i i i

i

V S f g f g x
x

 (14) 

Replacing ( )i ix  by (12) after some simple 

manipulations, (14) leads to: 

1
1
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i
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 (15) 

If i  is sufficiently large (15), 

1
1

1

i
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then with respect to (13), we have 

i i iV b S  (17) 

(17) shows that the states of ix  subsystem converge to 

surface (11) in a time less than max (0)i i it x b  and remain 

on it. This means that after this time 1 1( )i i ix x  and the 

effect of i  is rejected (when ).

Step n: The design procedure is completed in this step by 
setting i n  in step i. the control law (18) is obtained in this 
step to force the overall system states to sliding surface 

1( )n n n nS x x .
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where n  is a function which satisfies (19) with scalar 

constant nb .

1
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Now the desired control law is obtained. Some remarks and 
hints should be noticed. 

Since i s in the first 2n  steps of the proposed method 

should have thn i  bounded derivatives, unlike the sliding 
mode control, discontinuous switch can not be used even 
theoretically. Also, in the last two steps discontinuous 
switches are not used to avoid chattering problem. 
In the ith step of this method, i  is seen as matched 

uncertainty, thus all these uncertainties are rejected by 
obtained control law (18), when 1, ,i i n . For 

actual i  effect of these uncertainties are reduced 

arbitrarily depend on 1 n .

IV. EXAMPLE

Consider the third order nonlinear system in strict feedback 
form, [5]. 

2
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sin

x x x

x x x

x x x u

 (20) 

Suppose the parameters 1 [0, 2] , 2 [ 1,1]  are 

uncertain, and let 1
ˆ 1 , 2

ˆ 0  be their known nominal 

values. The system can be represented in the form 
2
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where 2
1 1 1( 1)x  and 2 2 2sin x  are bounded 

unmatched uncertainties. 
Using the design procedure, we have in step1:

2
1 1 1x b

2
1 1 1 1 1( ( ))dx sigm x y

step2: 
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step 3: 

2 2 2
3 3 1

1 2

b x
x x

and nested sliding mode control law is obtained as (22). 

22 2
1 3 1 2 3 3 3 3 2

1 2
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 (22) 
Fig2. shows the closed-loop response when 1dy ,

1 2 0  and (0) 0 0 0
T

x . The controller 

parameters are chosen as 1 2 3 10  and 

1 2 3 1b b b . This figure illustrates the effectiveness of 

nested sliding ode controller for the nominal system. The 

required control cost is 
4

0
( ) 18.15u t dt .

Response of the perturbed system by 2
1 1x  and 

2 2sin x  ( 1 22, 1 ), are showed in Fig.3. Control 

parameter and initial conditions are the same as the first 
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simulation. In this situation, output reaches to 1.17y . the 

control signal energy is 
4

0
( ) 37.8u t dt .

Fig2. Nested sliding mode control response for nominal system with 

10i .

Fig3. Nested sliding mode control response for perturbed system with 

1 2 3 10 .

Second simulation is repeated by setting 1 2 3 50 ,

the results are shown in Fig.4. Final output and required 

control signal energy are 1.025y  and 
4

0
( ) 172u t dt .

Comparison of second and third simulations clearly 
illustrates the role of i s in the closed-loop response. Larger 

i s leads to lower tracking error and Required control cost 

increases in this situation. Chattering (high frequency signal 
with limited amplitude) in control signal may occur when too 
large i s are used. Thus i s should be tuned to make a trade 

off between control energy and tracking error. 

Fig4. Nested sliding mode control response for perturbed system with 

1 2 3 50 .

V. CONCLUSION 

Robust control of perturbed nonlinear system in strict 
feedback form is achieved via introduced method called 
nested sliding mode control. Step wise algorithm is followed 
to obtain the controller. In each step, the unmatched 
uncertainties are seen as a matched one for its virtual 
controller, thus using virtual sliding mode controller rejects 
them. The obtained controller in the last step, contains n  ( n

is the system dimension) nested continuous switch functions 
where each of them reduces the effect of the related 
unmatched uncertainty. For each switch function and virtual 
sliding control law, an static nonlinear sliding surface is 
designed. 
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