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Abstract—Ion-acoustic solitary and shock waves in dense 
quantum plasmas whose constituents are electrons, positrons, and 
positive ions are investigated. We assume that ion velocity is weakly 
relativistic and also the effects of kinematic viscosity among the 
plasma constituents is considered. By using the reductive 
perturbation method, the Korteweg–deVries–Burger (KdV-B) 
equation is derived. 
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I. INTRODUCTION 
UANTUM plasmas, where the dominated wave nature of 
electrons gives rise to collective effects, have received a 

lot of attention because of their potential applications in 
nanoscale systems [1], microelectronic devices [2], laser 
fusion plasmas [3], dense plasma particularly in astrophysical 
and cosmological studies [4–7] and next generation high 
intensity light sources [2,8]. Quantum plasma is studied by the 
quantum hydrodynamic (QHD) model [9–14] as well as the 
Wigner–Poisson system [15], which is the integrodifferential 
system. The advantages of the QHD model over the Wigner–
Poisson system are its numerical efficiency [16, 17], the direct 
use of the macroscopic variables of interest, and the easy way 
the boundary conditions are implemented. Electron-positron 
plasmas have been observed in active galactic nuclei [18], in 
pulsar magnetospheres [19], in the polar regions of neutron 
stars [20], as well as in the intense laser fields [21]. Electron-
positron plasma is also believed to exist in the early universe 
[22] as well as at the center of our own galaxy [23]. Since in 
many astrophysical environments there exist a small number 
of ions along with the electrons and positrons, therefore, it is 
important to study linear and nonlinear behavior of plasma 
waves in electron-positron-ion (e-p-i) plasmas. A lot of 
research has been carried out to study the e-p and e-p-i 
plasmas in the past few years [24-27]. For instance, Nejoh 
[24] investigated the effect of ion temperature on the large 
amplitude ion-acoustic waves in e-p-i plasma and observed 
that the ion temperature decreased the amplitude and 
increased the maximum Mach number of the ion acoustic 
wave. Ali et al. [28] investigated the linear and nonlinear ion-
acoustic waves in an unmagnetized electron-positron-ion 
quantum plasma. It is well known that in a nonlinear  
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dispersive media, shock-like solutions are formed. This 
happens due to the balance between the nonlinearity (causing 
wave steepening) and dissipation (e.g., caused by viscosity, 
collisions, wave particle interaction, etc.). However, when a 
medium has both dispersive and dissipative properties, then 
the propagation of small amplitude perturbations can be 
adequately described by the Korteweg–deVries–Burgers 
(KdVB) equation. The equation has a dissipation term 
(Burger’s term) in addition to the nonlinear and dispersive 
terms. The dissipation could be produced by many 
mechanisms, such as, wave-particle interaction, dust charge 
fluctuation, anomalous viscosity, etc. In this paper, the 
dissipation in the KdVB equation arises by taking into account 
the kinematic viscosity among the plasma constituents [29]. In 
the KdVB equation, the wave braking due to nonlinearity is 
balanced by the combined effects of dispersion and dissipation 
resulting into a monotonic or oscillatory dispersive shock 
wave in a plasma [30]. Several authors have investigated 
different aspects of quantum ion acoustic solitary and shock 
waves in electron–ion (ei) [29-34] and electron-ion-positron 
(epi) [35-42] plasmas. To the best of our knowledge, quantum 
ion acoustic shock waves in dissipative, weakly relativistic 
and warm plasmas have never been addressed in the e-p-i 
plasma literature. Therefore, we are interested to study the 
behavior of ion acoustic waves in such plasma. The 
organization of the paper is as follows. In Sec. 2, the basic set 
of equations is given and the KdV- Burgers equation is 
derived for ion acoustic shock waves. Section 3 is kept for the 
results and discussion, while Sec. 4 is kept for the conclusion.  

II. THE KDV-B EQUATION FOR QIAWS  
Let us consider a quantum dense plasma consisting of 

inertial warm weakly relativistic ions, inertialess electrons and 
positrons. Moreover, the kinematic viscosity among the 
plasma constituents is considered. The basic equations 
describing the nonlinear dynamics in the quantum plasma 
system are [43,44]   
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In above equations, the ion density (n), electron density (n e ) 

and positron density (n p ) are normalized by unperturbed ion 

density (n o ). U and φ , are the ion fluid velocity, the pressure 
and electrical potential. These quantities are normalized by the 

sound velocity
m
TK FeB  and )(

e
TK FeB , respectively, where 

BK  is Boltzmann’s constant, m is the ion mass and e is the 
charge of electron. The coefficient of kinematic viscosity η  is 

incorporated in the parameter, 2/ spi cμωη =  where 

mTKc FeBs /2=  is the ion acoustic speed in terms of Fermi 

temperature and menpi /4 2
oπω =  is the ion plasma 

frequency. Also, we considered that the electrons and 
positrons obey the equation of state pertaining to a one-
dimensional zero-temperature Fermi gas 
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where 
m
Tkv FB

F
α

α
2

=   with α = e, p is the Fermi thermal 

speed, αFT  is the particle Fermi temperature, Bk  is 

Boltzmann’s constant and oαn  is the equilibrium particle 
number density. The quantum statistical effects can be seen 
through the  dimensionless parameters feFi TT /=σ  and 

FeFp TT /=δ . We introduce the following notations 
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Integrating once Eqs. (4) and (5) with boundary conditions 

en = 1, pn = 1 and φ = 0 at infinity, we have 
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(9) In order to investigate the propagation of QIASWs and to 
derive the KdVB equation in relativistic e-p-i plasma, the 
independent variables are stretched as )(2/1 tx λεξ −= ,   

t2/3ετ = , oηεη 2/1= , while oη  is a finite quantity of the 
order of unity, and the dependent variables are expended as 
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where ε is the small nonzero parameter proportional to the 
amplitude of the perturbation. Now, substituting the 
expressions from equation (10) along with the stretching 
coordinates into equations (1-3) and collecting the terms in 
different power of ε , the lowest order of ε yields the 
following dispersion relation 
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c
u o+=γ . Now if 

1γ →1, then this dispersion 

relation has the same form as that derived by the Roy et. al 
[45]. Now, in the next higher order of ε, we eliminate the 
second order perturbed quantities from the set of equations 
using standard procedure, to obtain the required KdVB 
equation for QIAWs: 
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12γ

η o=C                                                                         (13)  

where
22 2

3
c
u o=γ . Relativistic, quantum, dissipative effects, 

ion temperature, Fermi temperature and relative density 
influence, respectively, on the equations through the 
parameter cuh /0= , H, oη , σ , δ ,μ . Equation (12) is 
the well known KdV Burger equation describing the nonlinear 
propagation of the ion acoustic shock waves in a warm 
quantum plasma with inertialess electrons and positrons and 
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relativistic ions. In this equation A and B are the nonlinear 
coefficient and dispersive term and the Burger term (C) arises 
due to the effect of ion kinematic viscosity. The above results 
in (13) are congruent with the observations in [49,50] made in 
relativistic e-p-i plasmas. The Burger term implies the 
possibility of the existence of a shock-like solution. In the 
absence of viscosity, the equation (12) reduces to KdV 
equation for QIAW. In this situation, the solitonic structure 
will be established by balancing the effects of dispersive and 
nonlinear terms. On the other hand, if the coupling becomes 
very strong the shock waves will appear. The nature of these 
shock structures depends on the relative values between the 
dispersive and dissipative coefficients B and C, respectively. 
The KdV-Burger equation is widely used in plasma physics. 
The tangent hyperbolic method seems to be a powerful tool 
for the computation of exact traveling wave solutions. The 
stationary solution of Eq. (12) can also be obtained 
analytically by the so-called “tanh method” [46-48]. The 
solution of the KdVB equation reads 
 

χχφ tanh
15
36]tanh1[12 2

1 A
C

A
B

−−=                           (14)  

where )( τξκχ v−=  (where κ  and v  are the wave 
number and the wave velocity, respectively). It is clear that for 
C=0, the solitonic solutions appear. Now, using this stationary 
solution, we study.   

The effects of the quantum parameter (H), ion temperature 
(σ ), dissipative factor ( oη ) and relativistic factor (h) on the 
soltary and shock waves can be studied numerically. 
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