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Abstract—Among many different methods that are used for 

optimizing different engineering problems mathematical (numerical) 
optimization techniques are very important because they can easily 
be used and are consistent with most of engineering problems. Many 
studies and researches are done on stability analysis of three 
dimensional (3D) slopes and the relating probable slip surfaces and 
determination of factors of safety, but in most of them force 
equilibrium equations, as in simplified 2D methods, are considered 
only in two directions. In other words for decreasing mathematical 
calculations and also for simplifying purposes the force equilibrium 
equation in 3rd direction is omitted. This point is considered in just a 
few numbers of previous studies and most of them have only given a 
factor of safety and they haven’t made enough effort to find the most 
probable slip surface. In this study shapes of the slip surfaces are 
modeled, and safety factors are calculated considering the force 
equilibrium equations in all three directions, and also the moment 
equilibrium equation is satisfied in the slip direction, and using 
nonlinear programming techniques the shape of the most probable 
slip surface is determined. The model which is used in this study is a 
3D model that is composed of three upper surfaces which can cover 
all defined and probable slip surfaces. In this research the meshing 
process is done in a way that all elements are prismatic with 
quadrilateral cross sections, and the safety factor is defined on this 
quadrilateral surface in the base of the element which is a part of the 
whole slip surface. The method that is used in this study to find the 
most probable slip surface is the non-linear programming method in 
which the objective function that must get optimized is the factor of 
safety that is a function of the soil properties and the coordinates of 
the nodes on the probable slip surface. The main reason for using 
non-linear programming method in this research is its quick 
convergence to the desired responses. The final results show a good 
compatibility with the previously used classical and 2D methods and 
also show a reasonable convergence speed. 
 

Keywords—Non-linear programming, numerical optimization, 
slope stability, 3D analysis. 

I. INTRODUCTION 
ATHEMATICAL Optimization concepts and methods 
are not new. Indeed, optimization is fundamental for 

most of what we do. Whether we are engineers, athletes, or 

 
M. M. Toufigh, Associate Professor, Civil Engineering Department, 

University of Kerman, Iran (e-mail: mmtoufigh@ yahoo.com).  
A. R. Ahangarasr, Graduate Student, Civil Engineering Department, 

University of Kerman, Iran (e-mail: A_Ahangarasr@yahoo.com). 
A. Ouria, PhD Candidate, Civil Engineering Department, University of 

Kerman, Iran (e-mail: Aouria@mail.com). 

businessmen, our goal is to be best in some way. Numerical 
optimization helps us for those cases where we are able to 
define the optimization problem in a consistent mathematical 
or numerical way. Interest in optimization originated with the 
simple linear programming model since it was practical and 
perhaps the only computationally tractable model at the time. 
Linear optimization models were soon adopted in numerous 
application areas and are perhaps the most widely used 
mathematical models in operations, research, and management 
science. Modelers have, however, found the assumption of 
linearity to be overly restrictive in expressing the real-world 
phenomena and problems in economics, finance, business, 
communication, engineering design, computational biology, 
and other areas that frequently demand the use of nonlinear 
expressions and discrete variables in optimization models. On 
the brighter side, recent advances in algorithmic and 
computing technology make it possible to revisit these 
problems with the hope of solving practically relevant 
problems in reasonable amounts of computational time. 

Numerical optimization has traditionally been developed in 
the operations research community. The use of these 
techniques in engineering was popularized in 1960 when 
Schmit applied nonlinear optimization techniques to structural 
design.  

A major advantage of using numerical optimization is the 
reduction in design time especially when the same computer 
program can be applied to many design projects, and also we 
can deal with a wide variety of design variables and 
constraints which are difficult to visualize using graphical or 
tabular methods. 

Field observations of landslide failure surfaces typically 
display spatial variability. However, analyses of these slides 
are usually limited to two-dimensional (2D) approximations. 
The demand for practical, three-dimensional (3D) slope 
stability analysis methods and their associated user-friendly 
computer programs is high (Seed et al. 1990; Morgenstern 
1992; Stark and Eid 1998).  

 There are a large number of publications that deal with 3D 
slope stability analysis. Duncan (1996) summarized the main 
aspects of 24 publications dealing with limit equilibrium 
approaches. This list could now be extended to include recent 
publications (e.g., Huang and Tsai 2000). All of these 
methods divide the failure mass into a number of columns 
with vertical interfaces and use the conditions for static 
equilibrium to find the factor of safety. Assumptions must be 
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introduced to render the problem statically determinate and to 
facilitate the numerical procedures. A number of the methods 
(Hungr et al. 1989; Huang and Tsai 2000) neglect the vertical 
shear force components of the inter-column force and project 
the forces applied on a column in the vertical direction. The 
normal force of the column base can then be readily 
determined without the knowledge of the unknown inter-
column forces. Force or moment equilibrium equations are 
subsequently established to calculate the factor of safety. This 
kind of treatment can be traced back to 2D analysis, where 
Bishop (1955) established his simplified method for circular 
slip surfaces (although complete satisfaction of force 
equilibrium conditions for an individual slice or for the whole 
failure mass were not considered). Hungr et al. (1989) 
discussed the limitations involved in their 3D Bishop and 
simplified Janbu methods. These do not satisfy the overall 
force equilibrium condition in the lateral direction. Huang and 
Tsai (2000) employ moment equilibrium conditions around 
two co-ordinate axes. However, since the force equilibrium 
equations are not fully satisfied in their method, the moment 
equilibrium conditions are dependent upon the location of the 
axes around which the moments are calculated. Their method 
is therefore only applicable to spherical slip surfaces in which 
the location of the center is known and allows the 
establishment of the moment equilibrium conditions [1] [7] [5] 
[14] [15] [16].  

II. OPTIMIZATION PROCESS 

A. Basic Optimization Concepts 
Mathematical programming provides a very general 

framework for scarce resource allocation and the basic 
algorithms originate in the operations research community. 
Engineering applications include chemical process design, 
aerodynamic optimization, nonlinear control system design, 
mechanical component design, structural design and a variety 
of others. Because the statement of the numerical optimization 
problem is so close to the traditional statement of engineering 
design problems, the variety of tasks to which it can be 
applied is inexhaustible, [1]. 

In the most general sense, numerical optimization solves the 
nonlinear, constrained problem; Finds the set of design 
variables, Xi, i=1, N, contained in vector X, that will 
Minimize 
 

                             F(X)                                      (1) 
 
Subject to; 
 

                    ( ) 0≤Xg j             j = 1, M                          (2) 

                    ( ) 0=Xhk             k = 1, L                          (3) 

                    U
ii

L
i XXX ≤≤     i = 1, N                          (4) 

 
Equation (1) defines the objective function which depends 

on the values of the design variables, X. Equations (2) and (3) 
are inequality and equality constraints respectively, and 

equation (4) defines the region of search for the minimum. 
The bounds defined by equation (4) are referred to as side 
constraints. A clear understanding of the generality of this 
formulation makes the breadth of problems that can be 
addressed apparent [1] [7] [2] [3] [4]. 

  
B. General Optimizing Steps  
The symbol ∇  is called the gradient operator.  
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Where, in general, F(X) can be the objective or any 

constraint function. 
This is a vector direction. The slope is the direction you 

might choose to search since this will move you towards the 
optimum response at the fastest rate. This we call the “search” 
direction. Mathematically, this gradient of the objective is 
referred to as a direction of “steepest ascent.” Because we 
wish to minimize F(X), we would move in the negative 
gradient, or “steepest descent” direction. You can now move 
in this direction until you reach the optimum answer or 
encounter a constraint. Note that the number of steps you take 
in this direction is a scalar parameter (partial steps are allowed 
so it will usually not be an integer number). We will call the 
number of steps in a given search directionα . Now define the 
point at which you started as X0. In this case, X0 contains two 
entries, being the longitude and latitude of your starting point. 
You move in a vector search direction we will call S. Also, 
this is the first iteration in the process of optimizing your 
objective function so it is iteration 1. In general we will use 
the letter “q” to indicate the iteration number. Finally, you 
moved in a steepest descent direction so, mathematically, 

)(XFS −∇= . Remember that, because F(X) is the negative 
of the objective function, this is actually the steepest ascent 
direction towards the optimum answer. Since this is the first 
iteration, the direction you move is designated as S1. Upon 
encountering a constraint or the desired optimum in direction 
S1, we can update the description of the variable X by the 
simple mathematical expression; 

 
                    101 sXX ×+= α                                (6) 

 
This completes the first iteration in the “search” process. If 

you have your desired answer, we could just repeat the 
process of finding a new steepest descent direction and 
moving again. In practice we will see that, in this case, there is 
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a better choice of directions, called a conjugate direction. In 
case that we didn’t get at the optimum answer we continue 
this process by changing direction until we get at the expected 
optimum [1]. 

 
C. Different Optimization Methods 
There are many different methods that almost all of them 

follow the process that mentioned above to get to the desired 
result. At this part some of these methods that are used in this 
study are presented. First one is the Broydon-Fletcher-
Goldfarb-Shano (BFGS) Variable metric method which 
usually considered best on theoretical grounds.  The second 
one is the Fletcher-Reeves (F.R.) conjugate gradient method 
which uses very little computer memory and has been found 
to be reliable, and the third method is the Modified Method of 
Feasible Directions (MMFD) which is reliable and uses the 
least computer memory. These three methods are used to 
justify results and find the quickest and the most suitable 
method in determination of the most probable slip surface in 
slopes [1] [6] [8]. 

III. SLOPE ANALYSIS METHOD 
The three dimensional method that is used in this study to 

analyze slopes to find the safety factor is proposed by Zuyu 
Chen (2003). This method is a 3D limit equilibrium method. 

 
A. Assumptions made about the Internal Shear Forces 
As with other 3D limit equilibrium methods, the failure 

mass are divided into a number of columns with vertical 
interfaces (Fig. 1). The conventional definition for factor of 
safety F reduces the available shear strength parameters c′  
and φ′  by the following equations to bring the slope to a 
limiting state. 
 
 

                   
F
cce |
′

=′                                          (7) 

                   
Fe

φφ
′

=′ tantan                                   (8) 

 
Throughout this paper, the subscript “e” is used to indicate 

the variables that are determined based on the reduced shear 
strength parameters ec′  and eφ′ . 

 

 
Fig. 1 Discretization of a failure mass [9] 

 
The following assumptions are made in the establishment of 

the force and moment equilibrium equations (Fig. 2). 
 
(1) The horizontal shear forces, H, on the row-interfaces 

(ABFE and DCGH in Fig. 2a) are neglected, i.e., the inter-
column forces with inclinations of β to the x-axis and 
designated G, are assumed to be parallel to the xoy plane. It is 
further assumed that β is constant for all columns. This 
treatment is therefore equivalent to that used in Spencer’s 
(1967) method in two dimensions. Ignoring the horizontal 
components of shear forces on the row-interfaces is a common 
assumption made to almost all of the 3D methods appearing in 
the literature. 

 
(2) Shear forces, P and V, applied to the column-interfaces 

(ADHE and BCGF in Fig. 2) are neglected. Similar 
assumptions have been made by other researchers (e.g., Hungr 
et al. 1989; Huang and Tsai 2000). 

 
(3) The shear force applied to any column base, T, is 

assumed to be inclined at an angle of ρ measured from the xoy 
plane to the positive z-axis. For prisms in any column 
direction (i.e., those with constant z values), ρ is taken to be 
constant. In the z-direction, ρ varies according to the 
following two modes: 

(a) Mode I: the direction of the shear forces on all of the 
column bases is the same, i.e., |ρ | = κ = constant (Fig. 3a). 

(b) Mode II: the basal shear forces on the left and right side 
of the central xoy plane take opposite directions and vary 
linearly with respect to the z-axis, i.e., (Fig. 3b), 
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Fig. 2 Forces applied on a prism (a) before introducing the 
assumptions and (b) assumptions made for the shear forces on the 

prism 
 

 
Fig. 3 Assumptions made for the distribution of r: (a) mode I, (b) 

mode II 
 

The subscripts R and L indicate the right and left sides of 
the xoy plane, respectively, η is a coefficient of asymmetry, 
and κ is an unknown involved in the force and moment 
equilibrium equations. It determines the magnitude of ρ for 
each column after the solution is obtained. 

The direction cosines of the shear force T, designated mx, 
my, mz, can be readily determined by the following equations: 
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And:     mz = sin (ρ) 
 
Where nx, ny, nz, are direction cosines of the normal to the 

column base. There are two solutions to mx. The negative 
solution should be rejected [9] [11] [12] [13]. 

 

B. The Force and Moment Equilibrium Equations 
By projecting all the forces in directions showed in Fig. 4 

and calculating the moment equilibrium around Z axis, force 
and moment equilibrium equations can be determined as the 
following equations: 

 
( ) ieeiii AcuANT ′+′−= φtan  

 

 
Fig. 4 The force and moment equilibriums  

IV. STUDY RESULTS 
At this part the results of this study are mentioned using 

two example problems that have been solved using the 
previously presented methods [9] [10]. 

 
A. Problem Definition Process  
To define the problem to be solved using this method we 

consider a 3D slope with an arbitrary slip surface. As to 
calculate the factor of safety we need to have soil properties 
like cohesion and internal friction angle and also the shape of 
the slip surface, so we introduce these data to the computer 
code. To define the slip surface we just need to enter the 
coordinates of six points on the slip surface and the computer 
code, itself, will calculate the coordinates of the nodes on the 
slip surface (Fig. 5&6). 

 

 
Fig. 5 The initial slip surface 
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Fig. 6 Points on the slope surface that must be introduced  

 

B. Soil and Slope Properties in the Following Examples 
Table I shows the defined properties of soils in following 

examples. 
 

TABLE I 
SLOPE AND SOIL PROPERTIES 

Soil properties : 
c−−φγ   

23 29,20,8.18 mkNmkN o  

Soil mass Dimensions  201.12664.33 ×× 
33.664 , 12.1 , 10 

27.09 , 12.1 , 0 
27.09 , 12.1 , 20 

5.786 , 0 , 0 

Coordinates of the 
entrance points  

( x , y , z ) 
m 5.786 , 0 , 20 

   m = meter 
 
C. Example 1 
 In this example the slip surface is assumed to be circular. 

The optimization parameters, which are considered, are: 1) 
coordinates of the center of the cross sectional circle in the 
middle of the slope mass, 2) radius of failure slip circle 
(cylinder for 3D). The initial values for these parameters are 
introduced to the optimization program in order to start the 
operation. These initial values and also the upper and lower 
limits of these variables are presented in Table II. 

 
TABLE II 

PRIMITIVE VALUES AND RANGES OF THE VARIABLES 
Primitive  R- m 14  
Primitive XC-m  13 
Primitive YC-m 14 

R,  Range-m 0-30 
XC,  Range-m 12-30 
YC,  Range-m 12-30 

   m = meter 
 
Using the optimization methods that are mentioned in part 

II of this paper (BFGS, F.R., MMFD method), the similar 
results of this these three methods are shown in Table III.  

 
TABLE III 

FINAL VALUES OF THE OPTIMIZATION VARIABLES 
Final  R- m 23.7392  
Final XC-m  12.1423 
Final YC-m 20.9957 

   m = meter 

The optimum value that is determined using presented 
mathematical methods for the minimum factor of safety in this 
example is: 

 
( )  1.9721FOSsafety  offactor  Minimum =  

 
The cross section of the soil mass which shows the shape of 

the cylindrical slip surface is shown in Fig. 7. 

  
Fig. 7 The final and optimized circular cross section  

 
D.  Example 2 
In this example the slip surface is assumed to be an 

ellipsoidal one. The optimization parameters, which are 
considered, are a, b, and c parameters of the ellipsoid. The 
initial values for these parameters are introduced to the 
optimization program in order to start operation. These initial 
values and also the upper and lower limits of these variables 
are presented in Table IV.  

 
TABLE IV 

PRIMITIVE VALUES AND RANGES OF THE VARIABLES 
Primitive  a- m 11  
Primitive b-m  9 
Primitive c-m 12 
a,  Range-m 0-40 
b,  Range-m 0-30 

YC,  Range-m 0-40 
   m = meter 
 
The formula standing for the ellipsoidal surfaces in general, 

is: 
 

02

2

2

2

2

2

=++
c
z

b
y

a
x                            (11) 

 
Using the optimization methods that are mentioned in part 

II of this paper (BFGS, F.R., MMFD method), the similar 
results of this these three methods are shown in Table V.  

 
TABLE V 

FINAL VALUES OF THE OPTIMIZATION VARIABLES 
Final  a- m 14.6110  
Final b-m  10.9889 
Final c-m 14.9977 

   m = meter 
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The optimum value that is determined using presented 
mathematical methods for the minimum factor of safety in this 
example is: 

 
( ) 2.432FOSsafety  offactor  Minimum =  

  
The 3D shape of the slope which shows a very clear picture 

of the ellipsoidal slip surface is shown in Fig. 8. 
 

 
 

Fig. 8 3D view of the ellipsoidal slip surface  
 

The cross section of the soil mass that indicates the shape of 
the ellipsoidal slip surface is depicted in Fig. 9. 

 
 

Fig. 9 Cross section of the ellipsoidal slip surface  
 

V. CONCLUSION 
Generally it can be concluded that, mathematical or 

numerical optimization techniques can be very effective and 
also very efficient in 3D slope stability optimization problems. 
The proposed optimization methods are easy to use and more 
applicable in comparison with some other optimization 
methods that are based on the trial and error procedure. Based 
on the presented method, results of this study show that 
finding of the most probable slip surface in 3D slopes is less 
time consuming and more accurate.    In order to find the 
minimum factor of safety, this particular problem can be 
solved by implemented mathematical techniques, results show 
quicker convergence compared to other techniques. 
Verification of this 3D method was justified for simple 2D 
problems based on classical methods for the most probable 
slip surface.   
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