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A new robust stability criterion for dynamical
neural networks with mixed time delays

Guang Zhou and Shouming Zhong

Abstract—In this paper, we investigate the problem of the exis-
tence, uniqueness and global asymptotic stability of the equilibrium
point for a class of neural networks, the neutral system has mixed
time delays and parameter uncertainties. Under the assumption that
the activation functions are globally Lipschitz continuous, we drive
a new criterion for the robust stability of a class of neural networks
with time delays by utilizing the Lyapunov stability theorems and the
Homomorphic mapping theorem. Numerical examples are given to
illustrate the effectiveness and the advantage of the proposed main
results.

Keywords—Neural networks, Delayed systems, Lyapunov func-
tion, Stability analysis.

I. INTRODUCTION

IN recent years, neural networks have been widely used in
solving various classes of engineering problems such as

control systems, optimization, image processing, associative
memory design and signal processing. The key feature of
the designed neural network, in such applications, is to be
convergent. When a neural network is designed to function as
an associative memory, it is desired that the neural network has
multiple equilibrium points. Therefore, there has been a great
deal of interest to the stability properties of neural networks
in the past literature. When a neural network is employed to
solve optimization problems, then the neural network must
have unique equilibrium point which is globally asymptotically
stable. But, in hardware implementation of neural networks,
some parameters associated with the dynamical behavior of
neural network may be subjected to some changes. Therefore,
in order to be able to completely characterize equilibrium
and stability properties of the neural network, we must take
into account the delay parameters and uncertainties in the
mathematical model of the neural network. In the recent
literature, many papers have studied the existence, uniqueness
and global robust asymptotic stability of the equilibrium point
for different classes of delayed neural networks and presented
various robust stability conditions [1]-[15]. In [1], the author
have applied many methods to study the existence, uniqueness
and global asymptotic stability of the equilibrium point for
the class of neural networks with multiple time delays and
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parameter uncertainties, and got a new robust stability criteri-
on. But the paper have conservation. In the current paper, we
will present a new alternative sufficient condition for global
robust stability of delayed neural networks with multiple and
distributed time delays. At the end of this paper we will
give two numerical examples to clarify the problem which
we study.

II. PROBLEM STATEMENT

The dynamical behavior of the neural network we consider
is assumed to be governed by the following system of ordinary
differential equations:

dxi(t)
dt = −cixi(t) +

∑n
j=1 aijfj(xj(t))

+
∑n
j=1 bijfj(xj(t− τij))

+
∑n
j=1 dij

∫ t
t−σ fj(xj(s))ds+ ui, i = 1, 2, · · · , n.

(1)

Where n is the number of the neurons, xi(t) denotes
the state of the neuron i at time t, fi(·) denotes activation
functions, aij , bij and dij denote the strengths of connectivity
between neurons j and i; τij and σ represent the time delay
required in transmitting a signal from the neuron i, ui is the
constant input to the neuron i, ci is the charging rate for the
neuron i.

In order to complete characterize the equilibrium and sta-
bility properties of the neural network defined by (1), it will
be assume that the parameters aij and bij and ci and dij of
neural system (1) are uncertain and have bounded norms with
being defined in the following intervals:

CI := {C = diag(ci) : 0 < C ≤ C ≤ C,
i.e., 0 < ci ≤ ci ≤ ci, i = 1, 2, · · · , n}

AI := {A = (aij)n×n : 0 < A ≤ A ≤ A,
i.e., 0 < aij ≤ aij ≤ aij , i, j = 1, 2, · · · , n}

BI := {B = (bij)n×n : 0 < B ≤ B ≤ B,
i.e., 0 < bij ≤ bij ≤ bij , i, j = 1, 2, · · · , n}

DI := {D = (dij)n×n : 0 < D ≤ D ≤ D,
i.e., 0 < dij ≤ dij ≤ dij , i, j = 1, 2, · · · , n}

(2)

In order to achieve the task of finding conditions that ensure
robust stability of neural network (1), we need to prove that
the conditions to be obtained must guarantee that the unique
equilibrium point of system (1) is globally asymptotically
stable for all C ∈ CI , A ∈ AI , B ∈ BI , D ∈ DI . Therefor,
our main goal will be studying the dynamical analysis of
neural network (1) under the parameter uncertainties defined
by (2).
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We will assume that the functions fi are Lipschitz condi-
tions satisfying

| fi(x)−fi(y) |≤ �i | x−y |, i = 1, 2, · · · , n, ∀x, y ∈ R, x �= y.

Where �i > 0 denotes a Lipschitz constant. This class of
function is denote by f ∈ L.

In order to obtain our robust stability result, we will need to
make use of some commonly used vector and matrix norms.
Let v = (v1, v2, · · · , vn)T be a vector of dimension n and
Q=(qij)n×n be a real n×n matrix. For v = (v1, v2, · · · , vn)T
and Q=(qij)n×n, | v | will be denote | v |= (| v1 |, | v2 |, · · · , |
vn |)T and | S | will be denote | Q |= (| qij |)n×n. Then, we
consider the following norms:

‖ v ‖1=
∑n
i=1 | vi |,

‖ v ‖2= {
∑n
i=1 | vi |2}

1
2 ,

‖ v ‖∞= max1≤i≤n | vi |,
‖ Q ‖1= max1≤i≤n

∑n
j=1 | qji |,

‖ Q ‖2= [λmax(Q
TQ)]

1
2 ,

‖ Q ‖∞= max1≤i≤n
∑n
j=1 | qij | .

Lemma 1 [2]. If the map H(x) ∈ C0 satisfies the following
conditions:

(i)H(x) �= H(y)forallx �= y,
(ii) ‖ H(x) ‖→ ∞as ‖ H(x) ‖→ ∞,

then, H(x) is homeomorphism of Rn.
Lemma 2 [3]. Let A be any real matrix such thatA ∈ AI with
AI being defined as

AI := {A = (aij)n×n : 0 < A ≤ A ≤ A,
i.e., 0 < aij ≤ aij ≤ aij , i, j = 1, 2, · · · , n}

Then, the following inequality holds:

‖ A ‖2≤‖ Â ‖2
where Â = (âij)n×n with âij = max{| aij |, | aij |}.
Lemma 3 [4]. Let A be any real matrix such that A ∈ AI
with AI being defined as

AI := {A = (aij)n×n : 0 < A ≤ A ≤ A,
i.e., 0 < aij ≤ aij ≤ aij , i, j = 1, 2, · · · , n}

Then, the following inequality holds:

‖ A ‖2≤
√
‖ A∗ ‖22 + ‖ A∗ ‖22 +2 ‖ AT∗ | A∗ |‖2

where A∗ = 1
2 (A+A), A∗ = 1

2 (A−A).
Lemma 4 [4]. Let A be any real matrix such that A ∈ Ai
with Ai being defined as

AI := {A = (aij)n×n : 0 < A ≤ A ≤ A,
i.e., 0 < aij ≤ aij ≤ aij , i, j = 1, 2, · · · , n}.

Then, the following inequality holds:

‖ A ‖2≤‖ A∗ ‖2 + ‖ A∗ ‖2
whereA∗ = 1

2 (A+A), A∗ = 1
2 (A−A).

Lemma 1 is very important for the prove of the existence
and uniqueness of equilibrium point of the neural network
defined by (1). And others define different upper bound norms
for the interval matrices, which will play key roles in the
following proofs.

III. MAIN RESULT

Now, we can studying the robust stability of the equilibrium
point defined by (1).

1. Existence and uniqueness of equilibrium point.
Theorem 1. For the neural network defined by (1), assume that
the network parameters satisfy (2) and f ∈ L. Then, the neural
network model (1) has a unique equilibrium point for every
input vector u = [u1, u2, · · · , un]T , if the following condition
holds:

ε = cm − �M ‖ Q ‖2 −�M
√
‖ B̂ ‖1‖ B̂ ‖∞

−λmax(D∗) > 0

where cm = min(ci), �M = max(�i), ‖ Q ‖2= min{‖ A∗ ‖2
+ ‖ A∗ ‖2,

√
‖ A∗ ‖22 + ‖ A∗ ‖22 +2 ‖ AT∗ | A∗ |‖2, ‖ Â ‖2},

with A∗ = 1
2 (A+A), A∗ = 1

2 (A−A), Â = (âij)n×n, âij =
max{| aij |, | aij |}, B̂ = (b̂ij)n×n, with b̂ij = max(| bij |, |
bij |), D∗ = (d∗ij)n×n, d∗ij =

|dij |σ�j+|dji|σ�i
2 , λi is eigenvalue

of D∗, and λmax = max1≤i≤n{λi}, i = 1, 2, · · · , n.

Proof: In order to proceed with proof of the existence
and uniqueness,we consider the following mapping associated
with system (1).

H(x) = −Cx+Af(x) +Bf(x) +D
∫ t
t−σ f(x(s))ds+ u

(3)

Let x∗ be an equilibrium point of Eq.(1),then we have

H(x∗) = −Cx∗ +Af(x∗) +Bf(x∗) +Dσf(x∗) + u = 0

Note that H(x) = 0 is an equilibrium point of (1). Therefor,
it follows from Lemma 1 that, for the system defined by (1),
there exist a unique equilibrium point for every input vector u
if H(x) is homeomorphism of Rn. We now prove that H(x)
is homeomorphism of Rn. we choose two vectors x, y ∈ Rn
such that x �= y. For H(x) defined by (3), we can write

H(x)−H(y) = −C(x− y) +A(f(x)− f(y))
+B(f(x)− f(y)) +Dσ(f(x)− f(y))

Next, we multiply both sides by (x− y)T , we get

(x− y)T (H(x)−H(y)) = −(x− y)TC(x− y)
+(x− y)TA(f(x)− f(y)) + (x− y)TB(f(x)− f(y))
+(x− y)TDσ(f(x)− f(y))
= −∑n

i=1 ci(xi − yi)2 + (x− y)TA(f(x)− f(y))
+
∑n
i=1

∑n
j=1 bij(xi − yi)(fj(xj)− fj(yj))

+(x− y)TDσ(f(x)− f(y)).
(4)

We can write the following inequalities

−∑n
i=1 ci(xi − yi)2 ≤ −

∑n
i=1 ci(xi − yi)2

≤ −cm
∑n
i=1(xi − yi)2 = −cm ‖ x− y ‖22 (5)

We also get that

(x− y)TA(f(x)− f(y))
≤‖ A ‖2‖ x− y ‖2‖ f(x)− f(y) ‖2
≤ �M ‖ A ‖2‖ x− y ‖22
≤ �M ‖ Q ‖2‖ x− y ‖22

(6)
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and∑n
i=1

∑n
j=1 bij(xi − yi)(fj(xj)− fj(yj))

≤∑n
i=1

∑n
j=1 | bij || xi − yi || fj(xj)− fj(yj) |

≤∑n
i=1

∑n
j=1 | bij | �j | xi − yi || xj − yj |

≤ �M
∑n
i=1

∑n
j=1 | bij | 12 (

√
‖B‖1

‖B‖∞
(xi − yi)2

+
√

‖B‖∞
‖B‖1

(xj − yj)2)
= 1

2�M
∑n
i=1

∑n
j=1(| bij |

√
‖B‖1

‖B‖∞

+ | bji |
√

‖B‖∞
‖B‖1

)(xi − yi)2

≤ 1
2�M (‖ B ‖∞

√
‖B‖1

‖B‖∞
+ ‖ B ‖1

√
‖B‖∞
‖B‖1

) ‖ x− y ‖22
= �M

√‖ B ‖1‖ B ‖∞ ‖ x− y ‖22
From (2), it is easy to get ‖B‖1 ≤ ‖B̂‖1 and ‖B‖∞ ≤
‖B̂‖∞. So,we obtain the following inequalities∑n

i=1

∑n
j=1 bij(xi − yi)(fj(xj)− fj(yj))

≤ �M
√
‖B̂‖1‖B̂‖∞‖x− y‖22

(7)

(x− y)TDσ(f(x)− f(y))
=

∑n
i=1

∑n
j=1(xi − yi)dijσ(fj(xj)− fj(yj))

≤∑n
i=1

∑n
j=1 | xi − yi || dij | σ | fj(xj)− fj(yj) |

≤∑n
i=1

∑n
j=1 | xi − yi || dij | σ�j | xi − yi |

=

⎛⎜⎜⎜⎝
| x1 − y1 |
| x2 − y2 |
...
| xn − yn |

⎞⎟⎟⎟⎠
T

D∗

⎛⎜⎜⎜⎝
| x1 − y1 |
| x2 − y2 |
...
| xn − yn |

⎞⎟⎟⎟⎠
≤ λmax(D∗) ‖ x− y ‖22

(8)
Then, using (5)-(8) in (4) yields

(x− y)T (H(x)−H(y)) ≤ −cm‖x− y‖22
+�M‖Q‖2‖x− y‖22 + �M

√
‖B̂‖1‖B̂‖∞‖x− y‖22

+λmax(D
∗)‖x− y‖22

= −(cm − �M‖Q‖2 − �M
√
‖B̂‖1‖B̂‖∞

−λmax(D∗))‖x− y‖22
= −ε‖x− y‖22.

For x �= y and ε > 0, we got

(x− y)T (H(x)−H(y)) < 0 (9)

Thus, from which we can conclude that if x �= y, then H(x) �=
H(y).

Let y = 0 in (9), we have

xT (H(x)−H(0)) ≤ −ε‖x‖22.
Taking the absolute value of both sides, we have

| xT (H(x)−H(0)) |≥ ε‖x‖22.
Since,

| xT (H(x)−H(0)) |≤ ‖x‖∞‖H(x)−H(0)‖1.

‖x‖∞‖H(x)−H(0)‖1 ≥ ε‖x‖22.

And,‖x‖∞ ≤ ‖x‖2, so

‖H(x)−H(0)‖1 ≥ ε‖x‖2
Then, we have

‖H(x)‖1 + ‖H(0)‖1 ≥ ε‖x‖2
‖H(x)‖1 ≥ ε‖x‖2 − ‖H(0)‖1.

Since,‖H(0)‖1 is finite, we can get the conclusion that if
‖x‖ → ∞, that ‖H(x)‖ → ∞. By Lemma 1, it is easy to know
that H(x) is homeomorphism of Rn. So, we have completed
the proof of the existence and uniqueness of the equilibrium
point for the neural networks defined by (1).

2. Stability of equilibrium point.
In the section 2, we have completed the proof of the exis-

tence and uniqueness of the equilibrium point for the networks
defined by (1). Next, we begin to proof stability of equilibrium
point for the system (1). We will first simplify system (1) as
follows: we let zi(·) = xi(·) − x∗i , i = 1, 2, · · · , n, and note
that the zi(·) are governed by:

żi(t) = −cizi(t) +
∑n
j=1 aijgj(zj(t))

+
∑n
j=1 bijgj(zj(t− τij))

+
∑n
j=1 dij

∫ t
t−σ gj(zj(s))ds

i = 1, 2, · · · , n.
(10)

where gi(zi(·)) = fi(zi(·) + x∗i ) − fi(x∗i ), i = 1, 2, · · · , n,
and gi ∈ L. We also note that

| gi(z) |≤ �i | z |, gi(0) = 0, i = 1, 2, · · · , n.
Here, note that z → 0 implies that x→ x∗. It is sufficient to
prove the stability of the transformed system (10) instead of
considering the stability of x∗ of system (1).
Theorem 2. For the neural network defined by (1), assume
that the network parameters satisfy (2) and f ∈ L. Then, the
neural network model (10) is globally asymptotically stably if
the following condition holds:

ε = cm − �M ‖ Q ‖2 −�M
√
‖ B̂ ‖1‖ B̂ ‖∞

−λmax(D∗) > 0

where cm = min(ci), �M = max(�i), ‖ Q ‖2= min{‖ A∗ ‖2
+ ‖ A∗ ‖2,

√
‖ A∗ ‖22 + ‖ A∗ ‖22 +2 ‖ AT∗ | A∗ |‖2, ‖ Â ‖2},

with A∗ = 1
2 (A+A), A∗ = 1

2 (A−A), Â = (âij)n×n, âij =
max{| aij |, | aij |}, B̂ = (b̂ij)n×n, with b̂ij = max(| bij |, |
bij |), D∗ = (d∗ij)n×n, d∗ij =

|dij |σ�j+|dji|σ�i
2 , λi is eigenvalue

of D∗, and λmax = max1≤i≤n{λi}, i = 1, 2, · · · , n.

Proof: We construct the follow positive definite Lyapunov
functional:

V1(z(t)) =
1
2

∑n
i=1 z

2
i (t)

+ 1
2

∑n
i=1

∑n
j=1 �M | bij | β

∫ t
t−τij z

2
j (s)ds

V2(z(t)) =
1
2σ

∫ t
t−σ

∫ t
s
| z(l) |T D∗ | z(l) | dlds

V (z(t)) = V1(z(t)) + V2(z(t))

where β are positive constants to be determined later. The
time derivative of the functional along the trajectories of
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system (10) is obtained as follows:

V̇1(z(t)) = −
∑n
i=1 ciz

2
i (t)

+
∑n
i=1

∑n
j=1 aijzi(t)gj(zj(t))

+
∑n
i=1

∑n
j=1 bijzi(t)gj(zj(t− τij))

+
∑n
i=1

∑n
j=1 dijzi(t)

∫ t
t−σ gj(zj(s))ds

+ 1
2

∑n
i=1

∑n
j=1 �M | bij | β(z2j (t)− z2j (t− τij))

(11)
Then, we can write the following inequalities:

−∑n
i=1 ciz

2
i (t) ≤ −

∑n
i=1 ciz

2
i (t)

≤ −∑n
i=1 cmz

2
i (t)

= −cm ‖ z(t) ‖22
(12)

and ∑n
i=1

∑n
j=1 aijzi(t)gj(zj(t)) = zT (t)Ag(z(t))

≤ ‖z(t)‖2‖A‖2‖g(z(t))‖2
≤ �M‖A‖2‖z(t)‖22
≤ �M‖Q‖2‖z(t)‖22

(13)

and∑n
i=1

∑n
j=1 bijzi(t)gj(zj(t− τij))
≤∑n

i=1

∑n
j=1 | bijzi(t)gj(zj(t− τij)) |

≤∑n
i=1

∑n
j=1 �M | bij || zi(t) || zj(t− τij) |

≤ 1
2�M

∑n
i=1

∑n
j=1 | bij | (βz2j (t− τij) + 1

β z
2
i (t))

Thus,we can get∑n
i=1

∑n
j=1 bijzi(t)gj(zj(t− τij))

+ 1
2

∑n
i=1

∑n
j=1 �M | bij | β(z2j (t)− z2j (t− τij))

= 1
2�M

∑n
i=1

∑n
j=1(| bij | βz2j (t)+ | bij | 1

β z
2
i (t))

= 1
2�M

∑n
i=1

∑n
j=1(

1
β | bij | +β | bji |)z2i (t)

Let β =
√

‖B‖∞
‖B‖1

, we have∑n
i=1

∑n
j=1 bijzi(t)gj(zj(t− τij))

+ 1
2

∑n
i=1

∑n
j=1 �M | bij | β(z2j (t)− z2j (t− τij))

= 1
2�M (

√
‖B‖∞
‖B‖1

‖B‖1 +
√

‖B‖1

‖B‖∞
‖B‖∞)‖z(t)‖22

= �M
√‖B‖1‖B‖∞‖z(t)‖22

≤ �M
√
‖B̂‖1‖B̂‖∞‖z(t)‖22

(14)
then ∑n

i=1

∑n
j=1 dijzi(t)

∫ t
t−σ gj(zj(s))ds

≤∑n
i=1

∑n
j=1

∫ t
t−σ | z(t) || dij | �j | zj(s) | ds

=
∫ t
t−σ

⎛⎜⎜⎜⎝
| z1(t) |
| z2(t) |
...
| zn(t) |

⎞⎟⎟⎟⎠
T

D∗
σ

⎛⎜⎜⎜⎝
| z1(s) |
| z2(s) |
...
| zn(s) |

⎞⎟⎟⎟⎠ ds

≤ ∫ t
t−σ

1
2σ

(⎛⎜⎜⎜⎝
| z1(t) |
| z2(t) |
...
| zn(t) |

⎞⎟⎟⎟⎠
T

D∗

⎛⎜⎜⎜⎝
| z1(t) |
| z2(t) |
...
| zn(t) |

⎞⎟⎟⎟⎠
(15)

+

⎛⎜⎜⎜⎝
| z1(s) |
| z2(s) |
...
| zn(s) |

⎞⎟⎟⎟⎠
T

D∗

⎛⎜⎜⎜⎝
| z1(s) |
| z2(s) |
...
| zn(s) |

⎞⎟⎟⎟⎠
)
ds

= 1
2 | z(t) |T D∗ | z(t) |

+ 1
2σ

∫ t
t−σ | z(s) |T D∗ | z(s) | ds

(16)

V̇2(z(t)) =
1
2 | z(t) |T D∗ | z(t) |

− 1
2σ

∫ t
t−σ | z(s) |T D∗ | z(s) | ds (17)

Using (11)-(16), we have

V̇ (z(t)) = V̇1(z(t)) + V̇2(z(t))
= −cm ‖ z(t) ‖22 +�M ‖ Q ‖2‖ z(t) ‖22
+�M

√
‖ B̂ ‖1‖ B̂ ‖∞ ‖ z(t) ‖22 + | z(t) |T D∗ | z(t) |

≤ −cm ‖ z(t) ‖22 +�M ‖ Q ‖2‖ z(t) ‖22
+�M

√
‖ B̂ ‖1‖ B̂ ‖∞ ‖ z(t) ‖22 +λmax(D

∗) ‖ z(t) ‖22
= −(cm − �M ‖ Q ‖2 −�M

√
‖ B̂ ‖1‖ B̂ ‖∞

−λmax(D∗)) ‖ z(t) ‖22
= −ε ‖ z(t) ‖22

From which we can observe that V̇ (z(t)) < 0, for all
z(t) �= 0.Assume that z(t) = 0, we can get V̇ (z(t)) < 0
easily. If z(t) = 0 and zj(t − τij) = 0 for all i, j implying
that V̇ (z(t)) = 0, and V̇ (z(t)) < 0 otherwise. It is easy to
prove that V (z(t)) is radially unbound since V (z(t))→∞ as
‖z(t)‖ → ∞. So,from Lyapunav theorems, we can conclude
that the system (3) or equivalently the equilibrium point of
system (1) is globally asymptotically stable.

IV. EXAMPLES

Example 1. According to the model (1), giving the the
following matrices:

A =

⎡⎢⎢⎣
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
1 2 2 4
1 2 2 4
1 2 2 4
1 2 2 4

⎤⎥⎥⎦B =

⎡⎢⎢⎣
−1 −2 −2 −4
−1 −2 −2 −4
−1 −2 −2 −4
−1 −2 −2 −4

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦
�1 = �2 = �3 = �4 = 1, c1 = c2 = c3 = c4 = 1, σ = 1.

We can calculate the follow matrices:

A∗ =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , A∗ =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ ,
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Â =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ B̂ =

⎡⎢⎢⎣
1 2 2 4
1 2 2 4
1 2 2 4
1 2 2 4

⎤⎥⎥⎦ ,

D∗ =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦
from which we can directly calculate the norms: ‖ A∗ ‖2
+ ‖ A2 ‖2= 4,

√
‖ A∗ ‖22 + ‖ A∗ ‖22 +2 ‖ AT∗ | A∗ |‖2 = 4,

‖ Â ‖2= 4.So ‖ q ‖2= 4. We can also get that ‖ B̂ ‖1= 16,
‖ B̂ ‖∞= 9, λmax(D∗) = 4.

Firstly, we apply the result of Theorem 1 to the neural
network employing the network parameters of this example,
we get

ε = cm − �M ‖ Q ‖2 −�M
√
‖ B̂ ‖1‖ B̂ ‖∞ − λmax(D∗)

= cm − 20.

Thus, the constraint condition imposed on cm by Theorem 1
for robust stability of system (1) is determined to be cm > 20.

Example 2. According to the model (1), giving the the
following matrices:

A =

⎡⎢⎢⎣
0 0 0 0
−1 −1 0 0
0 −1 0 −1
−1 −0 −0 −1

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
1 1 1 1
0 0 1 1
1 0 0 1
0 1 1 0

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦B =

⎡⎢⎢⎣
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦
�1 = �2 = �3 = �4 = 1, c1 = c2 = c3 = c4 = 1, σ = 1.

We can calculate the follow matrices:

A∗ = 1
2

⎡⎢⎢⎣
1 1 1 1
−1 −1 1 1
1 −1 1 −1
−1 1 1 −1

⎤⎥⎥⎦ , A∗ = 1
2

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ ,

Â =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ B̂ =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ ,

D∗ =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦
from which we can directly calculate the norms: ‖ A∗ ‖2 + ‖
A2 ‖2= 3,

√
‖ A∗ ‖22 + ‖ A∗ ‖22 +2 ‖ AT∗ | A∗ |‖2 = 3.6, ‖

Â ‖2= 4.So ‖ q ‖2= 3. We can also get that ‖ B̂ ‖1= 16,
‖ B̂ ‖∞= 4, λmax(D∗) = 4.

Firstly, we apply the result of Theorem 1 to the neural
network employing the network parameters of this example,
we get

ε = cm − �M ‖ Q ‖2 −�M
√
‖ B̂ ‖1‖ B̂ ‖∞ − λmax(D∗)

= cm − 11 > 0

Hence, cm > 11 proved to be a sufficient condition for
robust stability of the neural network parameters of this
example.

V. CONCLUSION

In this letter,a improved delay-dependent global robust
exponential stability criterion for uncertain stochastic discrete-
time neural networks with time-varying delay is proposed.
A suitable Lyapunov functional has been proposed to derive
some less conservative delay-dependent stability criteria by
using the free-weighting matrices method and the convex
combination theorem. Finally, two numerical examples have
been given to demonstrate the effectiveness of the proposed
method.
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