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Abstract—Non-stationary trend in R-R interval series is 

considered as a main factor that could highly influence the evaluation 
of spectral analysis. It is suggested to remove trends in order to obtain 
reliable results. In this study, three detrending methods, the 
smoothness prior approach, the wavelet and the empirical mode 
decomposition, were compared on artificial R-R interval series with 
four types of simulated trends. The Lomb-Scargle periodogram was 
used for spectral analysis of R-R interval series. Results indicated that 
the wavelet method showed a better overall performance than the other 
two methods, and more time-saving, too. Therefore it was selected for 
spectral analysis of real R-R interval series of thirty-seven healthy 
subjects. Significant decreases (19.94±5.87% in the low frequency 
band and 18.97±5.78% in the ratio (p<0.001)) were found. Thus the 
wavelet method is recommended as an optimal choice for use. 
 

Keywords—empirical mode decomposition, heart rate variability, 
signal detrending, smoothness priors, wavelet 

I. INTRODUCTION 
EART rate variability (HRV) described as beat-to-beat 
variation in heart rate is an effective noninvasive method 

to assess the function of autonomic nervous system or to 
diagnose various pathologic changes of cardiovascular 
system[1]–[5]. A large number of methods are available for 
quantification of HRV, in which the spectral analysis is one of 
the most frequently used. 

In spectral analysis, the spectrum of the R-R interval series is 
usually divided into several frequency bands, known as the 
very low frequency (VLF:0-0.04Hz), the low frequency 
(LF:0.04-0.15Hz) and the high frequency (HF:0.15-0.4Hz) 
bands[1]. The LF band is believed to be associated with the 
sympathetic and parasympathetic tone whereas the HF band is 
associated with the parasympathetic activity. The ratio of the 
LF and HF bands has been used as a measurement of 
sympathovagal balance[1]–[5]. As the successive R-R intervals 
are a series of data points sampled unevenly in time, and the 
resampling procedure might add the LF band and reduce the 
HF band[6], thus, the Lomb-Scargle (L-S) periodogram, a 
spectral method for unevenly sampled data[7],[8], was 
supposed more appropriate for spectral analysis in 
HRV[6]–[9]. 

As the presence of slow or irregular trends in the data series 
can potentially distort spectral analysis and lead to 
misinterpretations[2], several methods were used to remove the 
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non-stationary trends of the R-R interval series. Routine 
methods are usually based on first order or high order 
polynomial models[10],[11]. In 2002, M. Tarvainen developed 
a method based on smoothness prior approach (SPA)[12]. It 
operates like a time-varying FIR high pass filter and is simple 
to use. In 2006, R.Thuraisingham concluded that the wavelet 
method provided encouraging results in  preprocessing of 
HRV[13]. The empirical mode decomposition (EMD) method 
was used for detrending in HRV by P. Flandrin et al. in 
2004[14], which is regarded as a new automatic approach of 
removing non-stationary trend.It is difficult to determine the 
most suitable detrending method in real R-R interval series. In 
this study, four types of trends were proposed to simulate the 
trends in R-R interval series. The SPA, the wavelet and the 
EMD method were compared to detrend the artificial R-R 
interval series. L-S periodogram was used for spectral analysis 
and assessment of the detrending methods. 

II.  DATA ACQUISITION 

A. Artificial R-R Interval Series 
In this study, McSharry's model[15] was applied to simulate 

the artificial R-R interval series. In this model, a time series is 
generated following the real R-R interval series in mean, 
standard deviation and spectral characteristics. The spectral 
characteristics of the R-R interval series, including both the LF 
and HF bands, are replicated by specifying a bi-modal spectrum 
composed of the sum of two Gaussian functions as in (1), in 
which, fLF and fHF are the central frequency of the LF and HF 
bands, and cLF, cHF are the standard deviation of each band. 
Power in the LF and HF bands are given by PLF and PHF 
respectively, yielding an LF/HF ratio of α = PLF / PHF. 
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Then a time series T(t) with power spectrum S(f) is generated 
by taking the inverse Fourier transform of a sequence of 

complex numbers with amplitudes ( )S f  and phases which 
are randomly distributed between 0 and 2π . As in Fig.1 (a), an 
artificial R-R interval series with a length of 300 was generated 
by this model with a selection of the parameters as fLF =0.1Hz, 
fHF =0.25Hz, cLF = cHF = 0.01Hz, α =0.5. 
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B. Real R-R Interval Series 
Thirty-seven healthy subjects participated in this test. Each 

subject lay in the bed for five to ten minutes with a continuous 
collection of the electrocardiogram (ECG). Sampling rate of 
the ECG is 1000Hz. Then the R-R interval series, as a function 
of R-peak occurrence times, were obtained by extracting the 
R-peaks of the ECG signal with the method of the wavelet 
modulus maxima[16],[17]. An example of a real R-R interval 
series was shown in Fig.1 (b). 
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(a) An example of artificial R-R interval series

0 50 100 150 200 250 300
900

950

1000

1050

Samples

R
-R

 in
te

rv
al

 (m
s)

(b) An example of real R-R interval series
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(b) An example of real R-R interval series  
Fig. 1 Examples of artificial and real R-R interval series 

C. Simulated Trends 
From Fig.1 (a) we could see that there was no trend in the 

artificial R-R interval series. However, trends exist in almost all 
real R-R interval series. After an observation of hundreds of 
real R-R interval series, four types of trends were identified: 

1. The Line Trend: 
( )Line i a bi= +  (2) 

The line trend is obtained from (2), where a is the y-intercept 
of the line, while b is the slope of the line. 

2. The Gauss Trend: 
2( )( ) c i pGauss i Ae− −=  (3) 

The Gauss trend is generated by the Gaussian model, with 
appropriate settings for peak time p, sharpness c, and maximum 
magnitude A. 

3. The Cusp Trend: 
( )Cusp i i a= −  (4) 

The cusp trend is simulated by a cusp curve in (4), where a is 
the cusp point. 

4. The Break Trend: 
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The break trend is generated from (5), with the length L, the 
magnitude A, and the slope k. 

III. DETRENDING METHODS 

A. The SPA Method  
A signal, denoted as z, is considered to consist of two 

components[12]: z = zstat + ztrend, where zstat is the stationary 
component and ztrend is the trend component. 

The trend component can be modeled with a linear 
observation model as follows, 

trendz H vθ= +  (6) 
in which, H is the observation matrix, θ  are the regression 
parameters and v is the observation error. Then θ  are estimated 
by the regularized least squares method, 

( ) 12ˆ T T T T

d dH H H D D H H zλθ λ
−

= +  (7) 

in which, λ  is the regularization parameter and Dd indicates 
the discrete approximation of the d’th derivative operator. Then 
the estimated trend ˆ

trendz  is: ˆˆ
trendz H λθ= . 

With the specific choices, the identity matrix for the 
observation matrix H, and the second order difference matrix 
D2 for Dd, the detrended signal can be written as 

( )( )12

2 2
ˆ ˆ T
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= − = − +  (8) 

B. The Wavelet Method  
The discrete wavelet transform of a signal x(t) is defined 

as[18]:  

, ,

, ,

( ) ( ) ,

( ) ( ) ,

m n m n

m n m n

D x t t dt

A x t t dt

ψ

φ

+∞

−∞

+∞

−∞

=

=

∫

∫
 (9) 

where Dm,n is the detail coefficient and Am,n is the approximate 
coefficients. , ( )m n tψ  and , ( )m n tφ  are the dyadic grid wavelet 
and the scaling function, respectively. 

As the trend in x(t) is the approximation part, a threshold Thr 
is used to set the coefficients corresponding to the trend to zero, 
as showed in (10). 
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Then, together with Dm, n, ,
ˆ

m nA  is used to reconstruct the 
signal. At last, we obtain the detrended signal by the inverse 
discrete wavelet transform as follows, 

, , , ,
ˆˆ( ) ( ) ( )m n m n m n m n

m n m n

x t A t D tφ ψ= +∑∑ ∑∑  (11) 

C. The EMD Method 
Given a signal x(t), all the local maxima and minima are 

connected by a cubic spline curve as the upper envelope eu(t) 
and the lower envelope el(t). Then the mean of the two 
envelopes is subtracted from the signal. This procedure is 
referred to as the sifting process[19]. The sifting process is 
applied repetitively until the first intrinsic mode function (IMF) 
c1(t) is obtained. An IMF satisfies two conditions: first, in the 
whole data set, the number of extrema and the number of zero 
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crossings must be equal or at most differed by one; and second, 
at any point, the mean value of the envelopes of the local 
maxima and minima is zero. Then, the first IMF component 
c1(t) is separated from x(t), and we get the residue 
r1(t)=x(t)-c1(t), which is treated as a new signal and applied the 
above procedure. Thus we can obtain other IMFs, c2(t), …, 
cN(t). 

The result of the decomposition produces N IMFs and a 
residue signal. Lower-order IMFs capture fast oscillation 
modes, and higher order IMFs and the residue typically 
represent slow oscillation modes. Thus, detrending x(t) may 
amount to computing the partial, fine-to-coarse reconstruction 

1

ˆ ( ) ( )
D

D n
n

x t c t
=

= ∑  (12) 

where D is the IMF index prior contaminated by the 
non-stationary trend. 

IV. RESULTS 

A. Results of Artificial R-R Interval Series 
In Fig.2(a-1)~(d-1), four types of simulated trends were 

chosen for test, which could fall into two categories: smooth 
curves such as the line and Gauss trends and inflection curves 
such as the cusp and break trends. The four types of trends were 
added to the non-trend artificial R-R interval series for 
reconstruction of artificial R-R interval series, as shown in 
Fig.2(a-2)~(d-2). Then the three detrending methods were used 
for the reconstructed R-R interval series. 

(a-1) The line trend (a-2) R-R interval series with the line trend

(b-1) The Gauss trend (b-2) R-R interval series with the Gauss trend

(c-1) The cusp trend (c-2) R-R interval series with the cusp trend

(d-1) The break trend (d-2) R-R interval series with the break trend

(a-1) The line trend (a-2) R-R interval series with the line trend

(b-1) The Gauss trend (b-2) R-R interval series with the Gauss trend

(c-1) The cusp trend (c-2) R-R interval series with the cusp trend

(d-1) The break trend (d-2) R-R interval series with the break trend  
Fig. 2 Simulated trends and constructed artificial R-R interval series 

The L-S periodogram was applied to assess the detrending 
performances. Ten thousand artificial R-R interval series were 
generated from McSharry’s model. The parameters of the 
model changed randomly within a certain range, in which, fLF 
ranged between 0.08Hz and 0.12Hz, fHF ranged between 
0.22Hz and 0.33Hz, and the ratio α  ranged between 0.5 and 2. 
The theoretical values of the spectral characteristics, LF, HF, 
and their ratio α  for each model was obtained from the 
artificial R-R interval series, in which, LF and HF denoted the 

power of the LF and HF bands. If one of these theoretical 
values was I0, the value obtained from the R-R interval series 
with simulated trends or from that detrended by the SPA, 
wavelet(WAVE) or EMD methods was Ix, then the mean 
relative error was expressed as follows,  

0

1 0

100%
j jN

x

x j
j

I I

I
δ

=

−
= ∗∑ , N=10000. (13) 

Results were shown in Table 1. The 
Trendδ  of LF, HF, and α  

were quite high. The mean relative errors of them all reduced 
after detrending, which showed that the trends could influence 
the results of spectral analysis or even cause misjudgment for 
HRV. Therefore, it is necessary to remove the trend before 
spectral analysis. The four types of trends showed different 
relative errors; from low to high, they were the cusp, the line, 
the Gauss, and the break. All trends showed higher relative 
errors in LF and α  than in HF, which revealed that the effects 
of trends on different components differed. The LF band is 
easier to be influenced than the HF band. Moreover, the SPA 
method performed higher relative errors in LF of all trend 
models. The wavelet method and the EMD method showed 
excellent performance for the line and Gauss trends. But for the 
cusp trend, the performance of these two methods was 
deteriorated. In respect to the break trend, the wavelet method 
showed a lower relative error than the others. But the EMD 
method showed higher relative errors in both LF and HF than 
did the other methods. Thus the wavelet method showed a 
better overall performance than the other two methods. 

For the three detrending methods, another important factor is 
the running speed. We compared time costs of the three 
methods on the artificial R-R interval series with lengths of 
300, 500, 1000, 3000 and 5000, 100 ones for each length. The 
comparison was simulated in Matlab. As shown in Table 2, the 
time cost of the SPA and EMD methods increased along with 
the data length increased, but that of the wavelet method 
remained stable. The running time of the SPA method 
increased nonlinearly. When the length was small, the running 
time was short, but when the length increased to 5000, the 
running time increased to nearly one minute. The running time 
of the wavelet method was little changed as the length 
increased. Even when the length increased to 5000, the running 
time remained less than one second. Like the SPA method, the 
running time of the EMD method also increased with the 
length, but the increasing speed was lower than the SPA 
method. In conclusion, when the length was smaller than 500, 
the SPA method was more efficient than the other two, but 
when the length was more than 1000, the wavelet method was 
more efficient. 

According to the simulation results, the wavelet method not 
only showed better detrending performance but also used less 
running time than did the EMD and SPA methods. Therefore, 
the wavelet method is recommended for detrending HRV 
signals, both in the short-time situation and the long-time 
situation. 
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TABLE I 

MEAN RELATIVE ERRORS OF SPECTRAL ANALYSIS 
 Line Gauss Cusp Break 

Trendδ (%) 
LF 11.8±5.63 24.3±6.89 6.97±3.48 50.0±15.6 
HF 4.19±2.65 9.04±5.49 2.72±2.01 19.4±8.62 
α  8.20±5.71 15.17±9.60 5.39±3.79 27.1±16.9 

SPAδ (%) 

LF 1.78±0.98 1.78±0.97 1.63±1.31 1.68±1.07 
HF 0.17±0.18 0.17±0.18 0.46±0.35 0.18±0.18 
α  1.68±0.99 1.67±0.99 1.69±1.36 1.58±1.09 

WAVEδ (%) 
LF 0.40±0.54 0.41±0.53 1.47±1.16 0.59±0.55 
HF 0.20±0.24 0.20±0.23 0.48±0.38 0.22±0.24 
α  0.47±0.58 0.48±0.57 1.55±1.23 0.66±0.61 

EMDδ (%) 
LF 0.25±0.26 0.19±0.30 1.41±2.24 1.98±1.81 
HF 0.11±0.15 0.12±0.20 0.49±1.18 1.16±1.03 
α  0.28±0.29 0.24±0.31 1.41±1.21 2.05±1.84 

TABLE II 
RUNNING TIME OF THE DETRENDING METHODS ON DIFFERENT LENGTHS OF THE R-R INTERVAL SERIES 

Length TSPA (s) TWAVE (s) TEMD (s) 

300 0.12±0.02 0.41±0.05 6.20±0.58 
500 0.25±0.01 0.42±0.01 7.18±0.82 
1000 0.86±0.02 0.42±0.02 9.72±0.90 
3000 12.30±0.53 0.42±0.01 18.96±1.77 
5000 49.06±4.56 0.43±0.02 27.15±2.32 

B. Results of Real R-R Interval Series 
Thirty-seven healthy subjects (18 female and 19 male, Age: 

55±7years; Height: 166±8cm; Weight: 66.3±10.4kg; Systolic 
blood pressure: 110±13mmHg; Diastolic blood pressure: 
76±7mmHg; Heart rate: 66±7beats/min) participated in the 
real R-R interval assessment. The ECG signals were collected 
for 5 to 10 minutes using a cardiovascular system status 
monitor (CVFD-I) developed by Institute of Biomedical 
Engineering, Shandong University. The wavelet method was 
chosen to detrend the R-R interval series and the L-S 
periodogram was used for spectral analysis (see Table 3). Data 
were expressed as means±SD and compared by a paired t test 
with a significance level of 0.05. Statistical tests were 
performed with SPSS 16.0 for Windows (SPSS, Chicago, IL, 
USA). In Table 3, the variable change is evaluated using Δ : 

*100%before after

before

X X

X

−
Δ = , (14) 

in which, Xbefore and Xafter respectively denotes the spectral 
characteristics, LF, HF or the ratio α , of the R-R interval 
series before and after detrending. 

TABLE III 
SPECTRAL ANALYSIS OF REAL R-R INTERVAL SERIES 

 LF (ms2) HF (ms2) α  
Before 
detrending 

248.37± 
222.43 

174.49± 
131.40 1.68±1.21 

After 
detrending 

198.28± 
177.13 

172.35± 
128.67 1.35±0.95 

p p<0.001 p=0.024 p<0.001 
Δ (%) 19.94±5.87 1.70±2.01 18.97±5.78 

The means and SD of LF、HF and the ratio α  decreased 
after detrending, especially the LF and α (p<0.001). The LF 
and α  have a change as large as about 20%, much higher than 
that of HF. Results of both the paired t test and the change 
amount indicated that the trend mainly affected the LF band of 

the spectral analysis, which was consistent with the simulation 
results. 

V.  DISCUSSION    
In this study, three detrending methods for spectral analysis 

of heart rate variability were compared. Results showed that 
the wavelet method performed better than the other two 
methods. In contrast, Wu et al. found that the EMD method is a 
logical choice of algorithm for extracting trends from a data 
set[20]. Reasons for these inconsistent results are probably 
because of different definition of “trends” and different gauges 
based. This study compared the detrending approaches using 
same spectral parameters whose physiological significance 
had been widely accepted. Considering the running speed of 
the three methods, the wavelet method needs less time 
consumption, no matter the length of HRV signals.  

In previous study, usually the smooth curves, such as the 
line trend and the Gauss trend was used to simulate the 
trends[21], neglecting inflection curves like the cusp trend and 
the break trend in the real R-R interval series. In this study, 
both smooth curves and inflection curves were proposed to 
simulate the trends. The simulation results showed that the 
EMD method was appropriate to the smooth curves rather than 
inflection curves. However, because the real R-R interval 
series more commonly have trends like inflection curves; the 
EMD is not recommended to be used for detrending.  

Table 2 showed the running time of the three methods. The 
calculation procedure of the SPA method involves 
multiplication of matrixes whose computational complexity is 
O(N3)[22], in which N is the data size. The time consumption 
of SPA will increase rapidly with prolongation of R-R interval 
series. The running speed of wavelet depends on 
computational complexity O(N)[23] and decomposition level. 
If the decomposition level is fixed, the time cost of the wavelet 
method was little changed when data size increased from 300 
to 5000. The computational efficiency of EMD method is 
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lower compared to SPA and wavelet methods, probably due to 
the iteration in the sifting process for IMFs decomposition. 
According to this study, the time consumption of the EMD 
method increases with prolongation of the series, higher than 
the other two methods. 

In this study, we concentrated on the LF and HF band of the 
spectral analysis, so the cutoff frequency for detrending was f 
<0.04Hz. The cutoff frequency is easy to set in the SPA and 
wavelet methods. For the SPA method, the cutoff frequency 
depends on the sampling rate of the signal and the 
parameter λ [12]. In the test of the artificial R-R interval 
series, the heart rate was set to 60, so the mean sampling rate of 
the series was 1Hz, thus the cutoff frequency can be easily set 
using the parameter λ . In this paper, we set λ =30 and got the 
cutoff frequency as 0.033Hz. For the wavelet method, the 
cutoff frequency could be set by the decomposition level. For 
the mean sampling rate of the series was 1Hz, the 
decomposition level was set to 4 and the cutoff frequency was 
0.03125Hz. As in practice the mean frequency was not fixed 
for different R-R interval series, the decomposition level 
shouldn't be fixed, too. Suppose the mean sampling rate is fs, 
the decomposition level is n. A suitable level can be decided 
when n satisfies fs/2n+1<0.04Hz. The EMD method is a 
data-driven method and the commonly used stopping criteria 
is the value of the standard deviation computed from the two 
consecutive sifting[19]. So the cutoff frequency of the EMD 
method is not fixed. 

VI. CONCLUSION 
In this study, comparison results of the three detrending 

methods, the smoothness prior approach, the wavelet and the 
empirical mode decomposition, showed that the wavelet 
method was the best choice for detrending of R-R interval 
series, both in short and long series. Similarly, in other 
physiological signal variability analysis, such as the blood 
pressure variability and the pulse transit time variability, 
similar detrending methods could be used. 
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