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A New Block-based NLMS Algorithm and Its
Realization in Block Floating Point Format

Abhijit Mitra

Abstract—We propose a new normalized LMS (NLMS) algorithm, which of convergence and chosen according to: 0 < ~¹ < 2 for con-
gives satisfactory performance in certain applications in comaprison with con- vergence [2] and a is an appropriate positive number introduced
ventional NLMS recursion. This new algorithm can be treated as a block based to avoid divide-by-zero like situations which may arise when

2 2simplification of NLMS algorithm with significantly reduced number of multi- ¾ becomes very small. It may be noted that the parameter ¾
n n

ply and accumulate as well as division operations. It is also shown that such a is updated time-recursively in each nth index as
recursion can be easily implemented in block floating point (BFP) arithmetic,
treating the implementational issues much efficiently. In particular, the core 2 2 2 2¾ = x (n +1) + ¾ ¡ x (n¡ L+ 1): (3)

n+1 nchallenges of a BFP realization to such adaptive filters are mainly considered
in this regard. A global upper bound on the step size control parameter of the

The only price paid by such a fast algorithm is certain additionalnew algorithm due to BFP implementation is also proposed to prevent overflow
computations over its LMS counterpart for calculating the stepin filtering as well as weight updating operations jointly.
size in each iteration through eq. (2) and (3). However, due to

Keywords— Adaptive algorithm, Block floating point arithmetic, Imple-
its superior convergence behavior as well as capability to mit-mentation issues, Normalized least mean square methods.
igate the gradient noise amplification by deploying normalized
step size, usually NLMS is preferred over LMS recursion. In aI. INTRODUCTION
recent paper [5], an effective scheme is also proposed to imple-

HE normalized least mean square (NLMS) algorithm can ment the NLMS algorithm in block floating point (BFP) format
Tbe considered as a special case of the least mean square to check its suitability on digital arithmetic. The block floating
(LMS) recursion [1] which takes into account the variation in point (BFP) format is chosen as that is a viable alternative to
the signal level at the filter output and selects a normalized the fixed point (FxP) and the floating point (FP) systems, and
step size parameter, resulting in a stable as well as fast con- has been used successfully in recent years in a wide class of
verging adaptive algorithm. For fast convergence properties, signal processing applications [6]-[10] including different types
NLMS algorithm has found many applications where primarily of fixed coefficient filters. Although in that approach, care is
the statistics of the input processes are unknown or changing taken to prevent overflow both in filtering and weight updat-
with time that include adaptive equalization, adaptive noise can- ing operations, the scheme is computationally complex as it is
cellation, adaptive line enhancing, adaptive array processing etc based on NLMS recursion. Threfore, from computational as
[2]. Depending upon the application, NLMS adaptation teach- well as convergence viewpoint, a new algorithm would be pre-
nique thus has been developed from different viewpoints. Orig- ferred if that one is (i) computationally simpler vis-a-vis NLMS`
inally, Goodwin and Sin [3] formulated the NLMS algorithm algorithm, (ii) almost as fast as its NLMS counterpart, and (iii)
as a constrained optimization problem. Later, Nitzberg [4] ob- easily realizable in digital arithmetic.
tained the recursion by running the conventional LMS algorithm In this paper, we introduce such a new algorithm which
many times, for each new input sample. However, in the most would perform satisfactorily in many application areas in
common form of a length L NLMS based adaptive filter, the comaprison with NLMS recursion. This new algorithm can be
weight update equation is given by perceived as a block based simplification of NLMS algorithm

with significantly reduced number of Multiply and Accumulate
w(n+ 1) = w(n) + ¹(n)x(n)e(n) (1) (MAC) and division operations. As the proposed algorithm is

block based, it is also shown that such a recursion can be easilyTwhere w(n) = [w (n);w (n); :::;w (n)] is the tap weight0 1 L¡1 implemented in BFP arithmetic and it handles implementationalvector at the nth index, x(n) = [x(n); x(n¡ 1); :::; x(n¡L+
issues much efficiently than the approach proposed in [5]. InT T1)] is the tap input vector and e(n) = d(n) ¡w (n)x(n) is
particular, the core challenges of a BFP realization to suchthe error signal with d(n) being the desired response available
adaptive filters are mainly treated here that are not encountered

during the initial training period. The variable ¹(n) denotes
in the fixed coefficient case, namely, (a) unlike a fixed coeffi-the so-called time varying step-size paramemter and is taken as
cient filter, the filter coefficients in an adaptive filter cannot be

~¹ represented in the simpler fixed point form, as the coefficients¹(n) = ; (2)
2(¾ + a) in effect evolve from the data by a time update relation, and (b)n

2 T the two principal operations in an adaptive filter, namely, filter-where ¾ is the squared Euclidean norm x (n)x(n), ~¹ de-
n

ing and weight updating, are mutually coupled, thus requiringnoted a step size control parameter, used to control the speed
an appropriate arrangement for joint prevention of overflow.
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necessary adjustments in both the filtering as well as weight III. IMPLEMENTATION OF THE PROPOSED BB-NLMS
update equations so as to sustain the adopted format and also ALGORITHM IN BFP ARITHMETIC

to prevent overlow jointly in both these operations. Particularly, A. BFP arithmetic
a global upper bound of the step size control parameter for the

The BFP representation can be considered as a special caseproposed new algorithm has been derived to prevent overflow
of FP format, where every block of L incoming data has ain the aforesaid operations.
joint scaling factor corresponding to the largest magnitude data

II. THE PROPOSED BLOCK-BASED NLMS ALGORITHM sample in the block. In other words, given a block [x ; :::; x ],1 L

we represent it asIn the proposed algorithm, we first partition the input data
into non-overlapping blocks of size equal to the filter length and °[x ; :::; x ] = [x ; :::; x ]:2 (8)1 L 1 L
find out the maximum magnitude within each block to consider

¡°only that particular value to update ¹(n) for the entire block of where x (= x :2 ) represents the mantissa for l = 1;2; :::;Ll l

data. Thus, the weight update equation of this new block-based and the block exponent ° is defined as
NLMS (BB-NLMS) recursion takes the following form:

° = blog Maxc+1 + S (9)( 2
~¹

w(n) + x(n)e(n); for x 6= 02 Mix
Mw(n+1) = (4)i where Max = max(jx j; :::; jx j), ‘b:c’ is the so-called floor1 L

w(n); for x = 0Mi function, meaning rounding down to the closest integer and
the integer S is a scaling factor which is needed to preventwherew(n), x(n), e(n), d(n) and ~¹ carry their usual meaning
overflow during filtering operation. For the presence of S, theas has been described by eq. (1) and x = maxfjx(n)j jMi

¡S
0 0 range of each mantissa is given as jx j 2 [0;2 ). The scalingln 2 Z g, Z = fiN; iN +1; :::; iN + L¡ 1g, i 2 Z. In other
i i

factor S can be calculated from the inner product computationwords, x corresponds to the maximum magnitude of the inputMi

representing filtering operation. The filter output y(n) at nthdata samples x(n) for the ith block, and therefore the condition
index, which is an inner product, is calculated in BFP formatgiven by the latter half of R.H.S. of (4), i.e., w(n+1) = w(n),
aswould arise if and only if all the data samples of any ith block

are 0, which is alike the NLMS algorithm. However, the main
y(n) = hw;x(n)i

advantage of the above simpler algorithm stems from employ-
T

2 2 = w x(n)ing x in the denominator instead of (¾ + a) as is usual in
nMi

°NLMS, and thereby saving certain MAC operations while im- = [w x(n) + :::+w x(n¡ L+ 1)]:20 L¡1

°plementing the same in any finite precision digital arithmetic. = y(n):2 (10)
The speed of convergence of BB-NLMS recursion is also ex-
pected to be higher than that of NLMS for a given step size where w is a length L fixed point filter coefficient vector and
control parameter as it is not overly restrictive like NLMS re- x(n) is the data vector at the nth index, represented in BFP
cursion. The range of convergence parameter of this newly format. For no overflow in y(n), we need jy(n)j · 1 at every
introduced algorithm is briefly investigated in the following. time index, which can be satisfied by selecting [7]

L¡1A. Convergence characteristics of BB-NLMS X
S ¸ S = dlog ( jw j)e (11)min 2 k

The range of step size control parameter ~¹ for NLMS is
k=0

basically derived from the following relation
where ‘d:e’ is the so-called ceiling function, meaning rounding

0 < ¹tr(R) < 2 (5) up to the closest integer.

which is true for any algorithm in LMS family [1]. Here, B. The proposed implementation
Ttr(R) = E[x(n)x (n)]. As BB-NLMS can be considered as

The proposed scheme consists of two simultaneous BFP rep-a special form of NLMS adaptation, therefore, putting ¹(n) in
~¹ resentations, one for the filter coefficient vector w(n) and thethe above equation as in this case, we get2
x
Mi other for the given data, namely, x(n) and d(n). These are as

follows.22x
Mi (a) BFP representation of the filter coefficient vector:0 < ~¹ < : (6)

tr(R) At each index of time, here we have a scaled representation of
the filter coefficient vector as2 2Note that, considering tr(R) ¼ LE[x (n)] and x ¸

Mi

2E[x (n)], eq. (6) can be simplified as Ãn
w(n) = w(n):2 (12)

2
0 < ~¹ < : (7) where Ã is a time-varying block exponent that needs to ben

L updated at each nth instant and is chosen to ensure that each
1However, as we would see later, due to ertain implementational jw (n)j < for k = 0;1; :::; L¡ 1. If a data vector x(n) isk 2

°constraints, the actual range of ~¹ in BFP format becomes almost given in the aforesaid BFP format as x(n) = x(n):2 , where
half of this. ° = ex + S, ex = blog Mc + 1, M = max(jx(n ¡ k)j j2
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12 2 ¡2°ik = 0; 1; :::; L¡1) and S is an appropriate scaling factor, then, with x = x :2 . To satisfy jw (n + 1)j < forkM Mi 2i

°+Ãnthe filter output y(n) can be expressed as y(n) = y(n):2 k = 0;1; ¢ ¢ ¢ ;L ¡ 1, we first limit each ju (n)j < 1, k =k
Twith y(n) = w (n)x(n) denoting the output mantissa. To 0;1; ¢ ¢ ¢ ;L¡1 with u (n) denoting the kth component of u(n).k

1prevent overflow in y(n), the required condition is jy(n)j < Then, if each u (n) happens to be lying within § , we makek 2

1. However, in the proposed scheme, we confine y(n) to lie the assignments:
1 1 1between + and ¡ , i.e., jy(n)j < for reasons explained
2 2 2P w(n+ 1) = u(n); Ã = Ã : (18)L¡1 n+1 nlater. Since jy(n)j · jw (n)jjx(n ¡ k)j, 0 · jx(n ¡kk=0

1
¡Sk)j < 2 and jw (n)j < , this implies a lower limit of S ask 2 Otherwise, we scale down u(n) by 2, in which case,

S = dlog Le.min 2

1(b) BFP representation of the given data:
w(n+ 1) = u(n); Ã = Ã + 1: (19)n+1 nThe input data x(n) and the desired response sequence d(n) 2

are first partitioned jointly into non-overlapping blocks of L
1Since each jw (n)j < for k = 0;1; ¢ ¢ ¢ ;L¡1, it is sufficientk 2samples each with the ith block (i 2 Z) consisting of x(n),

to have
0d(n) for n 2 Z = fiN; iN +1; :::; iN+L¡1g. Further, both ~¹ 1i

jx(n¡ k)jje(n)j < (20)x(n) and d(n) are jointly scaled so as to have a common BFP 2 2x
M0 irepresentation within each block. This means that, for n 2 Z ,i

in order to satisfy the relation ju (n)j < 1 for k = 0;1; ¢ ¢ ¢ ;L¡kx(n) and d(n) are expressed as
1. The above equation thus gives a provision towards having

° °i ix(n) = x(n):2 ; d(n) = d(n):2 (13) an upper bound of ~¹ in order to prevent overflow in filtering
as well as weight updating operations.where ° is the common block exponent for the ith block andi

is given as ° = ex + S where ex = blog M c + 1 andi i i i 2 i C. A global upper bound on ~¹0M = maxfjx(n)j; jd(n)j j n 2 Z g. The block dependenti i

scaling factor S plays a key role in terms of preventing over- To find out any global upper bound, i.e., to ensure any vari-i
jpjflow and is assigned carefully as per the following algorithm: able of the form always lying within a certain limit B (where
jqj

both p, q are variables and p 6= 1; q 6= 0), it is necessary to
jpjAlgorithm: Assign S = dlog Le as the scaling factor to the first block max2min meet the requirement · B in order to have a worst-casejqjminand for any (i-1)-th block, assume S ¸ S .i¡1 min upper bound so that it works in all the situations. Therefore,

Then, if ex ¸ ex , choose S = S (i.e., ° = ex + S )i i¡1 i min i i min for eq. (20), we need to find out a minimum value of the
else (i.e., ex < ex )i i¡1 12

¡2Siquantity x , which comes as: :2 . The lower limit is
Mi 4choose S = (ex ¡ ex + S ), s.t. ° = ex + S .i i¡1 i min i i¡1 min obtained with the knowledge that at least the maximum mag-

nitude data sample within the ith block in BFP format will
Note that when ex ¸ ex , we can either have ex +S ¸i i¡1 i min be block normalized and therefore would be specified by the
° (Case A) implying ° ¸ ° , or, ex + S < ° 1i¡1 i i¡1 i min i¡1 ¡S ¡Si irange :2 · jx j < 2 . In eq. (20), putting theMi2(Case B) meaning ° < ° . However, for ex < ex (Casei i¡1 i i¡1 2above lower limit of x and the usual upper limit of je(n)j

MiC), we always have ° · ° .i i¡1 L
¡S ¡Ãi nas 2 (2 + ) respectively, we get the following global° +Ãi n 2The output error e(n) is then evaluated as e(n) = e(n):2

upper bound on ~¹:where the mantissa e(n) is given as 1
~¹ · (21)

¡Ãn 2(L+ 2)e(n) = d(n):2 ¡ y(n): (14)

since Ã ¸ 0 for all n. Note that in deriving the above up-nClearly, computation of e(n) involves an additional step of
1
¡Siper bound, the value for jx(n ¡ k)j used is 2 as it isright-shift operation (frequently used in FP arithmetic) on d(n). 2

already taken into consideration that jx j ¸ jx(n ¡ k)j forMiHowever, since in an adaptive filter, filter coefficients are de-
0n 2 Z ; k = 0; 1; ¢ ¢ ¢ ; L¡ 1. It is also interesting to note thatirived from data and thus can not be represented in the FxP

the above global upper bound is somewhat more restrictive thanformat when data is given in a scaled form, such a step seems
the upper bound given in eq. (7) for algorithm convergence.to be unavoidable. It is then easy to check that je(n)j < 1,
The main reason for this is the difference between algorithmicsince,
and implementational point of view as the latter has to take

¡Ã
nje(n)j · jd(n)j:2 + jy(n)j care of no overflow in all situations and thus has to provide

1 L a worst-case upper bound, which, in this case, is given by eq.
¡(S +Ã ) ¡S ¡Ãi n i n

< 2 + · 2 (2 + ) (15)
(21).2 2

1
¡Sias 2 · . Except for the case: Ã = 0 and L = 1, the

nL D. Complexity issues
R.H.S.· 1. For the above description of e(n), x(n), d(n) and

The BFP implementation of the BB-NLMS algorithm, asw(n), the weight update equation (4) takes the form
proposed above and summarized in Table 1, relies mostly on

Ãn
w(n+1) = u(n):2 (16) FxP arithmetic and thus enjoys less processing time than its

FP-based counterpart. It is also interesting to note that thewhere
~¹ BFP implementation of BB-NLMS recursion is faster than the

u(n) = w(n) + x(n)e(n); (17)
2 BFP realization of conventional NLMS algorithm as the formerx
Mi
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TABLE I TABLE II

Summary of the BB-NLMS algorithm realized in BFP format (initial value of A comparison between the BFP-based realizations of the new BB-NLMS

Ã = 0). algorithm and the conventional NLMS algorithm in terms of only MACn

operations required per L iterations for (a) calculating step-size mantissa, (b)
Tweight updating, and (c) filtering (y(n) = w (n)x(n)).————————————————————————

1. Preprocessing: Operation No. of Operation No. of
0Using the data for the i-th block, x(n) and d(n), n 2 Z
i (BB-NLMS) MAC (NLMS) MAC

(stored during the processing of the (i¡ 1)-th block),
~¹ ~¹(a) 1 2L2 2x ¾ +a(a) Evaluate block exponent ° as per the Algorithm ini Mi

0of Section III and express x(n), d(n), n 2 Z as (b) w(n+ 1) L(L+1) w(n+1) L(L+ 1)
i

2 2° °i i (c) y(n) L y(n) Lx(n) = x(n):2 , d(n) = d(n):2 ,
0(b) Evaluate x =maxfjx(n)j j n 2 Z ; i 2 Zg.Mi i

2. Processing for the i-th block:
0For n 2 Z = fiN; iN +1; :::; iN + L¡ 1g
i speed applications.

(a)Filter ouput:
Ty(n) = w (n)x(n), IV. SIMULATION RESULTS AND DISCUSSIONS

¸(n) = ° +Ã .i n

The proposed algorithm has been simulated under finite pre-(¸(n) is the filter output exponent)
cision like environment using MATLAB, in the context of(b)Output error (mantissa) computation:
equalization of channel effects and identification of several

¡Ãne(n) = d(n):2 ¡ y(n).
unknown systems. We show one such system identification(c)Filter weight updating:
problem below. A system output signal y(n) was generated

~¹
u(n) = w(n) + x(n)e(n).2

x as: y(n) = 0:7x(n) + 0:6x(n ¡ 1) + 0:2x(n ¡ 2) + º(n),Mi

1If ju (n)j < for all k 2 Z = f0; 1; :::;L¡ 1gk L with x(n) and º(n) representing the system input and the zero2

then mean observation white noise respectively with the following
2 2w(n+ 1) = u(n), variances: ¾ = 1 and ¾ = 0:02. Putting L = 3 in eq. (21),x º

Ã = Ã ,n+1 n we get the global upper bound ~¹ = 0:1. With this upper bound,
else the new BB-NLMS algorithm was simulated in finite precision

1
w(n+ 1) = u(n), BFP format, choosing a block length of 3 and allocating 12 bits2

Ã = Ã +1.n+1 n for the signed mantissa and 4 bits for the signed exponent for
end. both the input data and the filter coefficients. Using the same
iÃ i+ 1. finite precision set up as above and with the same value of ~¹,
Go back to step 1. the NLMS algorithm was simulated next in BFP format. The

corresponding MSE characteristics for these two simulations————————————————————————
are shown in Fig. 1(a) and Fig. 1(b) respectively. Further, the
BB-NLMS and the original NLMS algorithms were simulated
in infinite precision, using ~¹ = 0:65 for both the cases, thereby
taking ~¹ almost equal to its conventional upper bound for con-doesn’t require to update the step size parameter via eq. (2) and

~¹ 2 2(3). For example, to calculate the step size mantissa of vergence ( = ¼ 0:65) in case of the BB-NLMS algorithm.2 L 3x
Mi We show the corresponding learning curves in Fig. 2(a) andBB-NLMS in BFP format, we need to employ 1 MAC opera-

Fig. 2(b) respectively. In both the infinite precision and finitetion in simple FxP format, and 1 division operation followed
precision cases, it is easily seen from the figures that the pro-by 1 normalization, only once per block of L samples [Add to
posed BB-NLMS algorithm has the convergence speed almostthis a total of (L¡ 1) comparisons to check for x .]. This,Mi equal, and sometimes better, to its respective NLMS counter-in turn, saves a total of (2L¡ 1) MACs, (L¡ 1) divisions and
part. This new computationally efficient algorithm, therefore,2

L additions over the BFP realization of conventional NLMS
can serve as a good alternative of the NLMS algorithm foralgorithm [5] for L number of iterations. The other computa-
block implementations in high speed application areas.tional accounts in this case, i.e., computations for filter output,

output error calculation and weight updating, remain same in
V. CONCLUSIONcomparison with BFP implementation of conventional NLMS

algorithm [5]. A summary of these operations have also been This paper has introduced an effective adaptive algorithm,
provided in Table 1. Table 2 provides a comparative account BB-NLMS, and also presented a scheme for implementing the
of the BFP-based realizations of BB-NLMS and NLMS algo- same in a BFP format. The main computations involved, as
rithms in terms of number of MAC operations only, required given by equations (14), (17), (18) and (19), are based on fixed
per L iterations. It is clearly seen from the above computational point arithmetic only and thus can be realized using digital
accounts that though the BFP implementation of BB-NLMS al- hardware that is simple, cheap and fast, with the advantage of
gorithm reqires few comparison operations, but it mostly takes floating point like wide dynamic range by means of a block ex-
less computational figures in comparison with BFP realization ponent. The introduced algorithm provides high convergence
of NLMS recursion, and therefore, is a better choice for high speed with significantly reduced number of MAC as well as
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division operations, in comparison with conventional NLMS
recursion. The only price paid for this has been a reduced
range for the step-size control parameter governed by a new
upper limit, which is inversely proportional to the filter length.
This, in turn, limits the application of this algorithm and its
BFP implementation in adaptive noise canceling where the fil-
ter length may be very high. However, for high speed applica-
tions with relatively low filter length (e.g., in North American
Digital Cellular standard IS-54, where the system coefficients
should converge in the training mode roughly within first 50
training samples with high speed [11]), the BB-NLMS may be
a viable alternative to conventional NLMS algorithm. Imple-
menting such a less computationally complex algorithm on a (a)
real time processor can also be treated as an excellent future
extension of the work to develop a general framework for dif-
ferent application areas as well as to study the optimal issues of
realization. Efforts are now underway to carry out the same on
a 16-bit TMS320C54X fixed point processor, with an investi-
gation towards understanding the numerical error effects on the
proposed implementation.

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, 4th ed. Englewood Cliffs, NJ:
Prentice-Hall, 2001.

[2] N. J. Bershad, “Analysis of the Normalized LMS Algorithm with Gaus-
sian Inputs,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
34, no. 4, pp. 793-806, April 1986. (b)

[3] G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and Control.
Fig. 1. MSE characteristics of the (a) BFP-based BB-NLMS algorithm andEnglewood Cliffs, NJ: Prentice-Hall, 1984.

(b) BFP-based NLMS algorithm, both in finite precision with ~¹ = 0:1.[4] R. Nitzberg, “Application of the Normalized LMS Algorithm to MSLC,”
IEEE Trans. Aerospace and Electronic Syst., vol. AES-21, no. 1, pp.
79-91, Jan. 1985.

[5] A. Mitra and M. Chakraborty, “The NLMS Algorithm in Block-Floating-
Point Format,” IEEE Signal Processing Letters, vol. 11, no. 3, pp. 301-
304, March 2004.

[6] K. R. Ralev and P. H. Bauer, “Realization of Block Floating Point Digital
Filters and Application to Block Implementations,” IEEE Trans. Signal
Processing, vol. 47, no. 4, pp. 1076-1086, April 1999.

[7] K. Kalliojarvi and J. Astola, “Roundoff Errors in Block-Floating-Point¨
Systems,” IEEE Trans. Signal Processing, vol. 44, no. 4, pp. 783-790,
April 1996.

[8] A. Erickson and B. Fagin, “Calculating FHT in Hardware,” IEEE Trans.
Signal Processing, vol. 40, pp. 1341-1353, June 1992.

[9] S. Sridharan and D. Williamson, “Implementation of high order direct
form digital filter structures,” IEEE Trans. Circuits Syst., vol. CAS-33,
pp. 818-822, Aug. 1986.

[10] F. J. Taylor, “Block Floating Point Distributed Filters,” IEEE Trans. Cir-
cuits Syst., vol. CAS-31, pp. 300-304, Mar. 1984.

[11] R. D. Koilpillai, S. Chennakeshu and R. L. Toy, “Low Complexity Equal-
(a)izers for U.S. Digital Cellular System,” in Proc. IEEE VTC, May 1992.

pp. 744-747.

Abhijit Mitra was born in Serampore, India, in 1975. He received the
B.E.(Honors) degree from R. E. College, Durgapur, India, in 1997, M.E.Tel.E.
degree from Jadavpur University, India, in 1999 and Ph.D. degree from Indian
Institute of Technology, Kharagpur, India, in 2004, all in electronics and com-
munication engineering. Since 2004, he is with Indian Institute of Technology,
Guwahati, India, as an Assistant Professor. His research interests include fi-
nite wordlength digital signal processing, statistical signal processing, adaptive
signal processing and wireless communications.

(b)Dr. Mitra is a member of IEEE and also serves as a reviewer of IEEE Trans-
Fig. 2. MSE characteristics of the (a) BB-NLMS algorithm and (b) conven-actions on Signal Processing.

tional NLMS algorithm, both in infinite precision with ~¹ = 0:65.


