
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

429

Probability Density Estimation Using Advanced Support Vector
Machines and the Expectation Maximization Algorithm

Refaat M Mohamed, Ayman El-Baz and Aly A. Farag, Senior Member IEEE ∗

Abstract This paper presents a new approach for the prob-
ability density function estimation using the Support Vector Ma-
chines (SVM) and the Expectation Maximization (EM) algorithms.
In the proposed approach, an advanced algorithm for the SVM den-
sity estimation which incorporates the Mean Field theory in the
learning process is used. Instead of using ad-hoc values for the para-
meters of the kernel function which is used by the SVM algorithm,
the proposed approach uses the EM algorithm for an automatic op-
timization of the kernel. Experimental evaluation using simulated
data set shows encouraging results.

Keywords Density Estimation, SVM, Learning Algorithms,
Parameters Estimation.

I. INTRODUCTION

DE NSITY estimation is a major ingredient in Bayesian pat-
tern recognition and machine learning. Many algorithms have

been introduced for solving the density estimation problem [1].
Support Vector Machines (SVM) have been developed by Vap-
nik [2] to solve the classification problem, but recently, SVM have
been successfully extended to regression and density estimation
problems [3]. SVM are gaining popularity due to many attrac-
tive features and promising empirical performance. For instance,
the formulation of SVM density estimation embodies the Structural
Risk Minimization (SRM) principle which has been shown to be
superior to traditional Empirical Risk Minimization (ERM) princi-
ple employed in conventional learning algorithms (e.g. neural net-
works) [4]. It is this difference which makes SVM more attractive
in statistical learning applications.

The traditional formulation of the SVM density estimation prob-
lem raises a Quadratic optimization Problem (QP) of the same size
as the training data set. The (QP) is computationally expensive and
solving such a problem is not trivial [5].

In this paper, a new formulation of the SVM density estima-
tion problem is proposed. This formulation enables the use of the
Mean Field theory (MF) in the learning of the SVM algorithm. The
MF methods provide efficient approximations which are able to
cope with the complexity of probabilistic data models, see [6]. MF
methods replace the intractable task of computing high dimensional
sums and integrals by the much easier problem of solving a system
of linear equations.

The Expectation Maximization (EM) algorithm is a general
method of finding the maximum-likelihood estimate (MLE) of the
parameters of an underlying distribution from a given data set, when
the data set is incomplete or has missing values. In this paper, the
EM algorithm is used for automatic selection of the kernel function
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parameters instead of using ad-hoc values for these parameters. As
a common choice, a Gaussian Radial Basis(GRB) kernel is used in
the proposed approach. The EM algorithm is used to automatically
select the covariance matrices of the kernels centered at the training
instants.

Experimental evaluation of the proposed algorithm is carried out
using synthetic data. The performance of the proposed algorithm is
compared with previous algorithms. The evaluation is based on the
Levy distance and the Kullback-Leibler distance. The results show
encouraging performance of the proposed SVM density estimation
algorithm with automatic selection of the kernel parameters.

II. DENSITY ESTIMATION USING THE SVM

Given a random vector Y, the relation: P (y) = P (Y < y), de-
fines the cumulative probability distribution function (CDF) of the
random vector Y. The probability density function (PDF), p(y), is
a nonnegative quantity and it is related to the CDF by the relation:
P (y) =

∫ y

−∞ p(y′) dy′. The density estimation problem can be
stated as follows: given a random sample D = {y1,y2, . . . ,yn}
drawn from an unknown random distribution, estimate the density
function p(y) which underlies the distribution of the sample D.

From the above discussion, the probability density function p(y)
can be easily obtained from:

p(y) =
d

dy
P (y) (1)

The empirical cumulative distribution function Pn(y) is defined as:

Pn(y) =
1
n

n∑
k=1

I(−∞, y](yk) (2)

where, I(−∞, y](u) is the indicator function. Pn(y) converges in
probability to the cumulative distribution function P (y) (e.g., [7] ).

Thus, one of the suggested solutions of the density estimation
problem is to use Pn(y) to get an approximation for P (y). Then,
the approximate P (y) is differentiated to get p(y) (see Eq.(1)). So,
a training data set D = {(yi, ti) : ti = Pn(yi); i = 1, 2, . . . , n} is
generated from D and it is used by a regression algorithm to solve
the density estimation problem in Eq. (1), in the data (image) space,
in order to obtain a continuous approximation for the distribution
function. This approximation can be used to express the solution in
the pre-image space to get an estimate for the density function.

The Support Vector Machines (SVM) can be employed to obtain
a continuous approximation for the distribution function. The mo-
tivation behind using the SVM as a regression tool is that a dense
continuously differentiable approximation for the distribution func-
tion can be obtained which can be safely differentiated to obtain the
density function.
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A. SVM Regression

In this section the Support Vector Machines (SVM) as a regression
tool is presented. The detail foundation of the SVM regression can
be found in our previous work [3], but here only the main outlines
of the algorithm are presented. In the following, the SVM as a re-
gression tool is considered as the maximum a posteriori (MAP) pre-
diction with a Gaussian prior under the Bayesian framework. Thus,
the output from the SVM regression for the sample D is represented
as a Gaussian process with a zero mean in the following form:

p(g(D)) ∼ N (g (D) |0,Kn)

=
1√

(2π)n det (Kn)
exp

{
−1

2
g (D)K−1

n g (D)T

}
(3)

where Kn = [K (yi,yj)] is the covariance matrix at the points of
D and g (D) = [g (yi)] is the SVM output vector.

The performance of the SVM regression algorithm is character-
ized by the Vapnik’s ε-loss function which has the form:

L (t, g(y)) =

{
0 if |t − g(y)| ≤ ε

|t − g(y)| − ε otherwise
(4)

Depending on this loss function, the likelihood of the target out-
put vector T given the actual SVM output will be in the form:

p(T |g(D))=
(

C

2 (εC + 1)

)n

exp

{
−C

n∑
i=1

L(ti, g(yi))

}
(5)

where: T = [t1, t2, . . . , tn].
Using Equations (3) and (5) and from Bayes’ theorem:

p (g (D) |D) =
p (D|g (D)) p (g (D))

p (D)

=
M exp

{
−C

∑n
i=1 L(ti, g(yi)) − 1

2g (D)K−1
n g (D)T

}
√

2πn det (Kn) p (D)
(6)

where M =
(

C
2(εC+1)

)n

.
Using the posterior prediction distribution p (g (D) |D) which is

defined in Eq.(6), the predicted (expected) SVM output on a new
test point y is given by:

〈g(y)〉 =
∫

g (y) p (g (y) |D) dg(y)

=
∫

g (y) p (g (y) ,g (D) |D) dg(y) dg(D) (7)

Substituting in Eq.( 7) from the previous equations and after
some mathematical reductions, the output g(y) of the SVM regres-
sion algorithm will have the form:

〈g(y)〉 =
n∑

i=1

wi K (y,yi) (8)

where K(y,yi) is the kernel function used by the SVM regression
algorithm and wi’s are the weight coefficients where wi is given by:

wi =
M

p (D)

∫
N (g (D) |0,Kn) (g (D) |0,Kn)g (y).

∂

∂g (yi)
exp

⎧⎨
⎩−C

n∑
j=1

L(tj , g(yj))

⎫⎬
⎭ dg(D) (9)

The learning process suggests that the weights wi’s would be esti-
mated using the training data set D. One way to enable this estima-
tion is to consider the i’th sample from D as a test sample and to
estimate the corresponding i’th weight wi using the rest of the train-
ing data set D = {D} − {(yi, ti)}. This estimation requires a defi-
nition for the predictive distribution p(g(yi)|D), which is called the
cavity distribution. Suppose that the cavity distribution is expressed
in the form:

p
(
g (yi) |D

)
=

N (g(D)|0,Kn)exp{−C i�=j L(tj−g(yj))}dg(D)
N (g(D)|0,Kn)exp{−C i�=j L(tj−g(yj))}dg(D)

(10)

Then the weight wi in Eq.(9) can be expressed as:

wi =
〈M ∂

∂g(yi)
exp {−CL(tj , g(yj))}〉

i

〈M exp {−CL(tj , g(yj))}〉i
(11)

where 〈ν〉i denotes the expected value of ν with respect to the cavity
distribution p(g(yi)|D).

B. Mean Field Theory for SVM Learning

Obtaining the weights using the formula in Eq.(11) is intractable
due to the complicated vector integrations which in turn need highly
computationally expensive numerical integration methods. One of
the new algorithms to approximate the estimation of these weights
is to use the Mean Field theory. The basic idea of the Mean Field
theory is to approximate the statistics of a random variable which
is correlated to other random variables by assuming that the influ-
ence of the other variables can be compressed into a single effec-
tive mean ”field” with a rather simple distribution. In this paper,
the principle of the Mean Field theory is used to approximate the
cavity distribution p

(
g (yi) |D

)
. The approximation here is carried

out by assuming a simple form (a Gaussian distribution is used in
this paper) for the cavity distribution which enables the calculation
of the weights. Depending on the assumed form for p

(
g (yi) |D

)
,

the weight wi can be obtained from Eq.( 11). The details for the
learning procedure can be found in [3].

C. Obtaining the Density Function Estimate

The above discussion shows how the SVM can be used as a regres-
sion tool. In this paper, the SVM regression algorithm is used to
approximate the distribution function P (y) from the training sam-
ple D. The approximation will be in the form of a weighted sum of
the kernel function working on the instants of the training sample
as:P (y) =

∑n
i=1 wi K (y,yi). Consequently, the estimate of the

density function will be simply in the form:

p (y) =
n∑

i=1

wi K
′
(y,yi) =

n∑
i=1

wi K (y,yi) (12)

where K (y,yi) is the derivative of K (y,yi).
There are some conditions on the kernel function K (y,yi) so

that a valid density function estimate can be obtained from Eq.(12),
see [2]. These conditions are:
Kγ = a (γ) K

(
y−yi

γ

)
, a (γ)

∫
K

(
y−yi

γ

)
dy = 1 and K(0) = 1.

III. OPTIMIZATION OF THE KERNEL FUNCTION

One of the commonly used kernels is the Gaussian Radial Basis
Function (GRBF) which satisfies the above conditions and it has
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Figure 1: Estimation of a mixture of Gaussians density function with a)KNN, (b) Parzen-window, (c) EM, (d) MF-SVM without automatic
kernel optimization, and (e) proposed algorithm. (Black:reference, Red:estimated)

the form:

K(y,yi) = exp
(
−1

2
(y − yi)Λ−1(y − yi)

T

)
(13)

where Λ is the covariance which is selected empirically in the tra-
ditional methods (see [4]).

In this paper, an approach for automatic selection of the covari-
ance for the RBF kernel is suggested. This approach incorporates
the EM algorithm into the learning procedure so that the covariance
of the kernel is optimized while the SVM weight coefficients are
estimated.

The EM algorithm can be used to estimate the parameters of a
mixture of a Gaussian distribution based on the maximization of the
following likelihood function:

L(w,Θ) =
∑
y∈Y

f(y) log p((y)) (14)

where f(y) is the empirical density function.
The maximization of Eq.(14) can be found using the iterative

block relaxation algorithm. The relative contributions of each data
item y into each Gaussian component at the step m are specified by
the following respective conditional weights

π[m](r|y) = w[m]
r ϕ(y|θ[m]

r )

p
[m]
w,Θ(y)

(15)

where r = 1, 2, . . . , n. The block relaxation converging to a local
maximum of the likelihood function in Eq. (14). The following two
steps are repeated iteratively to get the parameters of the mixture:

1. E-step [m+1]: to find the covariance of a Gaussian component
by maximizing L(w,Θ) under the fixed conditional weights
of Eq. (15) for the step m, and

2. M-step [m + 1]: to find these latter weights by maximizing
L(w,Θ) under the fixed parameters (in our case is the covari-
ance)

until the changes of the log-likelihood and all the model parameters
become small. The covariance of each Gaussian are obtained by the
unconditional maximization:

(σ[m+1]
r )2 =

1

w
[m+1]
r

∑
y∈Y

(
y − µ

[m+1]
i

)
.
(
y − µ

[m+1]
i

)′

·f(y)π[m](r|y) (16)

IV. EXPERIMENTAL RESULTS
To evaluate the proposed algorithm, a data set of 100 instants is
generated from a 1-D mixture of Gaussians. The mixture consists
of two components and has the form:

p(x) = α1 ϕ(µ1, σ
2
1) + α2 ϕ(µ2, σ

2
2) (17)

with the parameters shown in Table 1.

Table 1: Parameters of the 1-D mixture of Gaussians
Parameter µ1 µ2 σ2

1 σ2
2 α1 α2

Value -1 7 9 4 0.6 0.4

The results in Fig. (1) show that the proposed Mean Field-
based SVM density estimation with automatic kernel optimization
approach approximates well the density function in Eq. (17). It out-
performs all other algorithms either classical algorithms (e.g. KNN,
Parzen-window and EM) or new algorithms (e.g. MF-SVM with-
out automatic kernel optimization). For a quantitative evaluation,
the Kullback-Leibler distance (KLD) and the Levy distance mea-
sures are used.
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Figure 2: CDF of the densities estimated by (a) MF-SVM
without automatic kernel optimization, and (b) proposed algo-
rithm.(Black:empirical, Red:estimated)
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Figure 3: Estimation of a 2-D Gaussian density function, (a) reference and its contour, (b) estimated using traditional formulation and its
contour, (c)estimated using MF-based SVM and its contour.

The KLD is used to quantitatively compare two density func-
tions and it is known that the KLD tends to zero for a good density
estimator. For the proposed MF-based SVM approach with kernel
optimization, the KLD is 0.02 which is small enough to show that
the proposed approach is a good density estimator. For compari-
son purposes, the KLD for the nearest performing approach (see
Fig.(1)) which is the MF-Based SVM approach without kernel op-
timization is 0.09, which is another figure for the outperforming of
the proposed approach over other algorithms.

The Levy distance is used to compare two distribution functions
in order to reflect the similarity of their density functions. In this
experiment, the Levy distance is used to compare the empirical dis-
tribution function of the input random sample and the estimated
distribution function by the density estimator. The CDF of the MF-
Based SVM without kernel optimization and that of the proposed
MF-based SVM with kernel optimization are shown in Fig. (2). The
Levy distance is 0.049 for the proposed approach while it is 0.079
for the MF-Based SVM without kernel optimization which again
illustrates the outstanding performance of the proposed approach.

Another experiment is carried out to illustrate the performance
of the proposed algorithm in higher dimensional spaces. A data
set is generated with 100 instants from a 2-D mixture of Gaussians
distribution with the parameters in Table 2.

Table 2: Parameters of the 2-D mixture of Gaussians

Parameter µ1 µ2 Σ2
1 Σ2

2 α1 α2

Value
[
0
0

] [
2
2

] [
1 0
0 1

] [
0.6 0
0 0.6

]
0.6 0.4

This experiment is used to compare the proposed algorithm
with the traditionally formulated SVM algorithm. Fig. (3) shows
both the density function and its contour for the reference den-
sity function, the estimated density function using the traditionally-
formulated SVM estimator, and the estimated density function us-
ing the proposed MF-Based SVM estimator. As illustrated visually
by the figure, there is a significant improvement of the performance
using the MF-based SVM over the traditionally formulated SVM.
In the contour plot for the estimated density there is an apparent
deformation in the contour of the estimated density function using
the traditional SVM where the KLD in this case is 8.4 which is

quite high indicating a poor estimation. In the MF-Based SVM,
the contour plot of the stimated ensity is close to the contour of the
referencee one where the KLD is 0.1 which emphasizes the good
performance of the proposed algorithm.

V. CONCLUSION

An approach for solving the density function estimation problem
is presented. This approach incorporates the Mean Field theory in
the learning of the SVM to overcome the problems of the tradi-
tional formulation of the SVM learning. An automatic method for
selecting the parameters of the SVM kernel is also proposed. This
automatic method incorporates the EM algorithm in the learning
procedure of the MF-based SVM. The experimental results show
that the performance of the proposed approach outperforms other
algorithms either classical or new algorithms.
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