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Abstract—A stack with a small critical temperature gradient is 

desirable for a standing wave thermoacoustic engine to obtain a low 
onset temperature difference (the minimum temperature difference to 
start engine’s self-oscillation). The viscous and heat relaxation loss in 
the stack determines the critical temperature gradient. In this work, a 
dimensionless critical temperature gradient factor is obtained based 
on the linear thermoacoustic theory. It is indicated that the 
impedance determines the proportion between the viscous loss, heat 
relaxation losses and the power production from the heat energy. It 
reveals the effects of the channel dimensions, geometrical 
configuration and the local acoustic impedance on the critical 
temperature gradient in stacks. The numerical analysis shows that 
there exists a possible optimum combination of these parameters 
which leads to the lowest critical temperature gradient. Furthermore, 
several different geometries have been tested and compared 
numerically. 

 
Keywords—Critical temperature gradient, heat relaxation, stack, 

viscous effect. 
 

I. INTRODUCTION 
HERMOACOUSTIC energy-conversion devices have 
attracted researchers’ attention in the past decades because 

of the lack of moving parts, which potentially offers high 
reliability and low cost. However, thermoacoustic devices 
have still not achieved the efficiencies as high as those of 
conventional heat engines. For standing wave thermoacoustic 
engines [1], the thermal efficiency of is less than 20% in 
theory because they are based on intrinsically irreversibly 
thermodynamic cycle. The Stirling-cycle based travelling 
wave thermoacoustic engines employ an inherently reversible 
thermodynamic cycle, and their thermal efficiency can reach 
up to 30% [2]. Increasing these efficiencies still proves a 
significant challenge to the research community. However, 
thermoacoustics is a new technology which holds a great 
promise of utilization of low-temperature or waste heat energy 
sources. Thermoacoustic devices can work with relatively low 
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temperature differences, and can be built using easily 
available materials without the need for highly skilled labour, 
all of which are great advantages for mass production. 
Furthermore, thermoacoustic devices can successfully 
compete with conventional energy-conversion technologies in 
situations where low cost and simplicity of construction are 
the main considerations.  

It is well known that the standing wave thermoacoustic 
engine self-starts and maintains the acoustic oscillation, which 
converts heat energy to acoustic power, once the temperature 
gradient along the stack reaches the starting point, which is 
so-called onset temperature gradient [3]. In this respect, one of 
the critical issues is to decrease the thermoacoustic engine’s 
onset temperature gradient onsetT∇ . Anthony [4, 5] carried out 
an analysis of the onset conditions in a standing wave 
thermoacoustic engine in terms of its quality factor Q , which 
is defined as  

stQ E Eω= − ,                                      (1) 

where, stE  is the energy stored in the engine and can be 
obtained by integrating the time averaged acoustic energy 
density throughout the entire volume of the engine. E is the 
net power output of the entire engine, and can be expressed as  

stk HX resE E E E= + +                             (2)  
where, the subscripts “stk”,  “HX” and “res” refer to the stack, 
the (hot and cold) heat exchangers and the resonator tube. 

HXE  and resE  are the dissipations in the heat exchangers and 

resonator tube,  and are defined as negative. stkE  is 
essentially the “net” acoustic power out from the stack, and 
depends on the temperature gradient T∇ along the stack. 
There is a critical temperature gradient critT∇ for a stack [6,7] 

(when 0stkE = ), so that 0stkE <  when critT T∇ < ∇ , and 

0stkE >  when critT T∇ > ∇ . 
Therefore, for a standing wave engine, as T∇ increases to 

critT∇  initially, the acoustic production in the stack 

overcomes the dissipation in the stack itself. At this point, E  
is still negative, and Q  is still positive and finite. When T∇  

increases to onsetT∇ , 0E =  and Q  is infinite, the net loss of 
the engine is zero, as a results, the engine reaches onset point. 
Above this point, any infinitesimal increase of T∇  will lead 
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to a negative Q  and make the engine start the self-oscillation. 
Anthony [3] also performed the corresponding experimental 
measurement of the onsetT∇  of his standing wave 
thermoacoustic engine. The experimental results agree with 
the predicted ones very well.    

Based on the above discussion, it can be found that 
onsetT∇ can possibly be decreased by two means: one is to 

reduce the dissipation in the heat exchanges ( HXE ) and the 

resonator tube( resE ); the other is to reduce critT∇  of the 

stack. Apparently, HXE  and resE  mainly depend on the 
roughness and the surface contact area with the working fluid, 
and so they can be reduced by improving the surface, 
however, this improvement is limited and costly. Another 
method is to reduce the critical temperature gradient of the 
stack. 

In this paper, we will analyze the impact of the viscous 
dissipation and the heat relaxation loss in the stacks, as well as 
their impact on the critical temperature gradient critT∇  of the 
stack. The analysis assumes that the stack is short enough and 
does not alter the standing wave in an ideal gas where it is 
located.  Based on the linear thermoacoustic theory, the 
energy flow within the stack is investigated, and a 
dimensionless critical temperature factor is obtained, which 
reveals the impact of the transverse dimensions of the 
channels, the local acoustic impedance of the stack, and the 
geometrical configuration of stack on the critical temperature 
gradient. The numerical analysis has been carried out to study 
the possible optimum combination between these parameters 
which leads to the lowest critical temperature gradient. Three 
different geometries, parallel plates, pin array, and circular 
pores, have been compared and discussed. 

II.  THEORETICAL ANALYSIS 
According to the linear thermoacoustic theory [7], the time-

averaged acoustic power stkdE  produced in a length dx  of 
the channel can be written in the complex notation in the 
general form as 

 
1 1

1 1
1 Re
2

stkdE dp dU
U p

dx dx dx
⎡ ⎤= +⎢ ⎥⎣ ⎦

,                   (3)                                            

 
where, 1U  and 1p are complex volumetric velocity and 
pressure, respectively. “~” indicates a complex conjugate. 

[ ]Re denotes the real part of a complex number.  

For regular geometries, vf and kf  are functions of h kr δ  
and have analytical formulae [7]. Therefore, equation (3) can 
be written as 

[ ]2 2
1 1 1 1

1 1 Re
2 2 2

stk v

k

dE r
U p gp U

dx r
= − − + .        (4)                  

Viscous resistance per unit length of the channel, vr , thermal-

relaxation conductance per unit length of the channel, kr1 , 

and the complex gain/attenuation constant for the volume flow 
rate, g , are defined as follows: 

2

Im

1
vm

v
v

f
r

A f

ωρ −⎡ ⎤⎣ ⎦=
−

,                                   (5)                   

[ ]k
mk

f
p

A
r

−
−

= Im11 ω
γ

γ ,                              (6)                  

and  
( )

( )( ) dx
dT

Tf
ffg m

mv

vk 1
11 σ−−

−
= .                          (7)                   

The Rott’s functions vf and kf  for selected regular 
geometries, can be found elsewhere [6, 7] in detail.  γ , 

σ , mρ , mp  and mT  are the ratio of specific heat capacity, 
Prandtl number, mean density, mean pressure and mean 
temperature of the working gas, respectively. 

On the right hand side (RHS) of equation (4), the first two 
terms represent viscous and thermal-relaxation dissipation, 
respectively, which always consume acoustic power, 
regardless of the temperature gradient along the length of the 
regenerator (or stack). The third term denotes the acoustic 
power produced (or consumed) by the regenerator due to the 
axial temperature gradient. It depends on the amplitude and 
direction of the axial temperature gradient. In engines, mT  
increases in the direction of positive acoustic power flow, so 
the third term denotes the acoustic power produced from heat 
energy. For the refrigerators, mT  decreases in the direction of 
positive acoustic power flow, in which case the third term 
means the acoustic power consumed to pump heat from the 
cold to the hot end of the stack. This paper focuses only on the 
analysis of stacks in engines. Therefore, it will be more 
convenient to refer to stkdE dx  as “net” time averaged 
acoustic power production per unit length of  stack, because it 
is a net effect due to the acoustic power dissipation (the first 
two terms of the RHS of equation (4)) and the acoustic power 
production (the third term). 

For an ideal standing wave, ( ) 2, 11 πθ =Up , and 
therefore,  

[ ] 0~Re 11 =Up ,                                 (8)                   
and 

[ ] 1111
~Im UpUp = .                            (9)                   

Substituting equations (8) and (9) into equitation (4), the 
following is obtained 
 

[ ]2 2
1 1 1 1

1 1 Im
2

stk
v

k

dE
r U p g p U

dx r
⎧ ⎫⎪ ⎪= − − + −⎨ ⎬
⎪ ⎪⎩ ⎭

     (10)  

 
Substituting (5), (6) and (7) into equation (10), the following 
relationship is obtained:  
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( )
( )( )

2 2
1 12

1 1

Im1 1 Im
2 1

1 Im
1 1

vstk m
k

mv

k vm

m v

fdE AU f p
dx A pf

f fdT
p U

T dx f

ωρ γ ω
γ

σ

⎧ −⎡ ⎤ −⎪ ⎣ ⎦= − − −⎡ ⎤⎨ ⎣ ⎦
−⎪⎩

⎫⎡ ⎤− ⎪+ −⎢ ⎥ ⎬
− −⎢ ⎥ ⎪⎣ ⎦ ⎭

(11) 

Letting the RHS of equation (11) equate to zero, the following 
expression can be obtained for the critical temperature 
gradient for which 0stkdE dx = .      

( )
( )( )

2 2
1 12

1 1

Im 1 Im
1

Im
1 1

vm
k

mvm
m

crit k v

v

f AU f p
A pfdT

T
dx f f

p U
f

ωρ γ ω
γ

σ

−⎡ ⎤ −⎣ ⎦ + −⎡ ⎤⎣ ⎦
−⎛ ⎞

=⎜ ⎟ ⎡ ⎤−⎝ ⎠
−⎢ ⎥

− −⎢ ⎥⎣ ⎦

                         

(12) 
Comparing equation (11) with equation (4), it can be found 

that the acoustic power produced in the stack due to the 
thermoacoustic process is dissipated by the viscous 
dissipation and the thermal relaxation dissipation when the 

temperature gradient through the stack is m

crit

dT
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Equation 

(12) takes into account both the viscous and thermal-
relaxation dissipation. Therefore, it is a more general 
expression of the critical temperature gradient corresponding 

to 0stkdE
dx

=  for stacks in a standing wave. For verification, 

neglecting the viscosity and setting 0σ =  and 0vf = , 
equation  (12) can be simplified to equation (13) given by 
Swift [7]. 

( ) 1 1m m pcritdT dx A p c Uω ρ=           (13) 

To simplify this equation further, the local acoustic 
impedance will be introduced as 

1

1

pZ
U

= .                                    (14)                                                                    

For the lossless planar standing wave, the acoustic impedance 
in equation (14) can be further defined as [7] 

( )01

1

2
tanm

SW
x xapZ

U A
πρ

λ
⎛ ⎞−

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

.             (15) 

Here, 0x indicates the position of the pressure node (and the 
volumetric velocity anti-node), and subscript “ SW ” refers to 
the standing wave.  Substituting equation (15) into equation 
(12) leads to the following expression: 

( )

( )
( )( )

( )

2
02

2

0

Im 21 Im tan
1

2
Im tan

1 1

vm m
k

mvm
m

crit k v m

v

f x xaA f
A p AfdT

T
dx f f x xa

f A

πωρ ργ ω
γ λ

πρ
σ λ

⎛ ⎞− −⎡ ⎤ − ⎛ ⎞⎣ ⎦ + −⎡ ⎤ ⎜ ⎟⎣ ⎦⎜ ⎟ ⎜ ⎟⎝ ⎠− ⎝ ⎠⎛ ⎞
=⎜ ⎟ ⎡ ⎤ ⎛ ⎞− −⎝ ⎠

− ⎜ ⎟⎢ ⎥ ⎜ ⎟− −⎢ ⎥ ⎝ ⎠⎣ ⎦

    

(16).           

According to equation (15), 
( )02

tan
x xπ
λ

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

is a 

dimensionless impedance factor. From equation (16), we can 
find that this dimensionless impedance factor actually controls 

the proportion between the viscous dissipation, thermal-
relaxation dissipation, and acoustic power produced from heat 
energy through the thermoacoustic process. Furthermore, 

( )02
tan

x xπ
λ

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

 is a function of the stack location 

( )0x x− . Therefore, equation (16) indicates a relationship 
between the critical temperature gradient and the location of 
the stack in the acoustic field. 

Substituting equations (15) and (16) back into equation 
(11), the following relationship can be obtained: 

( )

( ) ( )

2
1

02
2

1 1
2

Im2
ctan 1 Im

1

stk m

m m crit

v
k

v

dE dT dxA p
dx p dT dx

fx x
f

f

ω
γ

π
γ

λ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞ −− ⎡ ⎤⎪ ⎪⎣ ⎦ + − −⎡ ⎤⎜ ⎟⎨ ⎬⎣ ⎦⎜ ⎟ −⎪ ⎪⎝ ⎠⎩ ⎭

  (17) 

From equation (17), it is easy to understand that a smaller 
( )m critdT dx is also helpful to get a higher stkdE dx  for a 

stack, which indicates the power production ability of the 
stack. For an easy verification, setting 0vf = , equation (17) 
can be simplified to the equation given by Swift [7]: 

( )
( )

2
1

11 Im 1
2

stk m
k

m m crit

AdE dT dx
f p

dx p dT dx
γ ω

γ

⎛ ⎞−
⎜ ⎟= − −⎡ ⎤⎣ ⎦ ⎜ ⎟
⎝ ⎠

   (18) 

where, ( )m critdT dx is defined by equation (13).  
Based on equation (16), the analysis of the critical 

temperature gradient can be continued. For ideal gases, the 
speed of sound mTa ℜ= γ ( ℜ  is the gas constant per unit 

mass), and the mean pressure mmm Tp ℜ= ρ . In addition, 

πωλ 2=a , where λ  is the wavelength. Thus, equation 
(16) can be simplified to: 

( ) ( )

( )
( )( )

( )

02
2

0

Im 2
1 Im tan

1
2

2
Im tan

1 1

v
k

vm m

crit k v

v

f x x
f

fdT T
dx f f x x

f

π
γ

λ
π

λπ
σ λ

⎛ ⎞− −⎡ ⎤⎣ ⎦ + − −⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎜ ⎟− ⎝ ⎠⎛ ⎞ = ⋅⎜ ⎟ ⎡ ⎤ ⎛ ⎞− −⎝ ⎠
− ⎜ ⎟⎢ ⎥ ⎜ ⎟− −⎢ ⎥ ⎝ ⎠⎣ ⎦

.                  

(19) 
Considering the dimensions of the RHS of equation (15), it 

can be found that mT
λ

has the dimension of temperature 

gradient. Therefore, the remaining of the RHS of equation 
(19) is a dimensionless factor. For the convenience of the 
following discussion, we can define it as a dimensionless 
temperature gradient critΘ  

( ) ( )

( )
( )( )

( )

02
2

0

Im 2
1 Im tan

1
2

2
Im tan

1 1

v
k

v
crit

k v

v

f x x
f

f

f f x x
f

π
γ

λ
π

π
σ λ

⎛ ⎞− −⎡ ⎤⎣ ⎦ + − −⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎜ ⎟− ⎝ ⎠
Θ =

⎡ ⎤ ⎛ ⎞− −
− ⎜ ⎟⎢ ⎥ ⎜ ⎟− −⎢ ⎥ ⎝ ⎠⎣ ⎦

     (20)                   

Consequently, 
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( )m crit
crit

m

dT dx

T λ
Θ = .                       (21)  

According to equation (20), critΘ  is a function ofσ , γ , 

( )0x x− , kf  and vf . Furthermore, kf  and vf  are functions 
of h kr δ  and the geometrical configurations of the stack 
channels [6, 7]. Here, hr  is the hydraulic radius of the 
channel in the stack and defined as the ratio of the cross-
sectional area A  over perimeter ∏ [7]  

h
Ar =
∏

.                                         (22)  

Thermal penetration depth kδ  is defined as  

2kδ κ ω= ,                                   (23)  
where,  κ is the thermal diffusivity of working gas.  

For a stack with given geometrical configuration, when 
the working gas is given, σ  and γ  are given, consequently, 

critΘ  becomes a simple function of h kr δ  and ( )0x x−  
only. In this respect, using equation (20), one can actually 
study the impact of geometrical configuration, h kr δ and 

( )0x x− on the critical temperature gradient, as well as the 
optimum combination between these parameters. 

 

III. NUMERICAL ANALYSIS AND DISCUSSION 
To illustrate the application of the dimensionless factor 
critΘ obtained in Section II, numerical calculations for 

selected stack geometries: parallel-plate, pin-array and 
circular-pore, have been performed. The dimensionless 
transverse dimension of the channel, khr δ , was adopted 
for the stack calculations here. All calculations were 
performed for helium as the working fluid 
( 2 / 3σ = , 5 / 3γ = ). The pin array used here has the same 
arrangement and dimension as that described by Hayden [9]. 
For the convenience of comparison, porosities are kept the 
same for the stacks (with different geometrical configuration) 
studied in the following calculations. 

    A.  Parallel-Plate Stack 
For the parallel-plate stack in the standing wave systems, 

according to equation (20), ( )0xx −  can be used as a factor 
indicating the local acoustic impedance. It represents the 
distance from the anti-node of velocity (or pressure node) to 
the position under study. Due to the function ‘tan()’ in 
equation (15) being periodic and odd, it is only necessary to 
study the range of ( ) 220 0 πλπ <−< xx , 

corresponding to ( ) 40 0 λ<−< xx . For 

( ) 04 0 <−<− xxλ , the negative sign only means the 
direction of the power flow.  

Fig. 1 shows the results for the parallel-plate stack in the 
standing wave for different values of ( )0xx − . For each 

value of ( )0xx − , critΘ  firstly decreases sharply, and then 

increases slightly as khr δ  increases. There is a minimum 

critΘ   when khr δ varies in the tested range. This minimum 

critΘ    is denoted as ( )mincritΘ . It also corresponds to a value 

of h kr δ  which is referred as ( )optikhr δ .  
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Fig. 1 Parallel-plate stack in the standing wave: the calculated value 
of critΘ  versus h kr δ  for different locations. For each ( )0x x− , 

there is a minimum value of critΘ  when h kr δ  varies 

 
According to the derivation in section II, dimensionless 

critical temperature gradient factor critΘ directly reflects the 
critical temperature gradient of the tested stack. Therefore, the 
results shown in Fig. 1 reveal that both the location of the 
stack and the transverse dimension of the channel significantly 
affect the critical temperature gradient. When h kr δ<  (i.e. 

1h kr δ < ), the value of h kr δ  strongly impacts the critical 
temperature gradient. A smaller value of h kr δ  will lead to a 
higher critical temperature gradient. This is because that, in 
this range of h kr δ , the viscous dissipation dominates in the 
stack compared with the thermal relaxation dissipation. A 
relatively smaller channel size means higher viscous 
dissipation for a given operating condition.  

However, for the right branch of each curve in Fig. 1 (i.e. 
when h kr δ> ),  the channel size is relatively large, thus the 
thermal relaxation dissipation in the stack is dominant 
compared to the viscous dissipation. Furthermore, the thermal 
relaxation dissipation mainly depends on the magnitude of 

kδ . Therefore, as the channel size increases (i.e. 

h kr δ increases), the critical temperature gradient increases 
only slightly (as shown in Fig. 1). 

On the other hand, in Fig. 1, one can also find that 
( )mincritΘ  and ( )optikhr δ  vary as the value of ( )0xx −  

varies. This is due to that 
( )02

tan
x xπ
λ

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

 varies when 
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( )0xx −  varies which changes the proportion between the 
acoustic power dissipations and production. For further 
investigation, the additional information can be obtained by 
interpreting Fig. 1 as a graph of ( )mincritΘ  and ( )optikhr δ  as 

a function of ( )0xx −   shown by solid lines in Fig. 2 and Fig. 
3.   

In Fig. 2, the solid line shows the relationship between 
( )mincritΘ  and ( )0xx −  for tested parallel-plate stack. It can 

be seen that ( )mincritΘ firstly decreases, and then increases as 

( )0xx −  increases. The results show that the location of the 
stack strongly influences the critical temperature gradient. 
According to equation (15), smaller ( )0xx −  (i.e. close to the 

anti-node of velocity) leads to smaller
( )02

tan
x xπ
λ

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

, thus, 

viscous dissipation dominates for the left branch in Fig. 2. 
Conversely, thermal-relaxation dissipation dominates for the 
right branch where the stack location is close to the node of 
velocity. Therefore, locating the stack to either node or anti-
node of velocity will lead to a high critical temperature 
gradient. 

Furthermore, in Fig. 2, ( )mincritΘ reaches the lowest value 

when ( )0 5 32x x λ− ≈ . Qualitatively, in the practical 
standing wave thermoacoustic engines with parallel-plate 
stacks, there exists an optimal region to locate the stack, about 

8 ~ 5 32λ λ   away from the nearest velocity anti-node. In 
this situation, the engine has the lowest starting conditions. 
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Fig. 2 The relationships of ( )mincritΘ versus 0( )x x−  for the tested 

stacks with selected geometries. Solid line: parallel-plate; dashed 
line: pin-array; dotted line: circular-pore 
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Fig. 3 The relationships of ( )k h optirδ versus 0( )x x−  for the tested 

stacks with selected geometries. Solid line: parallel-plate, Dashed 
line: pin-array, Dotted line: circular-pore 

 

In Fig. 3, the solid line shows the relationship between 
( )optikhr δ  and ( )0xx −  for tested parallel-plate stack. It 

can be seen that ( )optikhr δ  decreases from 1.6 to 0.8 as 

( )0xx −  increases in the tested range. This is because 

( )02
tan

x xπ
λ

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

 increases as ( )0xx −  increases, and then 

changes the proportion of the three terms in the numerator and 
denominator of equation (20). The physics behind this figure 
is that, as ( )0xx − increases, the 1U  decreases and 

1p increases, accordingly, the thermal-relaxation dissipation 
becomes more significant in the stack gradually. As a result, 
the corresponding optimal channel size (i.e. hr  here) 
decreases to keep the balance between these effects.    

 

    B.  Comparison between Common Regular Geometries 
Using the same methodology as in section III.A, one can 

perform a similar numerical analysis for pin-array and 
circular-pores stacks. Obtaining similar results to those shown 
in Figs. 1-3 is relatively straightforward for these two 
geometrical configurations and is shown in Figs. 2-4.  

Fig. 4 is an example of this comparison for a given 
( )0 5 32x x λ− = , of which the solid, dashed and dotted lines 

show the relationship between critΘ  and khr δ  for parallel-
plate, pin-array and circular-pores, respectively. Fig. 4 shows 
that the three curves have similar shape, which reveals that 

h kr δ impacts critΘ   of stacks with these three geometrical 
configurations in a similar way.  
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Fig. 4 For a given location, ( )0 5 32x x λ− = , the comparison of 

the relationship between critΘ  and h kr δ . Solid line: parallel-plate, 
Dashed line: pin-array, Dotted line: circular-pore. 

 
In Fig. 2, the dashed and dotted lines show the results of the 

tested pin-array and circular-pore stacks, respectively. They 
have quite similar shapes to those of parallel-plate stack. Fig. 
2 also shows that ( )mincritΘ for the tested pin-array stack is 

below those for the tested parallel-plate stack. However, the 
( )mincritΘ  for the tested circular-pore stack are above those. 

Furthermore, the differences of ( )mincritΘ  between different 

geometries becomes bigger when stack location approaches to 
the anti-node of velocity (i.e. ( )0 0x x− → ), and smaller 

when approaches to node of velocity (i.e. ( )0 4x x λ− → ). If 

( )mincritΘ  is regarded as a quality indicator of the stack with 

the geometries tested, the results in Fig. 2 reveal that 
performance difference of the stack depends on the location of 
the stack in the standing-wave acoustic field (in other words, 
depends on the local impedance). 

Similarly, Fig. 3 shows the comparison of ( )optikhr δ  for 

the stack stack geometries tested. The dashed and dotted lines 
show the results of the pin-array and circular-pore stacks, 
respectively. The lines have quite a similar shape to that for 
the parallel-plate stack. In a similar way, ( )optikhr δ  

decreases as ( )0xx −  increases in the tested range. The 
physics behind these curves are the same as those mentioned 
for parallel-plate stack. Furthermore, the difference in 
obtained ( )optikhr δ  is mainly due to the definition of hr  for 

different geometries.  
As discussed above, Fig. 2 shows the optimal performance, 

obtained by choosing the optimum combination between the 
transverse dimension of channels and the local acoustic 
impedance of stacks. We can continue the comparison in the 
region of our interest, ( )02 32 6 32x xλ λ< − < . For 
convenience, the results for circular-pore stack are used as a 

benchmark. The results for the stacks with two other 
geometries are normalized by dividing by those for the 
circular-pore stack. Such a comparison is shown in Fig. 5, 
where the solid and dashed lines show the normalized 
( )mincritΘ  for the pin-array and parallel-plate stacks, 

respectively. It can be found that, ( )mincritΘ  for the pin-array 

stack is about 46% less than that of the circular-pore stack 
when ( )0 2 32x x λ− = . As ( )0x x−  increases, the difference 

decreases to about 10% at ( )0 6 32x x λ− = . Similarly, 

( )mincritΘ  for the circular-pore stack is about 36% bigger than 

that of parallel-plate stack when ( )0 2 32x x λ− = , the 

difference decreases to about 7.5% at ( )0 6 32x x λ− = .  
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Fig. 5 Comparison between the pin-array, parallel-plate and circular-
pore stacks. The results for the circular-pore stack are used as the 

reference for the normalization 

 

To compare different stacks in standing-wave 
thermoacoustic systems, Swift et al. [8] defined a tentative 
figure of merit [ ] [ ]vvk fffM Im1Im 2−= σ , based on the 

idea that the thermoacoustic heat transport and work are 
proportional to [ ]kfIm  in the standing wave, inviscid limit, 
and that the acoustic power dissipated by viscosity is 
proportional to [ ] 21Im vv ff −  when 0=dxdTm . 

Furthermore, M~  is defined as the value of M when [ ]kfIm  
is maximum [8].  Based upon this simplified criterion, the 
optimum pin-array stack is 23% more efficient than the 
optimum parallel-plate stack operating at the same gas 
pressure and frequency, and 51% more efficient than the 
optimum circular-pore stack [9].   

Using the method in this paper, 
( )02

tan 1
x xπ
λ

⎛ ⎞−
=⎜ ⎟⎜ ⎟

⎝ ⎠
 when 

( )0 4 32x x λ− = , then the impedance factor vanishes in 
equation (20). This case is equivalent to the comparison using 
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[ ] [ ]vvk fffM Im1Im 2−= σ  which does not consider 

the effect of the local acoustic impedance of stack. In this 
case, ( )mincritΘ  of the pin-array and parallel-plate stack are 

about 35% and 20% less than that of the circular-pore stack. It 
can be found that, although the comparisons are based on two 
different methods, they qualitatively agree with each other. 

IV. CONCLUSION 
Based on the assumptions of a standing wave in ideal gas, a 

dimensionless factor critΘ has been obtained to evaluate the 
critical temperature gradient of stacks in the standing wave 
thermoacoustic engines. This factor can clearly reveal the 
relationship between the channel dimension, impedance, 
geometries and the critical temperature gradient.  

It is shown that the local acoustic impedance of the stacks 
essentially represents the proportion between the acoustic 
power produced from the heat energy through the 
thermoacoustic processes and the acoustic power dissipated 
by viscous and thermal-relaxation effects in the stacks. The 
critical temperature gradient is strongly dependent on the 
impedance. Locating the stack close to either the anti-node or 
node of velocity will lead to high critical temperature gradient, 
which reflects the onset condition in practical standing wave 
thermoacoustic engines. Therefore, the local acoustic 
impedance has to be taken into account for any evaluation of 
stacks, as well as the comparison between different 
geometrical configurations or dimensions.    

The numerical results also indicate that the channel 
dimension affects the critical temperature gradient of stacks 
(see Figs. 1 and 4). Theoretically, for the stacks, the optimum 
transverse dimension of the channel exists, but depends on the 
local acoustic impedance. Therefore, to get the lowest critical 
temperature gradient, the stacks can be optimized by choosing 
an optimum combination between the transverse dimension of 
the channel and impedance (for example: ( )0 5 32x x λ− ≈ , 
and 1.5h kr δ =  for parallel-plate stack). However, it is also 
shown that the optimal range of impedance is broad as shown 
in Fig. 2. 

The comparison of critical temperature gradient has been 
performed using the defined dimensionless factor for the stack 
with three commonly used geometries. It is indicated that 
geometries significantly affect the critical temperature 
gradient, pin-array being best, parallel-plat being medium, and 
circular-pore being worst of the three. However, the 
difference depends on the local impedance as shown in Figs. 2 
and 5.   

Although all the calculations are performed for helium, the 
general principles are valid for other working gases. The 
Prandtl number σ  and the ratio of specific heat capacities γ  
are simply additional parameters in equation (20). The 
calculations shown in this paper are applicable for pure 
monatomic gases. For polyatomic gases, such as nitrogen, 

5/7=γ  could be used, but the results are quite similar to 
those for helium.  
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