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Localisation oAnatomical ®ft Tissue
Landmarks of thHead in CT inage

M. Ovinis, D. Kerr, K. Bouazzi-Marouf, andM. Vloebergh

Abstract—In this paper, algorithms for the automatic locatiisn
of two anatomical soft tissue landmarks of the hethe medial
canthus (inner corner of the eye) and the tragusniall, pointed
cartilaginous flap of the ear)n CT image are described. These
landmarks are to be used as a basis for an autdnmasg-to-patient
registration system we are developing. Taedmaris are localised
on a surface model extracted from CT images, basedurface
curvature and rule based system that incorporates prior knoyd
of the landmark characteristics. The approach ested on a datas
of near isotropic CT images of 9%atients. The position of tt
automatically localised landmarks was comparedhto gosition o
the manually localised landmarks. The average rdiffee was 1.
mm and 0.8 mm for the medial canthus and tragu, a/imaximun
difference of 4.5 mm and 2.6 mrespectivel\The medial canthus
and tragus can bautomatically localisedn CT images, with
performance amparable to manual localisat.

Keywords—Anatomical soft tissue landmarks, automati
localisation, Computed Tomography (CT)
|. INTRODUCTION

method  whe

IMAGE-TO-PATIENTregiStl’ation is a
correspondence betweéimage space’ an image of an
anatomy) and ‘patient space’thé anatomy itse) is

established.Features to be registered that are used

facilitate the registration are known as aistration basis.
Anatomicalsoft tissue landmarks of the head can be usec
basis for inage to patient registration —[2]. We have
previously proposed [3H] the use of the canthus and tra
as a registration basis for an automated, predper&@T
image to intraoperative patient registration systéhe use o
these landmarksavoids resorting fmlucial markers. At
present, these landmarks are manually localilf localised
automatically, theyould be used as a registration basis i
automated image-tpatient registration system. The
localisation of these landmarks in patient spadeguslose
range photogrammetry has previously been reportg«
Gooroochurn et al [5] In this paper, an approach
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automatically localise the medial canthus aragus in CT
images is described.

The medial canthusF{g. 1a) and tragus (Fig. 1b) are
conventional soft tissue craniometric anatomicaldraarks
with the following definitions: The medial canthigsthe innel
corner of the eye where the upper and lovyelids meet. The
tragus is a small, pointed, cartilaginous flap ianf of the
external opening of the ear. As the tragus is ativaly large
structure, the most lateral point of the tragushiesen as th
point which uniquely defines its positic

Fig. 1(a) Medial canthus and (b) the most lateral poirihe tragus

The majority of work on localising anatomical lanalks in
head CT images is concerned with internal landmafkihe
head g. tips of the frontal, temporal, and occipitalri® of
the ventricular system; saddle point of the zygaoreatd nase
bone; and tip of the ésrnal occipital protuberance]-[8].
Early work on localising these anatomical landmark<CT
images used 3D generalisations of 2D differenl
operators/corner detectors]. A more recent approach used
3D deformable models [§10]. In this semi automatic
approach, the user is required to provide a gasaikation of
the landmarks, which the algorithm threfines, by fitting
models of anatomical structures to their image<eRgy, a
method to automatically localised anatomical landk®ié&n CT
images wa proposed by Subburaj et al ], who used surface
curvature and prior knowledge of the gross spéication of
landmarks to localise anatomical landmarks of thee-joint.
However, their localisation technique, based on ritative
location of landmarks, is not applicable in our ¢, as there
areno other soft tissue landmarks that can be uséattiitate
the localisation of the medial canthus and tra
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Il. METHODOLOGY

The medial canthus and tragus is localised on face
model of the head (the surface between the suringrair
and the voxels inside the head), extracted fromin@dges. As
these landmarks exhibittharacteristi surface curvature
properties, a thresholded surfacarvaturemap is used to
localise these landmarks. Howevethe use of surface
curvature alone imsufficient to localise these landmarks,
there will be many false detémhs. We use a ru-based
system incorporating prior knowledge of the landgk
characteristics to reduce the search space andl dagje
localisation errors. Landmarke identifiel based on having a
geometric structure and spatial location consisteith the
prior knowledge A summary of the method shown in

flowchart form in Fig 2.

| Obtain surface model of head surface from CT i |

v

| Compute surface curvatt |

v

Threshold surface curvature to isolate candid@®ns containing
the landmarks

v

| Cluster candidate regic |

v

| Localise ear canals |

v

| Select a cluster using rule based sy:

Spatially consistent?

Yes

Fig. 2 Flowchart summarising the methodol

A. Landmark surface geometry

Characterising the geometry of the medial canthod
tragus is necessary in developing an algorithm
automatically localise these landmarks. of the difficulty in
describing the geometry of anatomical landmarkganeral is
that their definitions are often fuzzy and are éfiere difficult
to translate into a fonal mathematical description []. The
medial canthus is the most medial poina depressed region

that forms a line which extends from the outer eorto the
inner corner ofthe eye. This region exhibithigh positive
mean curvature and zei®aussian curvatu. The tragus is
approximately seméllipsoid, and its most lateral poirs the
tip of this structure, a locally maximum point. it

characterised by negative mean curvature and hmlsSar
curvature.

B. Curvature estimation

There are three approaches to calculate curvatfira
surface represented by a mesh: fitting methodscrete
methods, andcurvature tensor estimation [. In fitting
methods, an analytic function, whose curvature d&&
computed, is fitted to a mesh locally. Fitting
computationally expensive. Discrete methods invawdirect
estimation of the curvatarat each vertex, by summing -
curvature of each face or edge associated withvéreex.
Discrete curvature methods are appealing becaustneaf
speed. However, they are sensitive to noise andh
resolution. Curvature tensor estimation is simtla discrete
methods, except that instead of estimating the ature
directly, the curvature tensor is estimated. Cumest anc
principal directions are derived from the eigenealuanc
eigenvectors of the curvature tens

Curvature tensor estimation isomputationally less
complex than fitting methods, although slightlyveéy than
the discrete methods. They are elegant and freenstfable
configurations, although certain vertex arrangem@noduce:
erroneous curvature estimates ]. The curvature tensor
estimation methday Cohel-Steiner and Morvan [16] and
Alliez et al. [17] isused in this work and described next. For
an arbitrary regio®, on a triangulated surface mesh,
curvature tensdg, is the average of indiwal curvature
tensors of edges, of the mesh over the region, as show
Fig 3.

LTSS e

Fig. 3 Notations used in the curvature tensor estimatiethoc

Formally, the curvature tens, 3, at an arbitrary vertexs,
on the meslover an arbitrary regiolB, is given by:

- _ 1
\S(U)—E

edges e

B(e)lenBleet 1)

where|B| is the surface area around the vewover which
the curvature tensd¥ is estimatedf(e), is the signed angle
between the normals of the two oriented trianghesdient tc
edgee(positive if convex, negative if concavie n B| is the
length ofe N B (always between 0 arle|), and éis a unit
vector in the same direction ie. A continuous tensor field
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over the whole surface is obtained by linearlyiipodating the
piecewise cwvature tensor at each vertex. The princ
curvatures,k;and K,, are the eigenvalues of the curvat
tensor,3. The Gaussian and mean curvature can be com
from the principal curvature. The Gaussian cungiK, is the
product of the principal curvaturas, andky:
K = KKz (2
The mean curvatured, is the average of the princig
curvaturesk; andk; :

H =% Ky+K2) 3
C.Surface model and curvature map

The following are the steps to generate a surfasgefranc
curvature map. Firsthe head region is segmented from
images using intensity based thresholding. Thestiuiel level
is determined autoatically using Otsu’s method []. The
segmented images contain holes in the region efast ant
small, spurious regions in the baokgnd. To remove th
holes, a morphological fill operation is applieah lemove the
spurious regions, the largest connected binary comq is
selected These operations are performed to elimil
additional structures of the extracted surface,ctvhivould
complicate the automatic detection of the landmarkse
original image (Fig.4a) is then multiplied with a ma:
consisting of the segmented image, and a grey
morphological fill operation is performecFig. 4b). Then,
using a custom isosurface algorithm J[18 surface model ¢
the head is extracted (Fig. 1).

~

()
Fig. 4 (a) Original and (b) segmented axial head CT &

A curvature map of the head surface model is géee
using a curvature teos estimation algorithm escribed in
Section II.The curvature map for the eye region (Fig. 5a)
ear region (Fig. 5b) is illustrated in Fig. 5.

(b)

-

Fig. 5 (a) @rvature map of the eye anc) ear

Curvature values have been normalised and coloued
for display purposes. Reand blue corresponds to areas
high and low curvature.

D.Clustering

The threshold surface curvature map contains matse
regions i.e. regions other than those containimglandmark:
(Fig. 6a). Clustering of the regions simplifies the asmyas
multiple regions can be grouped and analysed usingide
and conquer approach (Figh).

@) (b)
Fig. 6 (a) Threhold surface curvature m(b) clustered regions

As the regions tend to be arbitrarshaped, a density-based
clustering algorithm, which works well with thesgpés of
regions, is used. In density based clustering, ustet is
formed if the density of its points exceeds a udefined
threshold. The densityased spatial clustering of dications
with noise (DBSCAN) algothm [12] is used. DBSCAN
formalisesan intuitive notation of “clusters” and “noise” &
clustering application. The algorithm requires tvonly
parameters: a distance measure, and the minimunberuaf
points for a cluter to be former

E. Rule-based system

The selection of a clustepntaining the landmarlis based
on its spatial location and geometric struct Spatially,
thelandmarks shoulexhibit bilateral symmeti. An allowable
range of distance betweéme lardmarks was used as a simple
measure of bilateral symme! Geometrically, clusters
containing the landmarksshould have dimensions invith
predefinedrange. Both the distance and allowabteedsion:
were determined empirically based on our dailf the
localised landmarks are spaticor geometrically inconsistent,
the entire process is repeated using a differerstet and/or
higher surface curvature threshi

F. Localisation of the medial canthus

Regions of high positive mean curvatiand zero Gaussian
curvature correspond to candidate locations for the me
canthus. These regions are isoleby thresholding a curvature
map of the surface usin@n empirically derived fixed
threshold and grouped using a den-based algorithm (Fig.
6).The clusters associated with the eye region are ided
using nearest neigbour clusterbased on the standard shape
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and anatomy of the human face. The cluster with th®.Localisation of thetragus

maximum horizontal length in the eye region (Fi),#ith a  Regions of high positive Gaussian curvature anchtieg
horizontal  length and vertical height within  amean curvature correspond to candidate locatiomstte
predefinedrange,is selected as the most likely tetus tragus. Occasionally, the curvature map of the region
containing the medial canthus.The medial canthunesponds contains many false regions because the outer eddhe ear
to the most medial point of this cluster. Once bibih medial are not always in the field of view and as sucle, $krface
canthus are localised, bilateral symmetrybased ba tmodel of the ear region is not well defined (Fig 8)

separation distance between the medial canthisesasd. If
the symmetry condition is not met, the processejseated
using a different cluster and/or different mean vature
threshold. Fig. 7 illustrates the effect of varyithg threshold
level. Each colour corresponds to an individuastgu

Fig. 8 Clusters in a thresholded surface curvatap of the ear.

It is therefore necessary to determine an estitoatgion of
the cluster containing the tragus to avoid largsitpmal
errors. As the tragus is located close to the powra@f the ear

(@ (b) canals and ear canals are prominent features irinziges
Fig. 7 Clusters corresponding (a)da.> 0.01 and Gussiar= 0 (b) (Fig. 9b, Fig. 9c),the location of the tragus |erid.by looking
Cmeare 0.015 and Gussiar= 0- for the presence of ear canals in the CT axial emwbnal

planes and the outer ear structure in the CT sagitine (Fig.
11c).

In Fig. 7a, although the yellow clusterhas the mmaxn
horizontal length,its vertical length is outsidee thllowable
range. Increasing the threshold yields the clugtgeen)
containing the medial canthus (Fig. 7b).

Algorithm for the localisation of the medial canshu

;
nals

Input: Vertices,V,, of the triangular mesh surface model, the
mean curvaturéCre,, and Gaussian curvatu@yayssan

. g" cal
(b)

Algorithm: () (c)
1. Find candidate vertices,v,-eVi, {j=1,2,...,n} by Fig.9 (a) Anatomical plan_es, (b) ear canals in &ialgplane (c)
thresholding based on mean surface curvature valyg, > ear canals in CT coronal plane

threshold and Gussian= 0 (Fig. 6a).

2. Group each vertexy, into clusters,G, {i=1,2,....,p}
using a density based clustering algorithm (Fig. 6b

3. Group clusters,geC;, {i=1,2} into two clusters,

A necessary step prior to the detection of thecaaals is to
reorient the CT images using a rigid body transftiom if the
head orientation deviates by more than 15° fromfdneard
corresponding to the left and right eye regionpgsiearest facing position. The 2D ori_entation o_f the headziﬂ'rpated as

the angle between the horizontal axis and the naajisr of an

neighbour clustering. i . i i ellipse that has the same second-moments as tledtaxial
4. Select a clustedieg; {i = 1,2} with maximum horizontal poaq cT images (Fig. 10).

length with its horizontal length and vertical Haigvithin a

predefinedrange (Fig. 7b)

5. Select most medial vertex.€d;, for left medial
canthus (Fig. 7b) and most medial vertgx.€d,, for right
medial canthus.

6. Check the medial canthus for bilateral symméiaged
on distance to the other medial canthus

7. Repeat steps 4 — 6 if step 6 fails, using aembfit cluster.
If step 6 still fails, repeat steps 1 — 6 incregdime threshold.

ostill ) esho’ @ (b)
Output: Vertices corresponding to the left and right fakd Fig. 10 (a) Deviation from forward facing positiand (b) reoriented

canthus Yime, Vime}- head

The axial and coronal CT planes are then segmesnteld
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skeletonised (Fig. 11). The axial and coronal Eandose
skeleton endpoints are closest to the mid-sagittane
correspond to the axial and coronal CT planes wtikes

tragus is approximately located.
1
O\
(b)

[v-][v
A_AIA
Fig. 11 Image skeleton for (a) Fig. 8(a) and (ln. Bi(b)

(@)

The sagittal plane where the tragus is approximdoelated
may be found by scanning from the most lateralh® rost
medial sagittal plane (Fig. 12) until the Euler roem of the
largest connected binary region is equal to oess kthan zero.
In practice, morphological operations need to béopmed to
avoid false detections.

(b)
Fig. 12 Appearance of outer ear structure in CTtsdgiew when
scanned lateral to medial (left to right)

(a) (c)

The largest region close to the estimated trag@sgtipnis
the most likely cluster containing the most latgraint of the
tragus. The most lateral point of the tragus cpoads to a
point with the highest Gaussian curvature in thadter.

Algorithm for the localisation of the tragus

Input

1. Vertices,V,, of the surface model triangular mesh,the

mean curvaturéCnen, and Gaussian curvatu@yayssian

Algorithm:

1. Reorient the head in the axial plane using adrig
transformation if the head orientation deviates enthran 15
from the forward facing position (Fig. 10).

2. Estimate spatial location of the tragus. Theesponding
axial and coronal planes are the axial and corplale with
the longest ear canal, and the corresponding ahgitine is
the first sagittal plane (from lateral to mediadjith a region
whose Euler number is equal to, or less than, @ 12c¢).

3. Find candidate verticesy,eV, {j 1,2,..,n} by
thresholding based dByayssian > 0.0001 and < O (Fig. 8).

4. Group each vertexj, into clustersC,, {k = 1,2,....,p}
using density based clustering (Fig. 8)

5. Select largest cluster,eC,, {k = 1,2,....,p}, within 10

mm from the estimated tragus location.

6. The vertices, v, Vi, €c with the highest Gaussian
curvature value correspond to the most lateraltpafithe left
and right tragus respectively.

Output: Vertices, {4, i}, corresponding to the most lateral
point of the left and right tragus.

A dataset consisting of near isotropic CT images956f
patients acquired using a Toshiba Aquilion 16 Canser was
used to test the algorithm. The images are 512 X &dels
with average in-slice pixel spacing and averagedhickness
of 0.5 mm each, with no interslice spacing. Thetsiad end
scan location is from the skull vertex to at lehst skull base,
without any gantry tilt (gantry oriented paralledb tthe
infraorbitomeatal line). The DICOM compliant CT iges
were transferred to a personal computer, and theéniarks
were localised automatically.

A curvature map of the head surface model was oédai
using the curvature tensor estimation method dasdriin
Section Il. A neighbourhood that approximates a disk
aroundv with a radius equal to 1/100th of the diagonathef
bounding box containing the surface was used. daae the
effect of noise, smoothing was applied to the naddtgugh
this has the effect of masking surface detail ahardéd
curvature estimates. The surface curvature map was
thresholded using aG. 0.010 and Gssian= Oto isolate
candidate regions containing the medial canthud, G, <0
and Gaussiax 0.001 to isolate candidate regions containing the
most lateral point of the tragus. The DBSCAN method
described in Section llwas employed to clusterehegjions.
For the medial canthus, only clusters with a mimmsize of
100 vertices (using a neighbourhood radius of 5 maje
considered. Clusters with less than 100 verticesahandoned
as it is most likely noise. The algorithms desdalilye Section
Il were used to select candidate clusters contgittie medial
canthus and the tragus. Estimates of the tragwidoc (Fig.
13) were found to be always within 10 mm of itsuatt
location.

RESULTS AND DISCUSSION

Fig. 13 Estimated tra@us position

To check the bilateral symmetry of the left anchtighedial
canthus, a separation distance of 15 - 40 mm, 30ameh20
mm in the sagittal, coronal and axial planes wasluEor the
left and right tragus, a separation distance of-1200 mm, 40
mm and 40 mm was used. The relatively large separat

485



International Journal of Medical, Medicine and Health Sciences

ISSN:

2517-9969

Vol:4, No:9, 2010

distance used for the coronal and axial planes &tount for
head tilt, which is present in some of the imagethe dataset.
Because of the large separation distances usedjildteral

symmetry check is useful to prevent large localiset errors
only. Fig. 14 illustrates the automatically localis medial

canthus (Fig. 14a) and most lateral point of tlegyus (Fig.

14b).

Fig. 14 The automatically localised (a) medial baistand (b) most
lateral point of the tragus

As we are developing this technique for three nsungical
procedures normally performed without image-guidane.
using a freehand technique, the difference in Isatibn using
a manual and automated technique is acceptablésamithin
our required 5 mm clinical accuracy [3, 4]. Imag#sfour
patients were excluded from the analysis as theéaheanthus
was not well defined in their CT images. Future kvowvolves
refining the algorithm to perform cluster analysig. cluster
shape, to prevent localisation errors such as tilaserates in
Fig. 15.

IV. CONCLUSION

A methodology to automatically localise the mediahthus
and tragus in CT images was presented. The bapimwagh
was to exploit the surface curvature propertieshef medial
canthus and tragus. A rule system based on priowletge of
the landmark geometric structure and spatial looatvas used
to facilitate localisation, as surface curvaturegarties alone

The difference between the locations of the landmarresults in many false detections. The medial canthnd

found manually and automatically using the propasethod

tragus can be localised on CT images, with perfooea

is expressed as the root mean square Euclideaandéist comparable to manual localisation, based on theoapp
between the two. Manual localisation was based tm tpresented.

perceived landmark location,the accuracy of whiepehds

on the examiners experience and perception. Then mea

difference for the medial cantus is 1.5 mm, witmaximum
difference of 4.5 mm. The mean difference for tregus is
0.8 mm with a maximum difference of 2.6 mm.

Although no anatomical ground truth exists, it che
argued that automatic localisation of the mostrétpoint of
the tragus, and to a lesser extent the medial sante more
accurate than manual localisation. This is becdesermining
the exact location of the landmarks based on vigisgection
is difficult. However, for the medial canthus, teare isolated
cases where automatic
localisation errors. This is because the shapbetluster and
the corresponding perceived location of the medaithus
vary greatly depending on the threshold level (EB).

|

Fig. 15 Perceived location of the medial canthudiféerent
thresholds, (allimean > 0.025 and Gyssiar= 0 (D) Crrean > 0.01 and

Cyaussiar= 0

In this work, a fixed threshold (which is incremeatif no
cluster that satisfies the rule is found) is usadthreshold
based on an arbitrary upper limit of a curvatustdgram was
considered but the presence of outliers due to ifape
segmentation greatly affects the resulting thraskalue. For
the majority of the images, the cluster containihg medial
canthus is usually robust to the threshold level.

localisation can produceelarg
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