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Refined Buckling Analysis of Rectangular Plates  
Under Uniaxial and Biaxial Compression 

 
V. Piscopo 

 
 

Abstract—In the traditional buckling analysis of rectangular 
plates the classical thin plate theory is generally applied, so 
neglecting the plating shear deformation. It seems quite clear that this 
method is not totally appropriate for the analysis of thick plates, so 
that in the following the two variable refined plate theory proposed 
by Shimpi (2006), that permits to take into account the transverse 
shear effects, is applied for the buckling analysis of simply supported 
isotropic rectangular plates, compressed in one and two orthogonal 
directions. 
The relevant results are compared with the classical ones and, for 
rectangular plates under uniaxial compression, a new direct 
expression, similar to the classical Bryan’s formula, is proposed for 
the Euler buckling stress. 
As the buckling analysis is a widely diffused topic for a variety of 
structures, such as ship ones, some applications for plates uniformly 
compressed in one and two orthogonal directions are presented and 
the relevant theoretical results are compared with those ones obtained 
by a FEM analysis, carried out by ANSYS, to show the feasibility of 
the presented method. 
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I. INTRODUCTION 
HE buckling problem of rectangular plates, under the 
action of uniaxial and biaxial stresses, is generally solved 

applying the classical thin plate theory, in which the transverse 
shear deformation is neglected. Obviously, when the thickness 
is not negligible, as regards the plate dimensions, the classical 
theory becomes not totally appropriate and a new formulation, 
that permits to take into account the shear effects, is required. 
In the past, to overcome this lack, different shear deformable 
theories were presented by several authors, such as Reissner 
[7], Mindlin [8], Levinson [9], Reddy [10], Shimpi [2].  

In the following the Shimpi theory, based on two variable 
coupled governing equations for the bending and shear 
displacement fields, is applied for the buckling analysis of 
simply supported rectangular plates under the action of 
uniaxial and biaxial stresses. The theory accounts for the cubic 
variation of the in-plane displacements through the plate 
thickness and the transverse shear strains, which vanish on the 
top and bottom faces of the plate. The main advantage of the 
theory is that the governing equations have been derived using 
the Hamilton’s principle, so that they are certainly consistent 
with the assumed displacement field. 

The obtained results are compared with the  classical  project 
formulas for buckling analysis and particularly with  the Bryan 
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expression for simply supported rectangular plates under 
uniaxial compression. This last formula is easily obtained by 
developing into appropriate double sine trigonometric series 
the deflection surface of the buckled plate. So, denoting by m 
the number of half-waves in the direction of compression, by 
t  the plating thickness, E  and ν  the Young and Poisson 
modulus, a and b the longer and  shorter sides of the panel 
and by ba=α  the plating aspect ratio, the Bryan’s formula 
for the Euler buckling stress can be so expressed: 
 

( )
22

2

2

112
⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛

−
=

α
α

ν
πσ m

mb
tE

E                                               (1) 

 
The magnitude of the Euler load depends on the panel aspect 
ratio α  and also on m, which gives the number of half-waves 
into which the plate buckles. The eq. (1) is generally 
developed as follows: 
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having denoted by 1K   the buckling factor, defined as: 
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The classical approach for rectangular plates under biaxial 
compression is quite similar and some project curves are 
generally used to evaluate the Euler stresses at which buckling 
occurs.  

In the following the buckling analysis of thick rectangular 
plates is carried out applying the Shimpi theory and so taking 
into account the shear deformations. A method, different from 
the classical energy one and substantially based on the 
nontrivial solution of the two variable coupled governing 
equations for the bending and shear displacement fields,  is 
adopted  to evaluate the critical buckling load. A new project 
formula, that differs from the Bryan’s one for a corrective 
factor function of the ratio t/b, is also proposed for plates 
under uniaxial compression.  

Finally, some applications are presented for platings 
uniformly compressed along one and two orthogonal 
directions, varying the thickness and the plating aspect ratio. 
The theoretical Euler buckling stresses, corrected taking into 
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account the shear effects, are also compared with those ones 
obtained by a FEM analysis carried out by ANSYS. 

II. THEORETICAL DEVELOPMENT 
Let us refer to the coordinate system of Fig.1 with z axis 

having the origin on the plate middle plane. The basic 
assumptions of the two variable refined Shimpi theory are: 
1. the displacements are small, if compared with the plating 

thickness; 
2. the stress zσ

 
is negligible respect to the in-plane stresses 

xσ  and yσ ; 
3. the displacement )y,x(w normal to the plate middle plane 

is the sum of two components of bending and shear 
)y,x(wb and )y,x(ws  respectively; 

4. the in-plane displacements )y,x(u and )y,x(v  along the 
x and y axes include two components of bending and shear 
and one component )y,x(u 0 and )y,x(v0  due to the in-
plane normal forces; 

5. the bending components )y,x(ub  and )y,x(vb

 
are 

similar to those ones of the classical thin plate theory: 

x
wz)y,x(u b

b ∂
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−=  and 
y

wz)y,x(v b
b ∂

∂
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6. the shear components )y,x(u s  and )y,x(vs

 
are related 

to the vertical shear displacement field sw . 
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Fig. 1 Plate reference system    
 
Starting from these basic assumptions, the displacement field 
becomes: 
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The Hamilton’s principle is used to derive the equations of 
motion appropriate to the assumed displacement field (4), so 
imposing the following condition: 
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having denoted by U the strain energy, V the work done by 
the applied forces and T  the kinetic energy. Denoting by 

( )2

3

112 ν−
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EtD  the plate flexural rigidity and by G
 

the 

Coulomb modulus, the governing equations can be finally 
expressed as follows, [2]:  
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where xN and yN  are the in-plane forces per unit of length, 

directed along the x and y axes respectively  and xyN   is the 
shear in-plane force per unit of length. Assuming that these 
forces are constant throughout the plate, 0=xyN  and 

xy NN γ= , with 10 ≤≤ γ , the eq. (6) can be rewritten as 
follows: 
 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=∇

2

2

2

2

2

2

2

2
4

2

2

2

2
4

6
5

84 y
w

x
wN

y
w

x
wGtwD

y
w

x
wNwD

x
ss

s

xb

γ

γ

          
(7)  

 
As the plate is considered as simply supported along all 

edges, the boundary conditions are satisfied by taking for the 
deflection surface of the buckled plate the following double 
sine trigonometric series for the bending and shear 
components: 
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Substituting eq. (8) into (7), the unknown amplitudes )b(

n,mw  and 
)s(

n,mw  are solution of the following homogeneous equation 
system: 
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with: 
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The equation for calculating the Euler stress value Eσ  can be 
now derived by equating to zero the determinant of the above 
system of equations, so obtaining: 
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For plates under uniaxial compression the Euler buckling 
stress can be immediately derived considering that the  plate 
buckles in such a way that there can  be several   half-waves in  
the direction of compression, but only one half-wave in the 
perpendicular direction. Thus, a new expression for the Euler 
stress, that differs from the Bryan’s formula for the shear 
correction factor ( )αν ,,n,m,btF , is obtained: 
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with: 
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Obviously, the classical Bryan’s formula for thin plates can be 
derived putting in eq. (11.1) ( ) 10 =αν ,,m,F .  
Introducing, now, the buckling coefficient  1k ,  as defined in 
eq. (2), in fig. 2 several curves, as function of the ratio t/b, are 
shown: the thick curve refers to the classical theory for thin 
plates. 

 
Fig.2 Buckling factor k1 for thick-plates under uniaxial compression ( 300.=ν ; 00.=γ ) 
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For plates under biaxial compression with  500 .<< γ  it is 
possible to verify that the plate always buckles in such a way 
that  n=1,while the number of half-waves in x-direction varies; 
instead when 0150 .. ≤≤ γ  the plate buckles in such a way 
that there is only one half-wave in both directions. In figg.3 
and 4,for 10.=γ   and 40.=γ ,the buckling factors are shown 

for different values of the plating aspect ratio. In figg. 5 and 6 
the same factors are shown for 70.=γ  and 01.=γ  (in this 
case, for scale reasons, the only curves with t/b=0.075 are 
presented). It is noticed that the thick curves always refer to 
the classical values for thin plates and  the Poisson modulus 
has been always assumed equal to 0.30. 

 

 
Fig.3 Buckling factor k1 for thick-plates under biaxial compression ( 300.=ν ; 10.=γ ) 

 
Fig.4 Buckling factor k1 for thick-plates under biaxial compression ( 300.=ν ; 40.=γ ) 
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Fig.5 Buckling factor k1 for thick-plates under biaxial compression ( 300.=ν ; 70.=γ ) 

 
 
 

 
Fig.6 Buckling factor k1 for thick-plates under biaxial compression ( 300.=ν ; 01.=γ ) 
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III. NUMERICAL APPLICATIONS 
To show the feasibility of the presented formulas, several 

buckling analyses for steel platings of ship structures, 
subjected to uniaxial and biaxial compression, are shown. A 
comparison with the relevant results obtained by a FEM 
analysis, carried out by ANSYS, is also presented to validate  
the proposed formulas. In ANSYS some eigenvalue buckling 
analyses have been performed and the convergence of the 
solution has been studied by thickening the mesh (the last 
one with a mean element length of 0.005 m). The chosen 
element is the 4-node finite strain SHELL181, suitable for 
analyzing thin to moderately thick structures and well-
suited for linear, large rotation, and/or large strain nonlinear 
applications. The analyzed panels are: 

1. Case 1: a=0.25 m; b=1.00 m; t=10-20-30 mm; 
2. Case 2: a=1.00 m; b=1.00 m; t=10-20-30 mm; 
3. Case 3: a=4.00 m; b=1.00 m; t=10-20-30 mm. 

It was assumed that they are in high strength steel with 
E=2.06E11 Pa, ν=0.3, eHR  =355 2mmN . 

A. Plates under uniaxial compression 
 In tables I.A, II.A and III.A the Euler forces per unit of 

length tN EE σ=  are shown for different values of the ratio 
t/b. The convergence of the solution obtained by ANSYS  is 
also studied: in all cases it is quite quickly achieved and a 
very good accordance with the proposed buckling formulas 
is found. In tables I.B, II.B and III.B the relevant critical 
buckling stresses are shown. 
 

TABLE I.A 
CASE 1 – α = 0.25, γ = 0 

 

b
t  

Mean 
element 
length 

ANSYS 
(A) 

Thin 
plate 
(B) 

Thick 
plate 
(C) 

100⋅
−
A

AB  100⋅
−
A

AC

--- m kN/m kN/m kN/m % % 

0.01 

0.050 3553 

3363 3347 0.87 0.39 
0.025 3391 
0.010 3343 
0.005 3334 

0.02 

0.050 27924 

26904 26398 2.80 0.87 
0.025 26623 
0.010 26233 
0.005 26171 

0.03 

0.050 91643 

90800 87046 5.66 1.30 
0.025 87372 
0.010 86121 
0.005 85932 

 
TABLE I.B 

CASE 1 – α = 0.25, γ = 0 
 

b
t  ANSYS (A) Thin 

plate (B) 
Thick 

plate (C) 100⋅
−
A

AB  100⋅
−
A

AC

--- N/mm2 N/mm2 N/mm2 % % 
0.01 260.5 261.3 260.9 0.31 0.14 
0.02 330.9 331.6 331.1 0.20 0.06 
0.03 344.0 344.6 344.1 0.17 0.04 

TABLE II.A 
CASE 2 – α = 1.00, γ = 0 

 

b
t  

Mean 
element 
length 

ANSYS 
(A) 

Thin 
plate 
(B) 

Thick 
plate 
(C) 

100⋅
−
A

AB 100⋅
−
A

AC

--- m kN/m kN/m kN/m % % 

0.01 

0.050 747 

745 744 0.68 0.54 
0.025 743 
0.010 741 
0.005 740 

0.02 

0.050 5930 

5958 5945 1.95 1.73 
0.025 5883 
0.010 5852 
0.005 5844 

0.03 

0.050 19811 

20108 20006 3.14 2.62 
0.025 19616 
0.010 19513 
0.005 19496 

 
TABLE II.B 

CASE 2 – α = 1.00, γ = 0 
 

b
t  ANSYS (A) Thin 

plate (B)
Thick 

plate (C) 100⋅
−
A

AB 100⋅
−
A

AC

--- N/mm2 N/mm2 N/mm2 % % 
0.01 74.0 74.5 74.4 0.68 0.54 
0.02 247.2 249.2 249.0 0.83 0.74 
0.03 306.5 308.0 307.8 0.48 0.40 

 
TABLE III.A 

CASE 3 – α = 4.00, γ = 0 
 

b
t  

Mean 
element 
length 

ANSYS 
(A) 

Thin 
plate 
(B) 

Thick 
plate 
(C) 

100⋅
−
A

AB 100⋅
−
A

AC

--- m kN/m kN/m kN/m % % 

0.01 

0.050 747 

745 744 0.68 0.54 
0.025 744 
0.010 741 
0.005 740 

0.02 

0.050 5945 

5958 5945 1.34 1.12 
0.025 5908 
0.010 5886 
0.005 5879 

0.03 

0.050 19917 

20108 20006 2.12 1.60 
0.025 19767 
0.010 19694 
0.005 19690 

 
TABLE III.B 

CASE 3 – α = 4.00, γ = 0 
 

b
t  ANSYS (A) Thin 

plate (B)
Thick 

plate (C) 100⋅
−
A

AB 100⋅
−
A

AC

--- N/mm2 N/mm2 N/mm2 % % 
0.01 74.0 74.5 74.4 0.68 0.54 
0.02 247.8 249.2 249.0 0.57 0.48 
0.03 307.0 308.0 307.8 0.33 0.25 
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From the obtained results, it seems quite clear that the 
refined buckling analysis always furnishes, respect to the 
classical thin plate theory, results closer to those ones 
obtained by the FEM analysis and the relevant percentage 
differences of theoretical results grow up, when the ratio t/b 
increases, as it would be predictable.  

Anyway, it is fundamental to note that these differences 
are certainly lower if  referred to the critical stress value, 
the most important parameter in a buckling analysis. It 
implies that the introduction of the shear correction factor 
always permits to obtain results closer to the FEM values, 
even if not particularly different by those ones obtained 
applying the classical thin plate theory. 

 

B. Plates under biaxial compression 
 In tables IV, V and VI the Euler forces per unit of length 

are shown for platings under biaxial compression with             
γ = 1.0, for different values of the ratio t/b.  

 
 

TABLE IV 
CASE 1 – α = 0.25, γ = 1.0 

 

b
t  

Mean 
element 
length 

ANSYS 
(A) 

Thin 
plate 
(B) 

Thick 
plate 
(C) 

100⋅
−
A

AB  100⋅
−
A

AC

--- m kN/m kN/m kN/m % % 

0.01 

0.050 3356 

3165 3150 0.86 0.38 
0.025 3194 
0.010 3147 
0.005 3138 

0.02 

0.050 26377 

25321 24845 2.80 0.87 
0.025 25080 
0.010 24693 
0.005 24631 

0.03 

0.050 86563 

85459 81926 5.67 1.30 
0.025 82304 
0.010 81063 
0.005 80875 

 
TABLE V 

CASE 2 – α = 1.00, γ = 1.0 
 

b
t  

Mean 
element 
length 

ANSYS 
(A) 

Thin 
plate 
(B) 

Thick 
plate 
(C) 

100⋅
−
A

AB  100⋅
−
A

AC

--- m kN/m kN/m kN/m % % 

0.01 

0.050 373 

372 372 0.54 0.54 
0.025 371 
0.010 370 
0.005 370 

0.02 

0.050 2965 

2979 2972 1.95 1.71 
0.025 2942 
0.010 2926 
0.005 2922 

0.03 

0.050 9906 

10054 10003 3.14 2.62 
0.025 9809 
0.010 9758 
0.005 9748 

TABLE VI 
CASE 3 – α = 4.00, γ = 1.0 

 

b
t  

Mean 
element 
length 

ANSYS 
(A) 

Thin 
plate 
(B) 

Thick 
plate 
(C) 

100⋅
−
A

AB 100⋅
−
A

AC

--- m kN/m kN/m kN/m % % 

0.01 

0.050 199 

198 198 0.00 0.00 
0.025 198 
0.010 198 
0.005 198 

0.02 

0.050 1585 

1583 1581 0.51 0.38 
0.025 1580 
0.010 1577 
0.005 1575 

0.03 

0.050 5337 

5341 5327 0.70 0.43 
0.025 5317 
0.010 5309 
0.005 5304 

 
The convergence of the solution obtained by ANSYS has 
been  studied and in all cases it was quite quickly achieved. 
From the analysis it is clear that  there is a very good 
accordance with the proposed formulas and the FEM values 
and also in this case the thick plate theory furnishes values 
of the Euler buckling loads lower than the classical ones. 
   

IV. CONCLUSIONS 
In this paper the refined plate theory proposed by Shimpi 

(2006) has been applied for the buckling analysis of 
platings, simply supported along all edges and compressed 
in one and two orthogonal directions. For plates under 
uniaxial compression a new direct formula, similar to the 
Bryan’s one, has been derived: this expression permits to 
take into account the shear effects by means of a shear 
correction factor, as function of the half waves’ number in 
the loaded direction, the panel aspect ratio, the Poisson 
modulus and the thickness ratio  t/b. Some curves, that 
permit to easily evaluate the buckling coefficient for plates 
under uniaxial and biaxial compression (assuming in this 
case γ=1.0), are also presented. 

Finally, some numerical applications have been carried 
out for steel platings of ship structures. The theoretical 
buckling loads have been compared with the relevant values 
obtained by some eigenvalue buckling analyses carried out 
by ANSYS. It was found that the refined theory always 
furnishes, respect to the classical one, results closer to the 
values obtained by the FEM analysis. The convergence of 
the solution obtained by ANSYS has also been studied by 
thickening the mesh. 

As this method permits to obtain simple closed project 
formulas, it can be satisfactory applied to the buckling 
analysis of plates. Obviously,  this refined buckling  
analysis  can also be extended to platings under the 
combined action of uniaxial and edge shear forces, even if 
in this case the proposed solution method is not available 
and the classical energy method must be applied. 
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