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A Contractor Iteration Method Using Eigenpairs for
Positive Solutions of Nonlinear Elliptic Equation
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Abstract—By means of Contractor Iteration Method, we solve and
visualize the Lane-Emden(-Fowler) equation

Δu + up = 0, in Ω, u = 0, on ∂Ω.

It is shown that the present method converges quadratically as
Newton’s method and the computation of Contractor Iteration Method
is cheaper than the Newton’s method.
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I. INTRODUCTION

IN this paper, we study semilinear boundary value
problems(BVPs) of the form

Δu+ up = 0, in Ω, u = 0, on ∂Ω. (1)

Eq.(1), first introduced by Lane in the mid-19th century,
is called Lane-Emden(-Fowler) equation as a model of the
distribution of clusters of stars in Astrophysics[1,2]. From then
on, (1) has been extensively investigated. See for example
[3,4] for a survey.

Concerning the algorithmic development for solutions
of semilear elliptic BVPs, there are mainly six numerical
methods for computing such kinds of problems: the Monotone
Iterative Scheme (MIS)[5,6], the Mountain Pass Algorithm
(MPA)[7], the High Linking Algorithm (HLA)[8], the Min-
Max Algorithm (MMA)[9,10], the Search Extension Method
(SEM)[11] and the Bifurcation method(BM)[12].

MIS is based on the monotone iterative methods in the
ordered Banach space; MPA, MMA and HLA are based
on the numerical implementation of the mountain pass
lemma and the min-max theorem in the critical point theory.
MPA was proposed by Choi and McKenna to compute the
solutions with the Morse Index (MI) 0 or 1. Ding, Costa and
Chen established HLA for sign-changing solution (MI=2)
of semilinear elliptic problems. Li and Zhou designed a
new min-max algorithm (MMA) to find multiple saddle
points with any Morse index which is more constructive than
the traditional min-max theorem. Chen and Xie proposed
SEM, which searches the initial guess based on the linear
combination of the eigenfunctions of the linearized problem
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and then gets the better initial guess by the continuation
method for the discretized problem by the finite element
method. Yang used BM to solve the BVPs with any Morse
index and different regions.

It is well known that nonlinear problems are usually solved
by the Newton’s method. Nevertheless, when the grid becomes
fine, the direct implementation of the Newton method leads
to a costly computation. In this paper, a contractor iteration
method will be used for such problems[13,14,15], which
converges quadratically as Newton’s method. This method
mainly consists of the matrix-matrix and the matrix-vector
multiplications.

This method makes the computation of the numerical
solution of nonlinear equations become very cheap. In
order to illustrate that the present method is better than the
Newton’s Method, we will compute and visualize solutions of
(1) in various domains and compare it with Newton’s Method.

II. CONTRACTOR ITERATION ALGORITHM

Assume Ω = Ω0 = (−1, 1) × (−1, 1), then (1) turns into{
Δu+ up = 0, (x, y) ∈ Ω0,

u = 0, (x, y) ∈ ∂Ω0.
(2)

In two dimensions, the mesh is the set of points

(xi, xj) = (ih, jh)

that lie within the region Ω0. Approximating the partial
derivatives with centered second differences gives the 5-point
discrete Laplacian

Δhu(x, y) =
u(x+ h, y) − 2u(x, y) + u(x− h, y)

h2

+
u(x, y + h) − 2u(x, y) + u(x, y − h)

h2

Substitute Δu of (2) with Δhu. Let F (u) = Δhu+up, the
standard Newton’s method is of form

un+1
h = un

h −DF−1(un
h)F (un

h) (3)

where n is the number of iterations and DF (un
h) is the

Jacobian matrix of F at un
h which is of the form

DF (un
h) = Δh + spdiags(3h2u2

h, [0], n, n) (4)

with spdiags is a MATLAB code.
We will give the algorithm by applying the concept of

contractors, then we shall use it to compute (2) in (III) with
this algorithm.
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ALGORITHM 1
1. Select a starting value of solution u0 and a matrix L0

close to DF (u0).
2. K0 = L−1

0 , Γ0 = IN , where IN is the identity matrix.
3. un+1 = un −KnF (un).
4. Λn = DF (un+1)Γn − Ln.
5. Ln+1 = LnMn +Ln +Λn, where Mn is a matrix such

that ‖Mn‖ ≤ c‖Λn‖ with c ≥ 1 independent of n.
6. Γn+1 = Γn(IN +Mn).
7. Kn+1 = Γn+1L

−1
n+1.

8. Check the convergence of the iteration. Unless
convergent, go to step 3.

The sequence {un} converges quadratically if Kn are
sufficiently good approximations for DF (un)−1 for all n[15].
This scheme seems to be complicated and the determination
of Mn is not unique, As remarked by Scheurle[15] who took
Mn = 0 for all n, we have Γn+1 = IN , Ln+1 = DF (un+1)
and hence Kn+1 = DF (un+1)−1. This is Newton’s method.
By taking Mn = −L−1

n Λn, we have Ln+1 = L0. We consider
the latter further. It is rather simple and L0 is the only matrix
that has to be inverted during the iterations.

We are paying particular attention to DF (un
h) of (4). Let

h be small enough(in fact, we have to finely partition the
interval), Δh is main part of DF (un

h). The complete matrix
Δh has −4’s on its diagonal, four 1’s off the diagonal in
most of its rows, two or three 1’s off the diagonal in some
of its rows, and zeros elsewhere. For the example of region
above, Δh would be 25 by 25(see Fig.1).

So we define step 1′ instead of step 1, and Steps 2-8 can

nz=105

Fig.1. Sparsity structure of Δh

be reduced to the following steps 2′-5′.
ALGORITHM 2

1′. Select a starting value of solution u0 and a matrix
L0 = Δh.

2′. K0 = L−1
0 .

3′. un+1 = un −KnF (un).
4′. Kn+1 = Kn(2IN −DF (un+1)Kn).
5′. Check the convergence of the iteration. Unless

convergent, go to step 3′.

III. METHOD & VISUALIZATION

To overcome the difficulty of the local convergence of
Newton’s Method or the Contractor Iteration Method and
to compute positive solutions of (2) as many as possible,
bifurcation and eigenpairs have been used in our article[12,16].
A close description is briefly given below.

Let p = 3, We embed (2) to the nonlinear bifurcation
problems with parameter λ of the following form:{

Δu+ λu+ u3 = 0, (x, y) ∈ Ω0,

u = 0, (x, y) ∈ ∂Ω0.
(5)

Considering the linearized equation of (5) at u = 0, we get{
Δϕ+ λϕ = 0, (x, y) ∈ Ω0,

ϕ = 0, (x, y) ∈ ∂Ω0.
(6)

It is well known that (6) always has a trivial solution. Fur-
ther more, Eq.(6) has eigenpairs, namely eigenvalues λn,m =
(n2 + m2)π2 and corresponding eigenfunctions ϕn,m =
sin(nπx)sin(mπy). Therefore, ϕn,m = sin(nπx)sin(mπy)
are roots of (6) when λ = λn,m = (n2 +m2)π2.

From the analysis above, we know that the solution branch
which bifurcates from the first eigenvalue λ1,1 = 2π2 is a
positive solution branch. Bifurcation method will be applied
to compute the positive solution of (2).

For λ0 = λ1,1 = 2π2, ϕ1,1 = sin(πx)sin(πy), then
let L = Δ + 2π2, X = {u∣∣∣∣∣∣u ∈ C2(Ω0), u|∂Ω0 = 0},
Y = {u∣∣∣∣∣∣u ∈ C0(Ω0)}. we define inner product by

〈u, v〉 = 4
∫ 1

0

∫ 1

0

uvdxdy,

L is a Fredholm self-adjoint operator with index zero, and

N(L∗) = N(L) = span{ϕ1,1}, (7)

where N(L) and N(L∗) are the null space of L and L∗

respectively. Space X and Y have the decomposition

X = N(L) ⊕M, Y = N(L) ⊕R(L),

where M = N(L)⊥ ∩X , R(L) is the range of L.
Let P be the orthogonal projector from Y to R(L)

Pz = z − (z, ϕ0)ϕ0. z ∈ Y

Eq.(5) is equivalent to

PF (τϕ0 + ω, μ+ λ0) = 0, τ ∈ R, ω ∈M (8)
〈ϕ0, F (τϕ0 + ω, μ+ λ0)〉 = 0. (9)

where μ = λ − λ0, u = τϕ0 + ω. Since PFω(0, λ0) =
PFu(0, λ0) = PL = L, and L restricted in M is regular, (8)
has a unique solution ω = ω(τ, μ) which satisfies ω(0, 0) = 0
by the implicit function theorem[17].

Substituting ω(τ, μ) into (9) yields

g(τ, μ) = 〈ϕ0, F (τϕ0 + ω(τ, μ), μ+ λ0)〉 = 0. (10)

Then we get

F (u, λ) = F (τϕ0 +ω, μ+λ0) = Δω+λ0ω+h(τ, μ), (11)
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where h(τ, μ) = μ(τϕ0 + ω) + (τϕ0 + ω)p, ω = ω(τ, μ). (5)
is transformed into (12).⎧⎪⎨

⎪⎩
Δω + (μ + λ0)ω + ητω + (τϕ0 + ω)3 = 0, (x, y) ∈ Ω0,

ω = 0, (x, y) ∈ ∂Ω0,

(ϕ0, ω) = 0.

(12)

Newton’s Method and Contractor Iteration Method are
used to solve the ϕ0 and τ , then we get u = τϕ0 + ω.
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Fig.2. positive solution
on square.

Fig.3. positive solution
on disk.
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Fig.4. positive solution
on L-shaped domain.

Fig.5. positive solution
on the exterior of a ”Butterfly”.
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Fig.6. positive solution
on ellipse.

Fig.7. positive solution
on crisscross.
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Fig.8 Newton’s Method Contractor Iteration Method
’S’ denotes square; ’D’ denotes disk; ’L’ denotes L-shaped domain; ’B’
denotes the exterior of a ”Butterfly”; ’C’ denotes crisscross; ’E’ denotes
ellipse. Y-axis denotes the time(s) which Newton’s Method and Contractor
Iteration Method spend in various domains.

We visualize the time(s) which Newton’s Method and
Contractor Iteration Method spend in various domains with
the interval h = 1/100 in Fig.8. We can see that the direct
implementation of the Newton method leads to a costly

computation and the computation of Contractor Iteration
Method is very cheap.

Some different symmetric positive solutions of (2) are
visualized from Fig.2 to Fig.7 on some different domains.
TABLE I illustrates the symmetric properties.

TABLE I THE SOLUTIONS OF (2) WITH DIFFERENT SYMMETRIES.

Shape of the domain Symmetry
Square(Fig.2) D4

Disk(Fig.3) O(2)
L-shaped domain(Fig.4) Σ′

2

The exterior of a ”Butterfly”(Fig.5) Σd

Crisscross(Fig.6) D4

Ellipse(Fig.7) ΣM

To solve the nonsymmetric solution of (2), the eigenvalues
of Jacobian DF (u) are monitored. Eq(12) must be computed
with the μ being carefully continued. We can find symmetric-
breaking solution of (2) by continuation(see Fig.9). Because
of μ being carefully continued, the Contractor Iteration
Method is better than Newton’s Method.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

0

2

4

6

8

10

12

Fig.9. symmetric-breaking solution of (2).

IV. CONCLUSION

A contractor iteration method is presented and is imple-
mented numerically for solving positive solutions of Lane-
Emden(-Fowler) equation. Computation times of the present
method and Newton’s method are both discussed. By com-
paring the time in Fig.8, it is shown that Contractor Iteration
Method works more efficiently than Newton’s Method. Some
similar equation, such as Henon’s equation[18], Chandrasekhar
equation[19], and generalized Lane-Emden system[20], can also
use this method to solve positive solutions or multiple solu-
tions.
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