
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4006

Abstract—In many applications, it is a priori known that the

target function should satisfy certain constraints imposed by, for
example, economic theory or a human-decision maker. Here we
consider partially monotone problems, where the target variable
depends monotonically on some of the predictor variables but not all.
We propose an approach to build partially monotone models based
on the convolution of monotone neural networks and kernel
functions. The results from simulations and a real case study on
house pricing show that our approach has significantly better
performance than partially monotone linear models. Furthermore, the
incorporation of partial monotonicity constraints not only leads to
models that are in accordance with the decision maker's expertise,
but also reduces considerably the model variance in comparison to
standard neural networks with weight decay.

Keywords—Mixture models, monotone neural networks,

partially monotone models, partially monotone problems.

I. INTRODUCTION
N many applications, it is a priori known that the target
function should satisfy certain constraints imposed by, for

example, economic theory or a human-decision maker. In
many cases, however, the final model obtained by data mining
techniques alone does not meet these constraints. It is required
that the algorithms have to be modified (enhanced) to obey the
constraints in a strict fashion.

One type of constraint, which is common in many decision
problems, is the monotonicity constraint stating that the
greater an input is, the greater the output must be, all other
inputs being equal. There is a wide range of applications
where monotonicity properties hold. Well-known examples
include credit loan approval, the dependence of labor wages
as a function of age and education, investment decisions,
hedonic price models, selection and evaluation tasks ([4],[6]).

Several data mining techniques have been developed, which
incorporate monotonicity constraints such as neural networks
([3],[5],[11],[12]), rational cubic interpolation of one-
dimensional functions ([10]), decision trees ([1],[8]), etc.

Manuscript received 05.12.2005
M.Velikova is with the Center for Economic Research, Tilburg University,

The Netherlands (phone: +31 13 466 8721, fax: +31 13 466 3069, e-mail:
M.Velikova@uvt.nl)

H.Daniels is with the Center for Economic Research, Tilburg University,
The Netherlands and ERIM Institute of Advanced Management Studies,
Erasmus University Rotterdam, Rotterdam, The Netherlands (e-mail:
daniels@uvt.nl)

A.Feelders is with the Department of Information and Computing Sciences,
Utrecht University, The Netherlands (e-mail: ad@cs.uu.nl)

However, the main assumption for the implementation of most
of these methods is that the function (output) being estimated
should be monotone in all inputs (so-called total
monotonicity). This in practice, of course, is not always the
case.

In this paper we consider partially monotone regression
problems, where we assume that the dependent variable
depends monotonically on some of the independent variables
but not all. For example, common sense suggests that the
house price has monotone increasing dependence on the
number of rooms and the total house area, whereas for the
number of floors this dependence does not necessarily hold.
Such prior knowledge about monotone relationships can be
incorporated as constraints in data mining algorithms in order
to improve the accuracy and interpretability of the models
derived as well as to reduce their variance on new data.

The paper is organized as follows. In the next section we
introduce notations and definitions related to monotonicity,
which are needed for the follow-up discussion. The main
contribution of this paper is the approach for partial
monotonicity presented in Sect.IVA. The approach is based on
the convolution of a special type of monotone neural
networks, introduced in Sect.III, and kernel functions. In
Sect.IVB we present the design and the results from
simulation studies carried out to test the performance of the
proposed approach for partial monotonicity. Sect.IVC
demonstrates the application of the approach on a real case
study of house pricing. Concluding remarks are given in
Sect.V.

II. NOTATIONS AND DEFINITIONS
Let x denote the vector of independent variables, which

takes values in a k-dimensional input space X, and y denotes
the dependent variable that takes values in a one-dimensional
space Y. We assume that a data set D = (x, y) of p points in
X*Y is given.

For totally monotone problems, we assume that D is
generated by a process with the following properties

() ,fy ε+= x (1)

where f is a monotone function, and ε is a random variable
with zero mean and constant variance 2

εσ . Monotonicity of f
on x is defined on all independent variables by

Solving Partially Monotone Problems with
Neural Networks

Marina Velikova, Hennie Daniels, and Ad Feelders

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4007

() (),ff 2121 xxxx ≥⇒≥ (2)

where 21 xx ≥ is a partial ordering on X defined by 21
ii xx ≥ ,

for i = 1, 2, …, k. The pair (x1, x2) is called comparable and if
the relationship defined in (2) holds, it is also a monotone
pair.

Note that even though f is monotone, the data generated by
(1) is not necessarily monotone due to the random effect of ε.

For partially monotone problems, we have
{ }m

i
m kix ,1,| K=∈= Xx , { }k,,kjx m

j
n K1| +=∈= Xx for

.kk m <≤1 Furthermore, a data set D = (xm, xn, y) of p points
is generated by

() ,,fy nm ε+= xx (3)

where f is a monotone function in xm and ε is a random
variable with zero mean and constant variance 2

εσ .

Our objective is to find a smooth approximation f̂ of

f(xm,xn) such that f̂ is monotone in xm, i.e., f̂ is a partially
monotone estimator.

A simple solution is to consider the class of partially
monotone linear functions of the form

() ,xaxaa,f̂
k

kj

n
jj

k

i

m
ii

nm

m

m

∑∑
+==

++=
11

0xx subject to

ai ≥ 0, i = 1,2, …, km. (4)

We expect that the estimate in (4) would produce good fit

for linear functions; it would give, however, poor
approximations for complex functions (see Sect.IVB).
Therefore, it is necessary to consider more flexible models for
estimating any continuous partially monotone function.

In this paper, we look at mixture models of the form

() () (),f̂,f̂ n
c

C

c

m
c

nm xxxx ϕ⋅= ∑
=1

 (5)

where C is a number of clusters (subsets of D), ()mf̂ x is the
output of a monotone (Sill) network, presented in the next
section, built on xm, and ()nxϕ is a weight function (kernel)
based on xn.

III. MONOTONE NETWORKS

A. General Notation
A standard feedforward neural network with multi-layer

architecture is represented by:
− Input layer containing k+1 units - one unit for each input

variable xk, and one bias unit set to a constant value of 1.
− Hidden layer(s) consisting of a set of H units, which are

connected to the bias and input nodes.

− Output layer with one or more units that produce the
output of the network. Here we consider neural networks
with only one output node.

All the connections between the layers are weighted. Let wij
denote the weight on the connection between input j and
hidden unit i and vi is the weight on the connection between
hidden unit i and the output. Then, given x the functional form
of the output Ox corresponding to a network with one hidden
layer is represented by

,θθxwλvO
H

i

k

j
ijiji∑ ∑

= =

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

1
0

1
x (6)

where θi, θ0 are the bias terms to the hidden and output nodes,
and λ is the activation function, which is usually taken to be
the sigmoid function () .)e1(1u u−+=λ The class of networks
in (6) can approximate any continuous function of k variables
on any compact subset of ℜk ([2]).

Since the focus of this paper is on monotone problems, we
are interested in neural networks for which the output is
guaranteed to be monotone. In [11] it is proved that a special
class of neural networks has the capacity to approximate
uniformly to an arbitrary degree of accuracy any continuous
monotone function. This type of monotone networks is used in
our study and we refer to it as to Sill networks in the
remainder of the paper. For clarity, in the next section we
briefly describe the architecture of Sill networks using similar
definitions and notations as in [11].

B. Sill Networks
The network considered here is based on the three-layer

(two hidden-layer) architecture introduced by Sill in [11]. The
input layer is connected to the first hidden layer consisting of
a set of linear units, which are combined into several groups,
(the number of units in each group is not necessarily the
same). Corresponding to each group is a second hidden-layer
unit, which computes the maximum over all first-layer units
within the group. The final output unit computes the minimum
over all groups.

In formal notation, a Sill network can be represented as
follows. Let R denote the number of nodes in the second
hidden layer, that is the number of groups in the first hidden
layer, with outputs g1, g2, …, gR, and hr denotes the number of
hyperplanes within group r, r = 1, 2, …, R. The parameters
(weights) of the hyperplanes in r are denoted by the vectors
w(r,1), w(r,2), …, w(r, rh). Then the output at group r is defined
by

() () ()() ,hj,maxg rj,rj,r
j

r ≤≤+⋅= 1θxwx (7)

where θ is the bias term.
The final output Ox of the network for input x is given by

().gminO r
r

xx = (8)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4008

From (8), it follows that one group and one hyperplane
within this group determine the output of the network for each
input vector. Such group and hyperplane are called active. In
case of ties in the group or network outputs (though it is
unlikely as the outputs are continuous), the choice of active
hyperplane or group is made arbitrarily.

To guarantee that the network output is monotone, all
weights from an input to the first hidden layer are constrained
to be non-negative (non-positive), if increasing (decreasing)
monotonicity is desired for that input. Here, the parameters in
(7) are enforced to be non-negative by taking an appropriate
transformation such as w = z2, where z is a free parameter.

The Sill network thus described has several advantages.
First, computation of the output is simple and fast due to the
limited number of linear unit calculations and simple
comparison operators performed. In addition, at each iteration
of the training process the weights of a single linear unit (the
active one) are only modified, which speeds up network's
learning. Second, by constraining the coefficients of the linear
units it is easy to incorporate domain knowledge in the
network. Therefore, monotonicity can be easily imposed by
restricting the coefficients to be positive or negative. Finally,
for a particular input the output from Sill networks is easy to
understand and interpret by the end user as the parameters of
the linear units directly reflect the relationships in the data.

In [11] it is shown in a case study on bond rating that the
three-layer monotone networks perform better than a linear
model and standard neural networks for problems where
monotonicity is present in the domain.

IV. APPROACH FOR PARTIAL MONOTONICITY

A. Description

As stated earlier, our goal is to find a smooth estimation f̂

of f(xm, xn) given in (2) such that f̂ is monotone in xm.
To find a smooth estimator of unknown regression function,

a common approach is to use a non-parametric method such as
kernel regression. An advantage of the method is its
flexibility, i.e., it allows estimating functions of greater
complexity. Besides being smooth, the estimator we look for
should be also monotone in xm. However, the implementation
of monotonicity constraints in a kernel estimator is not
straightforward, especially for multidimensional functions.

Then an intuitive solution to guarantee that the estimator f̂
is smooth and partially monotone is to construct monotone
approximations of f with respect to xm while xn is fixed and
then to smooth out the resulting estimates by using kernels
based on xn.

This approach is used here for building a class of partially
monotone functions in the form of (4). The idea is to
convolute Sill networks built on xm and suitable kernel
functions based on xn.

In the first step of the proposed approach, the input space
with respect to xn is partitioned into a number of disjoint

subsets (clusters) by using a hierarchical clustering algorithm.
The appropriate number of subsets is determined
automatically by cutting off the hierarchy obtained from the
clustering procedure at several levels (from 2 to 10). Then for
each of the partitioning outcomes we compute the silhouette
value as a measure for the goodness of clustering (ranged
from –1 for bad to +1 for good) ([9]). The outcome with the
maximal silhouette value determines the final number of
clusters. An additional improvement in the clustering
procedure is adding weights to the variables in the standard
Euclidean distance measure we use. In this way, we take into
account the significance of each variable on the dissimilarities
between the points and the formation of the clusters,
respectively. The vector of weights α are determined a priori
by taking the absolute value of the respective coefficients for
each variable obtained from the linear model fitted to the
whole data set and normalizing them to sum up to 1.

As a result of this partitioning of the original data D, we
obtain a number C of subsets D1, D2, …, DC, where the
number of points in the subsets is not necessarily the same.
There is no restriction on the minimal number of points in a
subset.

For each Dc, c = 1, 2, …, C, which contains more than one
point, the value of the non-monotone variable is fixed to the
cluster mean .n

cx Furthermore, an estimate ()m
cf̂ x of f is

obtained based only on the values of the monotone variable xm

for the points belonging to Dc. This is done by using Sill
networks, which guarantees that the function approximation is
monotone within each subset.

If a cluster with only one point is created (i.e., an outlier in
respect to the values of the non-monotone variables is
detected) then the cluster mean takes the values of the non-
monotone variable for that point and the function
approximation is just the label of the point. The reasoning for
not ignoring the one-point clusters is as follows. Suppose we
want to predict the label yz of a new point z, which is closer to
a one-point cluster than to the others (meaning that the values
of the non-monotone variables are similar). Now if z has also
values of the monotone variable that are similar to those of the
point in the cluster, then the predicted label is expected to be
also close to the label of the point. However, if the values of
the monotone variable are dissimilar between the points then z
can be considered as a point without analog in the data (i.e.,
outlier) but its label can be still predicted by using the
function estimations from all the clusters as described below.

In the next step of the approach, for all Dc, c = 1, 2, …, C,
we define

() ,n
c

n
c

1−
−= xxαψ

where ||⋅|| is the Euclidean distance norm weighted by α, xn
∈D and n

cx is the mean (centroid) value of cluster c. By
definition ψ ≥ 0 and it determines the distance of point x to
the mean of cluster c. By normalizing ψ with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4009

TABLE I
FACTORS AND THEIR VALUES USED IN THE SIMULATION EXPERIMENTS

Approach for partial monotonicity Neural networks with weight decay
Levels (values) Levels (values) Factors

1 2 3
Factors

1 2 3
1 # points in data 50 150 250 1 # points in data 50 150 250

2 Noise level (2
εσ) 0.01 0.5 2 2 Noise level (2

εσ) 0.01 0.5 2

3 # groups in Sill net 2 3 4 3 # hidden neurons 3 9 15
4 # planes in Sill net 2 3 4 4 Weight decay 0.000001 0.00001 0.0001

() ()
()

,
C

c
n

c

n
cn

c

∑ =

=

1
x

x
x

ψ

ψ
ϕ

we obtain a function ϕ ≥ 0, for which

() .
C

c

n
c 1

1

=∑
=

xϕ

Hence, ϕ can be considered as a weighted function or a
kernel in Nadaraya-Watson form ([7],[13]).

Finally, we convolute ϕc with the corresponding function
approximations ()m

cf̂ x for each cluster c by

() () (),f̂,f̂ n
c

C

c

m
c

nm xxxx ϕ⋅= ∑
=1

to obtain the final estimate of f.

B. Simulation Studies
In this section, we present the results from the simulation

studies designed to test the effectiveness of the approach for
partial monotonicity. We generate artificial data based on two
independent variables and a dependent variable computed by
applying a function that is monotone in one of them and non-
monotone in the other.

First, two vectors of p values, xm and xn, are generated
independently from each other. The values of vector xm are
drawn from the uniform distribution on [0,1]. The vector xn is
composition of two sub-vectors each of size p/2 points, which
are drawn from two normal (Gaussian) distributions: N(1,0.5)
and N(5,0.5). Then, we compute the values of a third vector y
by applying a monotone function on xm and a non-monotone
function on xn plus a random perturbation ε ~ N(0, 2

εσ):

()() .επx2sin2x
2
πsin3y nm ++⋅⎟

⎠
⎞

⎜
⎝
⎛+=

Hence, we can consider xm and xn as the independent
variables and y as the dependent variable in a data set D=(xm,
xn, y) of p points.

Now based on D thus generated we want to build a model
for predicting y. Given that the constructing function is known
to be partially monotone, we apply the approach for partial
monotonicity as an appropriate method for estimation. The
clustering algorithm used in the approach finds two clusters in
the data corresponding to the two Gaussians for xn. Kernels
and Sill networks' outputs are computed for each cluster and
finally they are convoluted to obtain the final estimation of y.

To obtain sound assessment for the performance of our
approach we use standard neural networks with weight decay
and partially monotone linear models in the form of (3) as
benchmark methods for comparison. The standard neural
networks consist of an input layer, one hidden layer and one
continuous output. In the hidden layer the activation function
is sigmoid, whereas in the output it is linear. In addition, the
weight decay is used as a regularization method to prevent the
networks from overfitting. This is done by adding to the
mean-squared error the term ∑ij ijw2δ to penalize large

weights, where δ is the weight decay parameter. The
comparison between our approach and the benchmark
methods is based on the mean-squared error (MSE) as a
measure for the quality of estimation.

To obtain more complete performance analysis, the
experiments with the approach for partial monotonicity and
neural networks are conducted by using several factors with
different values for comparison (Table I).

All possible combinations of the four three-value factors
require the experiment with each method to run 81 times (34).
In order to reduce the effort and experimental cost in the
simulations, we use the so-called fractional factorial design
([14]), where only a certain number of combinations of factor
values are taken to carry out the experiments. This is done in a
systematic way by combining each value of each factor only
once with each level of the other factors. In our case the
fractional design requires 9 runs with each method.

For each run we generate a collection of 50 data samples
following the data generating procedure described above. For
computational convenience the values of the independent
variables in each set are fixed, whereas the value of the
dependent variable varies across different data samples. The
approach for partial monotonicity, neural networks with
weight decay and partially monotone linear models are applied
on the same collections of data samples.

As a result from the experiments, for each method we
obtain 9 estimations of MSE. These results are used then to
compute the expected value E{MSEijkl} for all possible
combinations of factor values (i, j, k, l), where i, j, k and l
range from 1 to 3. As described in [14], this is done by fitting
the exponential model

{ } () ()(
() ()),

exp

lk

jiijkl

µµµµ

µµµµµ

−+−+

+−+−+=
43

21MSEE
 (9)

where µ is the mean computed over all 9 estimations,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4010

321 ,, kji µµµ and 4
lµ are the means for each factor value; the fit

of an exponential function guarantees that the estimated
E{MSEijkl} is positive. For example, for the combination of
factor values (50 data points, 2

εσ =0.5, 4 groups, 3 planes),
i.e., (i=1,j=2,k=3,l=2) the approach for partial monotonicity
has not been run. Then to compute E{MSE1232}, we use the
respective means 3

3
2
2

1
1 µµµ ,, , and 4

2µ in (9).
Finally, as there are two factors (number of data points and

noise level), which are the same in the experiments, we want
to compare the performance of the methods for all
combinations of values (i, j) (in total 9) of these two factors.
For this purpose, within each (i, j) out of all value
combinations (in total 9) we take the minimum estimation and
variance of MSE over the other two factors. The results
presented in Table VI in the Appendix show that the proposed
approach for partial monotonicity is superior to the partially
monotone linear models in providing a significantly better fit
to the data, and superior to the standard neural networks in
reducing considerably the model variance. The last finding is
clear indication that the models obtained from our approach
are more robust upon repeated sampling.

C. Real Case Study
In this section we present the results obtained from the

application of the approach for partial monotonicity on a real
case study of housing pricing. Furthermore, as in the
simulation studies, the performance of the approach is
compared to standard neural networks with weight decay and
partially monotone linear models.

The data used in the study consist of 119 observations of
houses in the Dutch city of Den Bosch. There are 11
independent variables describing the characteristics of a house
(Table II). The dependent variable we want to predict is the
house price and for further computational convenience it was
transformed by taking its logarithm.

TABLE II

DEFINITION OF VARIABLES
Symbol Variable
DISTR Type of district, 4 categ. ranked from bad to good
AREA Total house area including garden
RM Number of bedrooms
TYPE House type, 6 categ., ranked from flat to villa
VOL Volume of the house
GARD Type of garden, 4 categ. ranked from bad to good
GARG 1-no garage, 2-normal garage, 3-large garage
FLOORS Number of floors
YEAR Year of building
X-DIST Horizontal map location
Y-DIST Vertical map location

This data set has been used in previous studies ([3], [8]),

which deal with incorporating monotonicity constraints in data
mining algorithms but only for totally monotone problems.
Therefore, in these studies, YEAR, X-DIST and Y-DIST were
dropped out from the data as variables for which monotone
relationship with the house price does not hold. Furthermore,
we suspect that the monotonicity dependency on FLOORS is

not expected (e.g., some expensive houses such as villas may
have only one floor). Therefore, we conduct a test to check for
which variables in the housing data the monotonicity
assumption holds. This is done by using a measure for the
degree of monotonicity (DgrMon) of data, namely the fraction
of monotone pairs of all comparable pairs in the data. This
measure is computed for the original data and for the data sets
obtained after removing one or more of the four variables, for
which we suspect lack of a monotone relationship with the
house price. Based on the results in Table III, we can consider
FLOORS, X-DIST, Y-DIST, and YEAR as the non-monotone
variables in the data.

TABLE III

DEGREE OF MONOTONICITY FOR HOUSING DATA
Removed variable(s) Comparable pairs DgrMon
- (original data) 314 0.9140
FLOORS 331 0.9184
X-DIST 412 0.9199
Y-DIST 634 0.9495
YEAR 1073 0.9553
Y-DIST,YEAR 1534 0.9615
FLOORS,Y-DIST,YEAR 1620 0.9630
X-DIST,Y-DIST,YEAR 2217 0.9648
FLOORS,X-DIST,Y-DIST,YEAR 2345 0.9659

Using this knowledge about the (non)-monotone

relationships in the housing data, we apply the approach for
partial monotonicity (PartMon) in order to build a model for
predicting the house price. To obtain a sound assessment of
the generalization capabilities of the model obtained, we split
randomly the original data into training data of 89
observations (75%) and test data of 30 observations (25%).
The former is used to build a model whereas the latter is used
to test the performance of the model. The random partition of
the data is repeated 20 times.

Similarly to the simulation studies, we compare the
performance of the approach with standard neural networks
with weight decay (NNet) and partially monotone linear
models (PMonLin), which are applied on the same data
samples. We use again several combinations (in total 9) of
parameters for the Sill networks (groups–2,3,4; planes–2,3,4)
and neural networks (hidden nodes–5,13,20; weight decay–
0.000001,0.00001,0.0001). The performance of the models is
measured by computing the mean-squared error (MSE). The
mean and variance of the minimum MSE over different
parameter combinations are reported in Table IV.

To check the significance of the results we performed t-
tests. Since the test set in the experiments with the three
methods is the same, there is a natural pairing of the estimated
errors. Therefore we use a paired t-test to test the null
hypothesis that the models derived from the approach for
partial monotonicity have the same error as the standard
neural networks / partially monotone linear models against the
one-sided alternatives. In addition, we perform F-tests for the
significance in the variance difference of the models. The p-
values obtained from all tests are given in Table V.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4011

TABLE IV
MINIMUM MSES OBTAINED FROM THE EXPERIMENTS WITH HOUSING DATA

Minimum MSE Method
Mean Variance

PartMon 0.0158 0.0000
NNet 0.0201 0.0001
PMonLin 0.0217 0.0001

TABLE V

P-VALUES OBTAINED FROM THE STATISTICAL TESTS
p-value Indicator

Mean Var
Minimum MSE (PartMon–NNet) 0.005 0.010
Minimum MSE (PartMon–PMonLin) 0.000 0.033

The results show that the error obtained from the approach

for partial monotonicity is significantly smaller than those
obtained from the standard neural networks and partially
monotone linear models. Furthermore, the significantly lower
variances of the models derived from the approach for partial
monotonicity show that they are more stable and robust upon
repeated sampling.

V. CONCLUSION
In this paper we considered partially monotone regression

problems where the response variable depends monotonically
on some but not all predictor variables. An approach for
building partially monotone models was presented, which is
convolution of weight functions (kernels) based on the non-
monotone variables and monotone (Sill) networks built only
on the monotone variables. Simulation and real case studies
showed that the overall performance of the approach is
significantly better compared to the standard neural networks
and partially monotone linear models. First the models derived
from our approach are more accurate than the partially
monotone linear models. Our method provided also a better fit
than standard neural networks on real housing data. Further
comparison with neural networks demonstrates an additional
advantage of the proposed approach: faster training time due
to smaller monotone networks built on subsets of data in

contrast to training a single network with many parameters
required to learn the whole large data. Also the incorporation
of partial monotonicity constraints leads not only to models
that are in accordance with the decision maker's expertise but
also to significant reduction of the model variance, which
results in more robust models.

REFERENCES
[1] A. Ben-David, "Monotonicity Maintenance in Information-Theoretic

Machine Learning Algorithms", Machine Learning, 19, (1995), pp. 29-
43

[2] C. Cybenko, "Approximation by Superpositions of a Sigmoidal
Function", Mathematics of Control, Signals, and Systems, 2, (1989), pp.
303-314

[3] H.A.M. Daniels, and B. Kamp, "Application of MLP Networks to Bond
Rating and House Pricing", Neural Computation and Applications, 8,
(1999) pp. 226-234

[4] O. Harrison, and D. Rubinfeld, "Hedonic Prices and The Demand for
Clean Air", Journal of Environmental Economics and Management, 53,
(1978), pp.81-102

[5] H. Kay, and L.H. Ungar,, "Estimating Monotonic Functions and Their
Bounds", AIChE Journal, 46, (2000), pp.2426-2434

[6] H. Mukarjee, and S. Stern, "Feasible Nonparametric Estimation of
Multiargument Monotone Functions", Journal of the American
Statistical Association, 89, (1994), pp. 77-80

[7] E.A. Nadaraya, "On Estimating Regression", Theory Prob. Applic., 10,
(1964), pp.186-90

[8] R. Potharst, and A. Feelders, "Classification trees for problems with
monotonicity constraints", SIGKDD Explorations Newsletter, 4, (2002),
Issue 1

[9] P.J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”, Journal of Computational and Applied
Mathematics, 20, (1987), pp.53-65

[10] M. Sarfraz, M. Al-Mulhem, and F. Ashraf, "Preserving Monotonic
Shape of The Data by Using Piecewise Rational Cubic Functions",
Computers and Graphics, 21, (1997), pp.5-14

[11] J. Sill, "Monotonic Networks", Advances in Neural Information
Processing Systems, 10, (1998), pp.661-667

[12] S. Wang, "A Neural Network Method of Density Estimation for
Univariate Unimodal Data", Neural Computation & Applications, 2,
(1994), pp.160-167

[13] G. S. Watson, "Smooth Regression Analysis", Sankhya, Ser. A, 26,
(1964), pp. 359-372

[14] Wu, C.F.J., and M. Hamada, Experiments: Planning, Analysis, and
Parameter Design Optimization, Wiley Series in Probability and
Statistics, John Wiley & Sons, Inc. New York, (2000).

APPENDIX
TABLE VI

RESULTS OBTAINED FROM THE SIMULATION STUDIES
50 points 150 points 250 points

Method 2
εσ =0.01 2

εσ =0.5 2
εσ =2 2

εσ =0.01 2
εσ =0.5 2

εσ =2 2
εσ =0.01 2

εσ =0.5 2
εσ =2

Minimum MSE/ Variance MSE
0.05/2e-05 0.11/ 2e-05 0.27/ 3e-05 0.02/ 5e-06 0.05/ 5e-06 0.11/ 7e-06 0.03/ 1e-05 0.05/ 1e-05 0.08/ 2e-05 PartMon*

(2, 3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3)
0.02/6e-03 0.10/ 1e-03 0.20/ 4e-02 0.01/ 9e-03 0.03/ 2e-03 0.09/ 1e-03 0.02/ 3e-02 0.03/ 6e-03 0.09/ 7e-03 NNet*
(9,1e-006) (9,1e-005) (9,1e-004) (9,1e-006) (9,1e-006) (9,1e-005) (9,1e-006) (9,1e-006) (9,1e-006)

PMonLin 0.15/ 2e-07 0.17/ 2e-06 0.25/ 3e-05 0.14/ 1e-07 0.15/ 5e-07 0.18/ 6e-06 0.14/ 1e-07 0.15/ 3e-07 0.17/ 2e-06
* The numbers in the brackets present the parameters of the Sill/ordinary network for which the minimum MSE is achieved.
PartMon - (# groups, # planes); NNet - (# hidden neurons, weight decay)

