
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3164

Abstract—When binary decision diagrams are formed from
uniformly distributed Monte Carlo data for a large number of
variables, the complexity of the decision diagrams exhibits a
predictable relationship to the number of variables and minterms. In
the present work, a neural network model has been used to analyze the
pattern of shortest path length for larger number of Monte Carlo data
points. The neural model shows a strong descriptive power for the
ISCAS benchmark data with an RMS error of 0.102 for the shortest
path length complexity. Therefore, the model can be considered as a
method of predicting path length complexities; this is expected to lead
to minimum time complexity of very large-scale integrated circuitries
and related computer-aided design tools that use binary decision
diagrams.

Keywords—Monte Carlo circuit simulation data, binary
decision diagrams, neural network modeling, shortest path length
estimation

I. INTRODUCTION

OOLEAN decision diagrams (BDDs) and its derivatives
based on Boolean decomposition such as Davio,

Shannon, Read-Muller, Kronecker etc., require the inputs and
outputs in terms of bit level. Therefore these representations
can be quite time consuming. However, representation of
multi-output functions has significant application in areas
such as logic simulation and testing [1]. As circuit size
continues to grow, the need for efficient evaluation becomes
even more significant. The continuous increase of integration
level of digital circuits imposes high and growing
requirements for methods and algorithms useful in VLSI CAD
design verification and testing [1], [2]. This increasing
complexity of modern VLSI circuitry is only manageable
through advanced CAD systems that allow efficient handling
of Boolean functions (BFs) [1]. One of the most important
functions of CAD tools is to provide robust and efficient data
structures to represent BFs as well as fast algorithms to
manipulate these data structures. During the last two decades,
BDDs have gained popularity as the data structures in solving
most of the combinational problems which arise in synthesis
and verification of digital systems.
 BDD in general is direct acyclic graph representations of
BFs. BDDs were proposed by Akers [2] and were further

Manuscript received April 29, 2008.
A. Beg is with the College of Information Technology, United Arab

Emireates University, Al-Ain, UAE; e-mail: abeg@uaeu.ac.ae.
P.W. Chandana Prasad is with Charles Sturt University Study Centre

Sydney, 63 Oxford St, Darlinghurst, NSW 2010, Australia; e-mail:
c.withana@sga.edu.au

S.M.N.A. Senanayake is with School of Engineering, Monash University,
Malaysia Campus, Malaysia; e-mail: senanayake.namal@eng.monash.edu.my

generalized by Bryant [3]. The success of BDDs has attracted
many researchers in the area of design, synthesis and
verification of VLSI circuits. Evaluation of the time
complexity of a BF can be performed by employing its BDD
[3].
 Fast evaluation time is a key step in many applications
such as logic simulation, testing evaluation process of logic
circuits [4], [5]. As the circuit sizes continue to grow, the
need for fast evaluation becomes even more significant. The
evaluation time is not directly related to the number of nodes
in a BDD, but it is proportional to the path length of the
BDD. Therefore, minimization of the path length can
improve the overall performance of the circuit implementing
BFs. This will eventually increase the efficiency of the final
implementation [6], [7]. Numerous research works have been
done to analyze the behavior of path related objective
functions [6]-[10]. Most of the proposed methods are based
on either static variable ordering [11]-[14] or dynamic
variable ordering techniques [15], [16]. The minimization of
the APL leads to circuits with smaller depth of paths from the
root to the terminal node of the BDD. The resulting circuit
will be optimized for speed on one hand, and on the other
hand the number of very long paths in the BDD will be
reduced [17]. The minimization of average path length
(APL) is of great importance in embedded systems, real time
operating system applications [18], [19]. Minimization of
longest path length (LPL) [6] and shortest path length (SPL)
in BDDs were motivated by the synthesis of digital circuits in
order to optimize their delays, which is a very important issue
for pass transistor logic [20], [21].
 In all these path length minimizations, we need to create
the whole BDD representing the BF with the best possible
variable ordering method. Building the whole BDD may lead
to some complexity in the design process in terms of the time
required to implement, verify and test the design. So it will be
useful to have an estimation of the BDD complexity prior to
make decisions on the feasibility of the design. Many
research works have been published on the estimation of
combinational and sequential circuits [22], [23].
 Human brains carry out very complicated classification
tasks, for example, image recognition. Individual neurons in
the brain are not enough to conduct such complex chores;
however, the highly interconnected nature of brain
decomposes the overall job into sub-tasks that can be solved
at individual neuron level. This observation led to creation of
artificial neural networks (NNs) (Fig. 1). The NNs learn from
experience or some known examples. The learning has two
facets: learning the structure of the NN, and learning the
connection weights. Using the backpropagation learning

Estimating Shortest Circuit Path Length
Complexity

Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake

B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3165

input i0 hidden
neuron 0

input i1

input ij

hidden
neuron 1

hidden
neuron h

output
neuron

w1j

w00

w01

w02

wij

w10

w11

f(x0) w0

f(x
1)

f(x
j)

w1

w
j

f(x)

Fig. 1 A multi-layer neural network with one hidden layer

method, the weights are determined quite simply. The
learning process results in a set of weights that tend to
minimize the errors between the NN model (NNM) and the
actual examples. NNs find applications in pattern recognition,
generalization, and trend prediction. Over the past few
decades, the NN has been used to provide solution to difficult
NP-complete optimization problems [24].

The measure of efficiency of the circuits has been
addressed in relation with the area of circuit implementation,
where the complexity of BFs is analyzed in terms of their
implementation using different kind of circuits, from those
with simple sum-of-product (SOP) to NNs. In recent times,
some research work has been done on BF complexity
analysis using NN learning process. [25], [26]. The main idea
of this paper is to extend the work done by the same authors
to demonstrate the capabilities of a NN methodology in
effectively modeling the behavior of path length properties
[27]-[34]. Previously this methodology addressed the LPL
and APL of BDD. Here we use an NNM to predict the SPL
complexity with Monte Carlo BDD simulation.

In Section II of this paper, we review the previous work
done by the same authors on the estimation of path length
properties. The proposed NNM for the estimation of SPL
complexity is explained in the Section III. Section IV
provides the ISCAS benchmark validation for the NNM.
Finally, we conclude our paper with our future developments
in the same area.

II. PREVIOUS WORK DONE ON PATH LENGTH COMPLEXITY
ESTIMATION

We used an NN software package called Brain-Maker
version 3.75 [35] to model the path length complexity
behavior. Brain Maker’s feed-forward back-propagation NNs
were fully connected, meaning all inputs were connected to all
hidden neurons, and all hidden neurons were connected to the
outputs. Our experiments involved different number of
neurons in the single hidden layer. We used 90% of the data
sets as the training set and the other 10% as the validation set.
During training, only the training set was presented to the
NNs, and not the validation set. We had acquired a total of
10,528 data sets (also called facts) by running BF simulations
[27]. A total of 72 different configurations of NNM were used
to collect the data on NNM learn-ability. A given NNM was

considered to be sufficiently trained when it had learnt 97.5%
of the training facts. For our NNMs, the raw data (using no
transformation) provided APL and LPL average training
accuracy of 90.8%, 89.3% and average validation accuracy of
90% and 90.5%, respectively. The Fig. 1 illustrates the
comparison of APL and LPL complexity for 10 variables from
simulations and NNM predictions.

III. DATA ACQUISITION AND PRE-PROCESSING FOR SHORTEST
PATH LENGTH PREDICTION

For each variable count n between 1 and 14 inclusive and
for each term count between 1 and 2n-1, 100 SOP terms were
randomly generated and the Colorado University Decision
Diagram (CUDD) package [36] was used to determine the
SPL in terms of nodes. This process was repeated until the
average size of the SPL complexities (i.e. number of nodes)
became 1. Then the graphs for both the complexities were
plotted against the product term count for number of variables
1 to 14. The acquired data is shown in Fig. 2. Notice that the
values of SPL rise sharply for smaller minterm values, which
is not a NN-friendly pattern. So in order to improve the
learnability of the NNs, we used logarithmic pre-processing
on the minterm values; the resultant values are shown in Fig. 3.

0

2

4

6

8

10

12

14

1
43 85

12
7

16
9

21
1

25
3

29
5

33
7

37
9

42
1

46
3

50
5

54
7

58
9

63
1

67
3

71
5

75
7

79
9

84
1

88
3

92
5

96
7

Number of product terms

N
od

es

APL Experimntal

LPL Experimental

APL Predicted

LPL Predicted

Fig. 1 Comparison of APL and LPL complexity for 10 variables from
simulations and NNM predictions

0 500 1000 1500 2000 2500 3000 3500 40000

1

2

3

4

5

6

7

8

Minterms

S
PL

 C
om

pl
ex

ity

14
var13

var12
var

Fig. 2 SPL complexity curves for the raw/untransformed data for 2-
14 variables

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3166

100 101 102 103 1040

1

2

3

4

5

6

7

Minterms

SP
L

C
om

pl
ex

ity

14
var

13
var

12
var

Fig. 3 SPL complexity curves for 2-14 variables after logarithmic
transformation is applied to minterms

A. NN Training Setup and Testing Accuracy
The NN-modeling software package Brain Maker has been

used here to create and test the NNMs, as mentioned earlier.
The configuration and training statistics for SPL is given in
Table 1. It shows that our experiments involved different
number of neurons in the single hidden layer.

For our NNMs, the raw data for SPL provided an average
training accuracy of 89.6% and average validation accuracy of
89.5%. Fig. 4 illustrates the training and validation accuracy as
a function of neuron count in the (single) hidden layer for
SPL. As expected, we needed fewer training epochs as the
number of neurons in the hidden layer was increased; this is
indicated by the trend-line in Fig. 5. Another point worth
mentioning is that each NN configuration was trained multiple
times and the best training statistics for every configuration
were collected to alleviate the issue of local minima. Any
increase in hidden-layer neuron count beyond four had a
marginal improvement in the model accuracy. The closeness
of training and validation accuracies (Fig. 4) validate the
performance of our NNMs.

TABLE I CONFIGURATION & RELATED STATISTICS
FOR SPL-COMPLEXITY NNMs

Neurons in
single

hidden layer

Training
epochs

Training
time

(hours)

Training
accuracy %

Validation
accuracy

 %
6 397 0.04 91 90
10 263 0.04 94 94
14 333 0.04 94 94
18 341 0.04 95 95
20 235 0.03 95 94
22 174 0.02 95 95

B. NN Modeling Results and Analysis
We used an arbitrary set of values for number-of-variables

and number of product terms and used the NNM to predict the
SPL complexities in the form of nodes (complexity).

0

0.01

0.02

0.03

0.04

0.05

2 4 6 10 14 18 20 22

Neurons in hidden layer

Epochs

Training time (hours)

Fig. 4 Training and validation accuracy for different number of
neurons in the hidden layer for SPL

Fig. 6 and Fig. 7 illustrate the comparison for experimental
results and NNM predictions of SPL complexities for 8 and 11
variables respectively. It can be inferred that the NNM result
provides a very good approximation of the path related
objective function complexity.

The NNM could also be used for prediction of path length
properties beyond 14 variables as the NNMs are somewhat
capable of extrapolation [28].

0

0.01

0.02

0.03

0.04

0.05

2 4 6 10 14 18 20 22

Neurons in hidden layer

Epochs (x1000)

Training time (hours)

Fig. 5 Training time as a function of hidden layer size

0

1

2

3

4

1 71 141 211
Number of product terms

S
P

L
(N

od
es

)

Predicted 8 vars

Experimental 8 vars

Fig. 6 Comparison of SPL experimental (blue) and predicted (red)
results for 8 variables

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3167

0

1

2

3

4

5

6

1 71 141 211 281 351 421 491 561 631 701 771 841 911

Number of product terms

S
P

L
(N

od
es

)

Predicted 11 vars

Experimental 11 vars

Fig. 7 Comparison of SPL experimental (blue) and predicted (red)
results for 11 variables

IV. NEURAL NETWORK MODEL VALIDATION

Table 2 illustrates the ISCAS benchmark circuit [37]
validation results for simulation using CUDD package and the
proposed NNM for SPL complexity estimation. The ISCAS
benchmarks are sets of multi-input compound Boolean
expressions, because the randomly generated BFs used for the
experiments were single output SOP expressions and the
benchmark functions were split into multiple single-output
expressions, and then expanded directly to SOP term. Each
ISCAS benchmark produced a collection of SOP expressions.
For each of these expressions, the node count was computed
using the CUDD package [36]. For some benchmarks, lack of
variation made the correlation meaningless. But, for the
complete set of 426 circuits, the NNM was able to produce the

match with the RMS error of 0.102 is very significant. It can
be inferred from these results that the NNM is a better model
on prediction of the SPL complexity if the input data range is
known. Although the benchmark circuits considered had up to
94 inputs, mostly those benchmarks consisted of product
terms of 1-14 variables. The circuits for all outputs were
measured. It was observed that the term-variable count
combinations were almost all to the left of the roll off of the
graph, and thus still in region of logarithmic complexity. So,
empirically the most important part of the model is the
logarithmic rise, and it was this part that has been validly
tested by the benchmark circuit analysis. It is obvious that
importance of a full-scale match of the curves will be more
difficult to justify because of the lack of sample minterms that
can be extracted from the benchmarks.

V. CONCLUSIONS

In this research work, we extended the work done by the
authors in relation of NNMs with the path length properties,
mainly shortest path length. The NNM was obtained through
the training utilizing the experimental data for Monte Carlo
BDD simulation data. The ISCAS benchmark validation with
RMS errors of 0.102 has shown the accuracy of the training
model. It also demonstrated that the NNMs were capable of
providing useful clues about the complexity of the final
circuit. Once NNMs had been developed, they could be used
to conduct further experiments with different types of inputs,
in a fraction of time what a circuit simulator would take.
Future work will be mainly concentrated on having wider
range of variables to verify the full-scale match of the curves.

REFERENCES

[1] K. Priyank, “VLSI Logic Test, Validation and Verification, Properties &
Applications of Binary Decision Diagrams”, Lecture Notes, Department
of Electrical and Computer Engineering University of Utah, Salt Lake
City, UT 84112.

[2] S. B. Akers, “Binary Decision Diagram”, IEEE Trans. Computers, Vol.
27, pp. 509-516, 1978.

[3] R. E. Bryant, “Graph Based Algorithm for BF Manipulation”, IEEE
Trans. Computers, Vol. 35,, pp. 677-691, 1986.

[4] C. Scholl, R. Drechsler, and B. Becker, “Functional simulation using
binary decision diagrams”, Proc. Inter. Conf. of CAD, pp. 8-12, 1997.

[5] D. K. Pradhan, A. K. Singh, T. L Rajaprabhu, A. M. Jabir, “GASIM: A
Fast Galois Filed Based Simulator for Functional Model”, IEEE Proc. of
HLDVT’05, pp. 135-142, 2005.

[6] S. Nagayama, and T. Sasao, “On the minimization of longest path length
for decision diagrams”, Proc Inter. Workshop on Logic and Synthesis
(IWLS-2004),pp. 28-35, 2004.

[7] P.W. C. Prasad, M. Raseen, A. Assi, and S. M. N. A. Senanayake, “BDD
Path Length Minimization based on Initial Variable Ordering”, Journal
of Computer Science, Science Publications, Vol. 1(4), pp. 521-529,
2005.

[8] Y. Liu, K. H. Wang, T. T. Hwang, and C. L. Liu, “Binary decision
Diagrams with minimum expected path length”, Proc. of DATE 01, pp.
708–712, 2001.

[9] R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler, “Minimization of
the expected path length in BDDs based on local changes”, Proc. of Asia
and South Pacific Design Automation Conf. (ASP-DAC’2004), pp. 866-
871, 2004.

[10] R. Ebendt, and R. Drechsler, “On the Exact Minimization of Path-
Related Objective Functions for BDDs”, Proc. of Intl. Conf. on Very
Large Scale integration (IFIP VLSI-SOC), pp. 525-530, 2005.

[11] N. Drechsler, M. Hilgemeier, G. Fey, and R. Drechsler, “Disjoint Sum of
Product Minimization by Evolutionary Algorithms”, Proc. of

TABLE II ISCAS BENCHMARK CIRCUIT VALIDATION

SPL complexity Circuit
name

Number
of input
variables

Number
of

circuits Actual NNM Relative error
5xp1 7 10 16.890 17.464 0.034
alu4 14 8 30.270 32.031 0.058

apex7 48 55 72.410 65.865 -0.090
b1 3 4 4.490 2.863 -0.362
b12 15 9 22.940 24.165 0.053
b9 41 21 44.030 45.050 0.023
c8 28 17 35.760 32.071 -0.103
cc 21 18 27.460 24.721 -0.100
cht 47 36 22.880 26.287 0.149
clip 9 5 19.690 21.480 0.091
cmb 16 4 13.160 14.455 0.098
con1 6 2 4.060 3.952 -0.027

cu 14 11 10.260 10.383 0.012
decod 5 16 32.800 30.112 -0.082

inc 15 57 23.670 25.030 0.057
majority 5 1 2.050 1.882 -0.082
misex1 8 7 12.060 12.344 0.024
misex3 14 14 67.730 68.202 0.007

pcle 19 9 22.320 23.508 0.053
pm1 9 13 16.750 16.389 -0.022
sao2 10 4 13.020 13.946 0.071
sct 14 15 26.150 27.311 0.044

sqrt8 8 4 5.481 5.957 0.087
squar5 5 8 14.980 12.274 -0.181

ttt2 24 12 49.020 50.289 0.026
x2 10 7 23.260 21.701 -0.067
x4 94 59 151.550 152.267 0.005
Total circuits 426 RMS error -0.0083

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3168

Applications of Evolutionary Computing, Evo.Workshops, pp. 198-207,
2004.

[12] S. Nagayama, A. Mishchenko, T. Sasao, and J.T. Butler, “Minimization
of average path length in BDDs by variable reordering”, Proc. of Inter.
Workshop on Logic and Synthesis, pp: 207-213, 2003.

[13] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and Improvements
of Boolean Comparison Method Based on Binary Decision Diagrams”,
Proc. of Intl. Conf. on Computer Aided Design (ICCAD), pp. 2-5, 1988.

[14] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Logic
Verification Using Binary Decision Diagrams in a Logic Synthesis
Environment”, Proc. of the Intl. Conf. on Computer Aided Design
(ICCAD), pp. 6-9, 1988.

[15] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision
Diagrams”, Proc. of the Intl. Conf. on Computer Aided Design
(ICCAD), pp. 42-47, 1993.

[16] F. Somenzi, “Efficient manipulation of decision diagrams”, Inter.
Journal on. Software Tools for Technology. Transfer, (STTT), Vol. 3,
pp. 171-181, 2001.

[17] G. Fey, J. Shi and R. Drechsler, “BDD Circuit Optimization for Path
Delay Fault-Testability”, Proc. of EUROMICRO Symposium on Digital
System Design, pp. 168-172, 2004.

[18] A. Jain, M. Narayan, and A. Sangiovanni Vincentelli, “Formal
Verification of combinational Circuits”, Proc. of Intl Conf. on VLSI
Design, pp. 218-225, 1997.

[19] M. Lindgren, H. Hansson, and H. Thane, “Using Measurements to
Derive the Worst-case Execution Time”, Proc. of 7th Inter. Conf. on
Real-Time Systems and Applications (RTCSA’00), pp. 15-22, 2000.

[20] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli,
“Decision Diagrams and Pass Transistor Logic Synthesis”, Stanford
University CSL Technical Report, No. CSL-TR-97-748, 1997.

[21] R. S. Shelar and S. S. Sapatnekar, “Recursive Bi-partitioning of BDD's
for Performance Driven Synthesis of Pass Transistor Logic”, Proc. of
IEEE/ACM ICCAD, pp. 449-452, 2001.

[22] M. Nemani and F. N. Najm, “High-Level Power Estimation and the Area
Complexity of BFs”, Proc. of IEEE Inter. Symposium on Low Power
Electronics and Design, pp. 329-334, 1996.

[23] N. Ramalingam, and S. Bhanja, “Causal Probabilistic Input Dependency
Learning for Switching model in VLSI Circuits”, Proc. of ACM Great
Lakes Symposium on VLSI, pp. 112-115, 2005.

[24] P. E. Dunne, and W. van der Hoeke, “Representation and Complexity in
Boolean Games”, Proc. 9th European Conf. on Logics in Artificial
Intelligence, LNCS 3229, Springer-Verlag, pp. 347-355, 2004. I.
Parberry, Circuit Complexity and Neural Networks. MIT Press, 1994.

[25] L. Franco, M. Anthony, "On a generalization complexity measure for
BFs", IEEE Conference on Neural Networks, Proc. of IEEE
International Joint Conference on Neural Networks, pp. 973-978, 2004.

[26] L. Franco, "Role of function complexity and network size in the
generalization ability of feedforward networks", Lecture Notes in
Computer Science, v 3512, Computational Intelligence and Bioinspired
Systems: 8th International Workshop on Artificial Neural Networks,
IWANN 2005, Proceedings, pp. 1-8, 2005.

[27] P.W.C. Prasad, A. Assi, and A. Beg, “Predicting the Complexity of
Digital Circuits Using Neural Networks”, WSEAS Transaction on
Circuits and Systems, Vol. 5(6), pp. 813-820, 2006.

[28] A. Beg, P. W. C. Prasad, and A. Beg, “Applicability of Feed-Forward
and Recurrent Neural Networks to Boolean Function Complexity
Modeling,” Expert Systems With Applications (Elsevier), (in press)
November 2008, Vol. 36, No. 1.

[29] A. K. Singh, A. Beg and P. W. C. Prasad, “Modeling the Path Length
Delay (LPL) Projection,” In Proc. International Conference for
Engineering and ICT, ICEI 2007, Melaka, Malaysia, November 27-28,
2007, pp. X.

[30] P. W. C. Prasad and A. Beg, “A Methodology for Evaluation (APL)
Time Approximation,” In Proc. IEEE International Midwest Symposium
on Circuits and Systems, MWSCAS/NEWCAS 2007, Montreal, Canada,
August 5-8, 2007, pp. 776-778.

[31] A. Beg, P. W. C. Prasad, M. Arshad, and K. Hasnain, “Using Recurrent
Neural Networks for Circuit Complexity Modeling", In Proc. IEEE
INMIC Conference, Islamabad, Pakistan, December 23-24, 2006, pp.
194-197.

[32] P. W. C. Prasad, A. K. Singh, A. Beg, and A. Assi, “Modeling the
XOR/XNOR Boolean Functions' Complexity using Neural Networks,”
In Proc. IEEE International Conference on Electronics, Circuits and

Systems, ICECS 2006, Nice, France, December 10-13, 2006, pp. 1348-
1351.

[33] A. Beg and P. W. C. Prasad, “Data Processing for Effective Modeling of
Circuit Behavior,” In Proc. WSEAS International Conference on
Evolutionary Computing EC’07, Vancouver, Canada, June 18-20, 2007,
pp. 312-318.

[34] P. W. C. Prasad and A. Beg, “Data Processing for Effective Modeling of
Circuit Behavior,” Expert Systems with Applications, (in press) Vol. 38,
No. 4.

[35] “BrainMaker – User’s Guide and Reference Manual,” 7th ed., California
Scientific Software Press, 1998.

[36] F. Somenzi, “CUDD: CU Decision Diagram Package,”
ftp://vlsi.colorado.edu/ pub/, 2003.

[37] S., Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Technical report, Microelectronic Center of North
Carolina, Research Triangle Park, NC, 1991.

Azam Beg (M’07) received his MS and PhD degrees in Electrical and
Computer Engineering from Mississippi State University (USA) in 1994 and
2005, respectively. He joined the College of Information Technology, United
Arab Emirates University (Al-Ain, UAE), as an Assistant Professor, in August
2005. Before joining the academia, he acquired experience in diverse fields of
computer, electrical and control engineering. He spent nearly 8 years at Intel
Corp., USA, working on the design and validation of microprocessors, and on
testing of Flash memories. Before that, he had worked for 5 years as a Test
Engineer for an electronic control systems company. His experience also
includes team and project management. He is the author/co-author of 9 journal
and 17 conference papers. His research interests are: computer architecture
(modeling, simulation, and performance analysis), CMOS/nano digital
systems (design, test/validation, and reliability), and applied artificial
intelligence techniques.

P. W. Chandana Prasad received the BSc and MSc degrees in Computer
Engineering from St Petersburg Electro Technical University, Russia in 1990
and 1992, respectively. He received his PhD degree in Computer Engineering
from Multimedia University, Malaysia in 2007. He started his career as a
Computer Engineer in 1992. During his last 13 years of academic career, he
worked in a number of universities in Sri Lanka, Malaysia and United Arab
Emirates, as a lecturer in IT/computing. Currently, he is serving at Charles
Stuat University Study Centre in Sydney, Australia as Assistant Course
Coordinator and Lecturer in Computing. His research interests include digital
logic design, VLSI, microprocessor systems, and computer security. He is the
author and co-author of more than 40 research papers in different international
journals and conference proceedings, and two books entitled Digital System
Fundamentals, and Computer Systems Organization and Architecture
(Prentice-Hall).

S. M. N. A. Senanayake is currently with Monash University Sunway
Campus where he leads the research group Intelligent, Integrated and
Interactive Systems (IIIS). He has been recently appointed as the chairman of
IEEE Asia-Pacific Robotics & Automation Development Council – Malaysia
Section. Prior to Monash, he has been working with three different
universities; Chalmers University of Technology, Sweden, Johannes Kepler
University of Linz, Austria and University of Peradeniya, Sri Lanka holding
key academic and research positions. During his 18 years of research
experience, he managed to publish over 72 publications in international
conferences, journals and book chapters. He was one of the editors of three
books published based on the research outcomes. He was the special session
organizer for various international conferences, in particular IEEE
conferences. He is one of the reviewers in IEEE publications and Elsevier
publications.
 He has initiated research with Sports Biomechanics Centre, National Sports
Complex, in which his research team carried out special research projects of
national interest. Having engaged in this area of research, Interactive
Multilayer Sensorized Smart Floor has been developed under his leadership
and currently in the process of patenting the device. Dr. Arosha is the leader
of MoU between Monash and National Instruments. He carried out various
special research projects under this MoU which are mainly targeting industrial
needs. He is a member of research committee of Monash and he is the student
counselor of IEEE student branch at Monash

