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Abstract—In this paper, a generalized self-consistent scheme, or 

“three phase model”, is used to set up a micro-mechanics model for 
rough surface contact with randomly distributed asperities. The 
dimensionless average real pressure p  is obtained as function of the 
ratio of the real contact area to the apparent contact area, 

0/ AAr
. Both 

elastic and plastic materials are considered, and the influence of the 
plasticity of material on p  is discussed. Both two-dimensional and 
three-dimensional rough surface contact problems are considered. 
 

Keywords—contact mechanics, plastic deformation, 
self-consistent scheme. 

I. INTRODUCTION 
ONTACT problems are central to Solid Mechanics, 
because contact is the principal method of applying loads 

to a deformable body [1].  All the real surfaces are rough with a 
large number of micro-scale asperities. Contact actually 
happens between these asperities. Generally the real contact 
area is very small [2], for instance, in the order 1% or less. Real 
contact is concentrated on a cluster of microscopic actual 
contact areas. So real contact pressure and contact area are 
important for the contact properties. Furthermore, the 
configuration of wafer bonding in the MEMS packaging 
industry generates large real contact area, even full contact area 
when complete bonding [3]. Great amount of research work has 
been carried out on rough surfaces, from the measurement and 
characterization of the surface roughness, to the simulation of 
their contact. A recent review by Majumdar and Bhushan 
provided a good survey on the recent works related to the rough 
surfaces [4]. 

Usually the heights and cap radii of these asperities are 
distributed randomly. Statistical law is often used in the 
research of contact mechanics of rough surfaces, but it needs 
analytical relations between the quantities related to single 
asperities in order to obtain the contact property of a whole 
surface [5]. Such analytical relations often cannot be obtained, 
especially when the material properties are nonlinear. Some 
other model can be searched to solve this problem. 

It is well known that there are a few well-developed 
analytical models in composite mechanics for estimating the 
effective properties, such as modulus, thermal conductivity and 
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average stresses in the composites with the second phase 
particles [6] –[10]. Hereinto, the “three phase model”, or 
“generalized self-consistent method (scheme)” by its own 
author, is now considered having certain advantages and merits 
and therefore survived critics of the researchers. Recently, 
based on the “self-consistent scheme”, Fan and Sze proposed a 
micro-mechanics model for imperfect interface in dielectric 
materials [11]. 

In the present study, we also adopted this analytical model to 
look for the relation between average pressure p  and the ratio 
of the real contact area to the apparent contact area, 0/ AAr , 
which is 

)/( 0AAfp r=  (1) 
Here, we treated p  between two contact surfaces as effective 
property if the dimension of the asperity is much smaller than 
the bulk contact dimensions. 

It is realized that the asperity contact causes plastic 
deformation near the contact region because of high stress level 
[2], [4], [5]. We included the plastic deformation in our 
self-consistent model to investigate the influence of the plastic 
deformation on the contact properties, such as the average 
contact pressure and the contact area. 

The FEM will be used to obtain numerical results for this 
problem, which is shown to be a more reliable and better 
numerical scheme than the singular integral equation approach 
[12]. 

II. MULTIPLE ASPERITY CONTACT OF ROUGH SURFACES AND ITS 
SELF-CONSISTENT MODEL 

We analyze the contact problem between a half-space with a 
rough surface and a rigid half-space with a flat surface as 
shown in Fig. 1. The problem may be two-dimensional or 
three-dimensional. When the profile of the rough surface does 
not change along the direction perpendicular to the figure, it is a 
two-dimensional contact problem; otherwise, it is a 
three-dimensional one. We will analyze two-dimensional plane 
strain problem and three-dimensional isotropic rough surfaces 
that has no preference in any direction in terms of its 
characteristic parameters describing the surface roughness 
behavior. The upper half-space is pushed downward with a 
pressure p  applying on it far from the interface. Because the 
asperities of the half-space has randomly-distributed density, 
heights and peak radii, the nominal or average contact pressure 
is same anywhere on the interface. Both elastic and plastic 
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material will be considered. 
 

 
Fig. 1 Multiple asperity contact of rough surface 

 
Here, we assume the asperity dimensions are much smaller 

than the bulk contact dimension. Then based on 
“self-consistent scheme”, the average contact pressure p  can 
be treated as effective property. The interaction among the 
asperities is modeled by Fig. 2. Only one asperity with average 
characterization parameters describing the surface roughness is 
considered, and the effect of the rest of the asperities is replaced 
by the average pressure p . This model has three “phases” (or 
three regions to be exact), namely 
(i) ),( lLx −−∈  and ),( Llx ∈  are the effective contact region, 
prescribed with the average contact pressure p ; 
(ii) ),( clx −−∈  and ),( lcx ∈  are the non-contact regions; 
(iii) ),( ccx −∈  is the asperity contact region. 
Here, the three-dimensional contact problem now is simplified 
to be axisymmetric. 

The average pressure applied on the interface and far from 
the interface is defined as 

∫∫=
rA

dxdyyxp
A

p ),(1

0

 (2) 

By applying the “self-consistent scheme”, now it is 

∫−
=

c

c
dxxp

l
p )(

2
1  (3) 

for the plane strain contact, and 

∫−
=

c

c
rdrrp

l
p π

π
2)(1

2
 (4) 

for three-dimensional contact with isotropic surface. 
Now the interaction between randomly-distributed asperities 

is modeled by the interaction between a single asperity and the 
region with the average pressure acting on. But the average 
pressure p  can only be obtained after the pressure distribution 

)(xp  (or )(rp  for the axisymmetric contact) in the single 
asperity contact region is obtained, while the pressure 
distribution in this single asperity contact region is generated 
from the average pressure. So, they are coupled. Solving this 
pair of pressures ( p  and )(xp  (or )(rp  for the axisymmetric 
contact)) simultaneously based on the “self-consistent model” 
is the essence of our micro-mechanics model set up here. 

 

 
Fig. 2 Three-phase model for asperity contact 

 

III. FINITE ELEMENT NUMERICAL MODELS 
For the models in Fig. 2 set up based on the “self-consistent 

scheme”, finite element method can be used to solve this 
elastic-plastic problem. We note that if we consider only elastic 
deformation in this figuration, singular integral equation 
method can also be used [12]. But here due to the existing 
plastic deformation, we adopted the finite element method [13]. 

Here, for an easy comparison with the existing close form 
analytical solution for the elastic contact between a periodic 
sinusoidal profile and a flat surface [14], [15], the asperity 
shapes are chosen as 
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for the plane strain contact, and 
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for three-dimensional contact with isotropic surface. 
As in Fig. 3. Here we add a term with a changeable 

coefficient α  to the equation of the asperity profile to obtain 
different “flatness” of the asperity. We obtained numerical 
results by finite element simulation for α  with values -0.1, 0 
and 0.1. 

In Fig. 3, the finite element model has a large effective 
region enough for the boundary effect can be ignored. 
Equations (2) to (4) indicate that the average pressure acting on 
the contact interface between the single asperity and the flat 
surface is equal to the pressure applied on top of the upper 
half-space, having a value of p . 

Because we will consider the effect of plasticity on the 
contact property, for this problem, the independent physical 
quantities include: 
(i) The geometrical dimensions: α , , Δl  (L can be ignored 
because of the large effective region); 
(ii) The material properties: the elastic modulus E , Possion’s 
ratio ν , and the yielding stress sσ  of the upper half-space. 

Dimensional analysis showed that for this problem, all 
configurations with same dimensionless quantities ασ ,, *El

sΔ  

have similarity, so the parametric study for this problem will be 
fulfilled by changing these three dimensionless quantities. Here, 
the elastic modulus E has a value of 50GPa, and the Possion’s 
ratio of 0.3. The rest of the quantities are chosen as follows: 

005.0  ,0025.0=
Δ
l
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∞=   ,50  ,10 MPaMPasσ (i.e., elastic material). 
The commercial finite element package ANSYS is adopted 

to simulate the contact of the model in Fig. 3 numerically [13]. 
The edge of the contact area of the single asperity is extracted 
from the contact state of the nodes at interface. 

 

 
 

Fig. 3 The finite element model 
 

IV. FINITE ELEMENT NUMERICAL RESULTS 
In this section, we present the numerical results from our 

FEM simulations. In order to examine whether our 
self-consistent model produces correct results, the FEM 
numerical results for the periodic sinusoidal plane strain cases 
with 0=α  are compared with the existing closed form 
analytical solutions [14], [15]. It is shown that they coincide 
well with each other. 

The average pressures calculated from our model when 
approaching full contact are listed in Tables 1 to 4, here the 
dimension mml 1= . 

 
TABLE I 

AVERAGE PRESSURES (MPA) FOR PLANE STRAIN CASES WITH  mm0025.0=Δ  

 10MPa 50MPa ∞  (elastic contact) 

-0.1 11.95 57.3 256.1 
0 11.88 56.99 213.8 

0.1 11.79 56.41 171.4 

 
TABLE II 

AVERAGE PRESSURES (MPA) FOR AXISYMMETRIC CASES WITH  mm0025.0=Δ  

 10MPa 50MPa ∞  (elastic contact) 

-0.1 10.3 49.71 200 
0 10.23 49.43 159.9 

0.1 10.15 48.75 119.7 

 
TABLE III 

AVERAGE PRESSURES (MPA) FOR PLANE STRAIN CASES WITH  mm005.0=Δ  

 10MPa 50MPa ∞  (elastic contact) 

-0.1 12.5 58.17 509.3 
0 12.33 57.9 425.9 

0.1 12.18 57.55 341.6 

 
 
 
 
 

TABLE IV 
AVERAGE PRESSURES (MPA) FOR AXISYMMETRIC CASES WITH  mm005.0=Δ  

 10MPa 50MPa ∞  (elastic contact) 

-0.1 10.66 50.35 398.3 
0 10.53 50.1 318.3 

0.1 10.39 49.73 238.5 

 
The above-mentioned analytical solution gave the average 

pressure as 
l

Ep
21 2

Δ
−

=
ν

π  for the plane strain elastic contact 

between two periodic sinusoidal surfaces. So the analytical 
solution of full contact for the average pressures of the plane 
strain contact is 

MPaGPa
l
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12
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for mm0025.0=Δ , and 

MPaGPa
l
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12
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for mm005.0=Δ . 
Our corresponding values of the average pressures are 

213.8MPa and 425.9MPa respectively, and the corresponding 
relative errors are -0.93% and -1.30% respectively. We can 
expect that when Δ  decreases downward to 0, the relative error 
could also decreases. This shows that our numerical results 
from the “self-consistent model” have good accuracy. 

The results indicate that for elastic contact, the average 
pressure is approximately proportional to Δ . In the problem we 
analyzed, the deformation is very small because Δ  is in the 
order ( )310−Ο  of l, so the strain in the upper half-space is 
proportional to Δ  if we ignore the higher order term. 

But when the materials are ideal-plastic, the average pressure 
is close to the yielding stresses of the materials. 

V. CONCLUSION REMARKS AND DISCUSSION 
Our numerical results show that the “self-consistent model” 

can capture the interaction between multiple asperities in the 
rough surface contact. The numerical results for the two plane 
strain cases with 0=α  coincide well with the existing 
analytical solution. 

The results show that for elastic contact, the average pressure 
for full contact is proportional to ratio l/Δ . But for the plastic 
contact, the average pressure is determined mainly by the 
yielding stress for full contact and is close to the yielding stress. 

For both the elastic contact and the plastic contact, the fatter 
configuration (smaller α ) has larger average pressure for full 
contact. 

Generally the real contact area is very small [2], for instance, 
in the order of 1% or less. Fortunately, the wafer bonding 
technique in MEMS packaging industry generates large contact 
area up to full contact. Our results can be applied to this 
technique straightforwardly. 
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