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Abstract—When binary decision diagrams are formed from 
uniformly distributed Monte Carlo data for a large number of 
variables, the complexity of the decision diagrams exhibits a 
predictable relationship to the number of variables and minterms. In 
the present work, a neural network model has been used to analyze the 
pattern of shortest path length for larger number of Monte Carlo data 
points. The neural model shows a strong descriptive power for the 
ISCAS benchmark data with an RMS error of 0.102 for the shortest 
path length complexity. Therefore, the model can be considered as a 
method of predicting path length complexities; this is expected to lead 
to minimum time complexity of very large-scale integrated circuitries 
and related computer-aided design tools that use binary decision 
diagrams.

Keywords—Monte Carlo circuit simulation data, binary 
decision diagrams, neural network modeling, shortest path length 
estimation

I. INTRODUCTION

OOLEAN decision diagrams (BDDs) and its derivatives 
based on Boolean decomposition such as Davio, 

Shannon, Read-Muller, Kronecker etc., require the inputs and 
outputs in terms of bit level. Therefore these representations 
can be quite time consuming. However, representation of 
multi-output functions has significant application in areas 
such as logic simulation and testing [1]. As circuit size 
continues to grow, the need for efficient evaluation becomes 
even more significant. The continuous increase of integration 
level of digital circuits imposes high and growing 
requirements for methods and algorithms useful in VLSI CAD 
design verification and testing [1], [2]. This increasing 
complexity of modern VLSI circuitry is only manageable 
through advanced CAD systems that allow efficient handling 
of Boolean functions (BFs) [1]. One of the most important 
functions of CAD tools is to provide robust and efficient data 
structures to represent BFs as well as fast algorithms to 
manipulate these data structures. During the last two decades, 
BDDs have gained popularity as the data structures in solving 
most of the combinational problems which arise in synthesis 
and verification of digital systems. 
 BDD in general is direct acyclic graph representations of 
BFs. BDDs were proposed by Akers [2] and were further 
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generalized by Bryant [3]. The success of BDDs has attracted 
many researchers in the area of design, synthesis and 
verification of VLSI circuits. Evaluation of the time 
complexity of a BF can be performed by employing its BDD 
[3].  
 Fast evaluation time is a key step in many applications 
such as logic simulation, testing evaluation process of logic 
circuits [4], [5]. As the circuit sizes continue to grow, the 
need for fast evaluation becomes even more significant. The 
evaluation time is not directly related to the number of nodes 
in a BDD, but it is proportional to the path length of the 
BDD. Therefore, minimization of the path length can 
improve the overall performance of the circuit implementing 
BFs. This will eventually increase the efficiency of the final 
implementation [6], [7]. Numerous research works have been 
done to analyze the behavior of path related objective
functions [6]-[10]. Most of the proposed methods are based 
on either static variable ordering [11]-[14] or dynamic 
variable ordering techniques [15], [16]. The minimization of 
the APL leads to circuits with smaller depth of paths from the 
root to the terminal node of the BDD. The resulting circuit 
will be optimized for speed on one hand, and on the other 
hand the number of very long paths in the BDD will be 
reduced [17]. The minimization of average path length
(APL) is of great importance in embedded systems, real time 
operating system applications [18], [19]. Minimization of 
longest path length (LPL) [6] and shortest path length (SPL) 
in BDDs were motivated by the synthesis of digital circuits in 
order to optimize their delays, which is a very important issue 
for pass transistor logic [20], [21].  
 In all these path length minimizations, we need to create 
the whole BDD representing the BF with the best possible 
variable ordering method. Building the whole BDD may lead 
to some complexity in the design process in terms of the time 
required to implement, verify and test the design. So it will be 
useful to have an estimation of the BDD complexity prior to 
make decisions on the feasibility of the design. Many 
research works have been published on the estimation of 
combinational and sequential circuits [22], [23].  
 Human brains carry out very complicated classification 
tasks, for example, image recognition. Individual neurons in 
the brain are not enough to conduct such complex chores; 
however, the highly interconnected nature of brain 
decomposes the overall job into sub-tasks that can be solved 
at individual neuron level. This observation led to creation of 
artificial neural networks (NNs) (Fig. 1). The NNs learn from 
experience or some known examples. The learning has two 
facets: learning the structure of the NN, and learning the 
connection weights. Using the backpropagation learning  
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Fig. 1  A multi-layer neural network with one hidden layer 

method, the weights are determined quite simply. The 
learning process results in a set of weights that tend to 
minimize the errors between the NN model (NNM) and the 
actual examples. NNs find applications in pattern recognition, 
generalization, and trend prediction. Over the past few 
decades, the NN has been used to provide solution to difficult 
NP-complete optimization problems [24].  

The measure of efficiency of the circuits has been 
addressed in relation with the area of circuit implementation, 
where the complexity of BFs is analyzed in terms of their 
implementation using different kind of circuits, from those 
with simple sum-of-product (SOP) to NNs. In recent times, 
some research work has been done on BF complexity 
analysis using NN learning process. [25], [26]. The main idea 
of this paper is to extend the work done by the same authors 
to demonstrate the capabilities of a NN methodology in 
effectively modeling the behavior of path length properties 
[27]-[34]. Previously this methodology addressed the LPL 
and APL of BDD. Here we use an NNM to predict the SPL 
complexity with Monte Carlo BDD simulation. 

In Section II of this paper, we review the previous work 
done by the same authors on the estimation of path length 
properties. The proposed NNM for the estimation of SPL 
complexity is explained in the Section III. Section IV 
provides the ISCAS benchmark validation for the NNM. 
Finally, we conclude our paper with our future developments 
in the same area. 

II. PREVIOUS WORK DONE ON PATH LENGTH COMPLEXITY
ESTIMATION

We used an NN software package called Brain-Maker 
version 3.75 [35] to model the path length complexity 
behavior. Brain Maker’s feed-forward back-propagation NNs 
were fully connected, meaning all inputs were connected to all 
hidden neurons, and all hidden neurons were connected to the 
outputs. Our experiments involved different number of 
neurons in the single hidden layer. We used 90% of the data 
sets as the training set and the other 10% as the validation set.
During training, only the training set was presented to the 
NNs, and not the validation set. We had acquired a total of 
10,528 data sets (also called facts) by running BF simulations 
[27]. A total of 72 different configurations of NNM were used 
to collect the data on NNM learn-ability. A given NNM was 

considered to be sufficiently trained when it had learnt 97.5% 
of the training facts. For our NNMs, the raw data (using no 
transformation) provided APL and LPL average training 
accuracy of 90.8%, 89.3% and average validation accuracy of 
90% and 90.5%, respectively. The Fig. 1 illustrates the 
comparison of APL and LPL complexity for 10 variables from 
simulations and NNM predictions. 

III. DATA ACQUISITION AND PRE-PROCESSING FOR SHORTEST
PATH LENGTH PREDICTION

For each variable count n between 1 and 14 inclusive and 
for each term count between 1 and 2n-1, 100 SOP terms were 
randomly generated and the Colorado University Decision 
Diagram (CUDD) package [36] was used to determine the 
SPL in terms of nodes. This process was repeated until the 
average size of the SPL complexities (i.e. number of nodes) 
became 1. Then the graphs for both the complexities were 
plotted against the product term count for number of variables 
1 to 14. The acquired data is shown in Fig. 2. Notice that the 
values of SPL rise sharply for smaller minterm values, which 
is not a NN-friendly pattern. So in order to improve the 
learnability of the NNs, we used logarithmic pre-processing 
on the minterm values; the resultant values are shown in Fig. 3.
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Fig. 3 SPL complexity curves for 2-14 variables after logarithmic 
transformation is applied to minterms 

A. NN Training Setup and Testing Accuracy 
The NN-modeling software package Brain Maker has been 

used here to create and test the NNMs, as mentioned earlier. 
The configuration and training statistics for SPL is given in 
Table 1. It shows that our experiments involved different 
number of neurons in the single hidden layer. 

For our NNMs, the raw data for SPL provided an average 
training accuracy of 89.6% and average validation accuracy of 
89.5%. Fig. 4 illustrates the training and validation accuracy as 
a function of neuron count in the (single) hidden layer for 
SPL. As expected, we needed fewer training epochs as the 
number of neurons in the hidden layer was increased; this is 
indicated by the trend-line in Fig. 5. Another point worth 
mentioning is that each NN configuration was trained multiple 
times and the best training statistics for every configuration 
were collected to alleviate the issue of local minima. Any 
increase in hidden-layer neuron count beyond four had a 
marginal improvement in the model accuracy. The closeness 
of training and validation accuracies (Fig. 4) validate the 
performance of our NNMs.  

TABLE I CONFIGURATION & RELATED STATISTICS 
FOR SPL-COMPLEXITY NNMs

Neurons in 
single

hidden layer 

Training 
epochs

Training 
time 

(hours) 

Training 
accuracy % 

Validation
accuracy

 % 
6 397 0.04 91 90 
10 263 0.04 94 94 
14 333 0.04 94 94 
18 341 0.04 95 95 
20 235 0.03 95 94 
22 174 0.02 95 95 

B. NN Modeling Results and Analysis 
We used an arbitrary set of values for number-of-variables 

and number of product terms and used the NNM to predict the 
SPL complexities in the form of nodes (complexity).  
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Fig. 4 Training and validation accuracy for different number of 
neurons in the hidden layer for SPL 

Fig. 6 and Fig. 7 illustrate the comparison for experimental 
results and NNM predictions of SPL complexities for 8 and 11 
variables respectively. It can be inferred that the NNM result 
provides a very good approximation of the path related 
objective function complexity.  

The NNM could also be used for prediction of path length 
properties beyond 14 variables as the NNMs are somewhat 
capable of extrapolation [28]. 
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IV. NEURAL NETWORK MODEL VALIDATION

Table 2 illustrates the ISCAS benchmark circuit [37] 
validation results for simulation using CUDD package and the 
proposed NNM for SPL complexity estimation. The ISCAS 
benchmarks are sets of multi-input compound Boolean 
expressions, because the randomly generated BFs used for the 
experiments were single output SOP expressions and the 
benchmark functions were split into multiple single-output 
expressions, and then expanded directly to SOP term. Each 
ISCAS benchmark produced a collection of SOP expressions. 
For each of these expressions, the node count was computed 
using the CUDD package [36]. For some benchmarks, lack of 
variation made the correlation meaningless. But, for the 
complete set of 426 circuits, the NNM was able to produce the 

match with the RMS error of 0.102 is very significant. It can 
be inferred from these results that the NNM is a better model 
on prediction of the SPL complexity if the input data range is 
known. Although the benchmark circuits considered had up to 
94 inputs, mostly those benchmarks consisted of product 
terms of 1-14 variables. The circuits for all outputs were 
measured. It was observed that the term-variable count 
combinations were almost all to the left of the roll off of the 
graph, and thus still in region of logarithmic complexity. So, 
empirically the most important part of the model is the 
logarithmic rise, and it was this part that has been validly 
tested by the benchmark circuit analysis. It is obvious that 
importance of a full-scale match of the curves will be more 
difficult to justify because of the lack of sample minterms that 
can be extracted from the benchmarks.

V. CONCLUSIONS

In this research work, we extended the work done by the 
authors in relation of NNMs with the path length properties, 
mainly shortest path length. The NNM was obtained through 
the training utilizing the experimental data for Monte Carlo 
BDD simulation data. The ISCAS benchmark validation with 
RMS errors of 0.102 has shown the accuracy of the training 
model. It also demonstrated that the NNMs were capable of 
providing useful clues about the complexity of the final 
circuit. Once NNMs had been developed, they could be used 
to conduct further experiments with different types of inputs, 
in a fraction of time what a circuit simulator would take. 
Future work will be mainly concentrated on having wider 
range of variables to verify the full-scale match of the curves. 
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