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The direct Ansäz method for finding exact
multi-wave solutions to the (2+1)-dimensional
extension of the Korteweg de-Vries equation

Chuanjian Wang, Changfu Liu, Zhengde Dai

Abstract—In this paper, the direct Ansäz method is used for con-
structing the multi-wave solutions to the (2+1)-dimensional extension
of the Korteweg de-Vries (shortly EKdV) equation. A new breather
type of three-wave solutions including periodic breather type soliton
solution, breather type of two-solitary solution are obtained. Some
cases with specific values of the involved parameters are plotted for
each of the three-wave solutions. Mechanical features of resonance
interaction among the multi-wave are discussed. These results enrich
the variety of the dynamics of higher-dimensional nonlinear wave
field.
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I. INTRODUCTION

NONLINEAR evolution equations (NLEEs) have an im-
portant role in many nonlinear science fields such as fluid

dynamics, nonlinear optics, elasticity theory, plasma physics,
the propagation of long internal waves and many other fields.
Nonlinear wave phenomena of dispersion, dissipation, diffu-
sion, reaction and convection are very important in nonlinear
wave equations [1]. Exact soliton solutions may help us to
find and explain physical phenomena and experimental results.
KdV equation is the earliest soliton equation which was firstly
derived by Korteweg and de Vries to model the evolution of
shallow water wave in 1895 ([1],[2],[3]]). In order to search for
soliton solutions and study interaction of solitons for nonlinear
partial differential equations, many effective methods have
been developed, such as Inverse scattering transformation[1],
Bäcklund transformation [2], Darboux transformation ([3],[4]),
Painlevé expansion method [5], Hirota bilinear method [6],
Painlevé analysis method [7], similarity reductions method
([8],[9]), homogeneous balance method [10], homotopy pertur-
bation method [11] variational method [12], Adomian method
[13], F-expansion method [14], Exp-function method [15],
Extended Homoclinic test function ([16],[17]),The mapping
approach [18],The improved mapping approach [19],Condi-
tional Similarity Reduction Method [20], Projective equation
method ([21],[22]) and so on.

In this paper, we use the direct Ansäz method to obtain the
exact multi-wave solutions of the (2+1)-dimensional EKdV
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equation. The (2+1)-dimensional EKdV[23] can be shown in
the from of

ut + 3uuy + uxxy + 3ux

∫ x

−∞
uydx = 0. (1)

In Ref.[23], a type of bell-shape soliton and exact two-soliton
solution had been obtained for EKdV equation. Equation (1)
now becomes an alternative form with u = wx:

wxt + 3wxwxy + wxxxy + 3wxxwy = 0. (2)

Integrating Eq. (2) ones with respect to x, we obtain

wt + 3wxwy + wxxy = λ(y, t). (3)

where λ(y, t) is an arbitrary function. For convenience, Eq. (3)
is called (2+1)-dimensional potential EKdV (shortly PEKdV)
equation with λ(y, t) = 0. In Ref.[24], Shen discussed
Lie symmetries, Lie algebra of symmetry vector fields and
similarity reductions, and found the PEKdV equation is not
Painlevé integrable by means of the WTC-Painlevé analysis
method. In Ref.[17], kinky periodic solitary-wave solutions,
periodic soliton solutions, and cross kink-wave solutions of the
(2+1)-dimensional potential EKdV equation were obtained.

II. THE DIRECT ANSÄZ METHOD

We consider general form of higher dimensional nonlinear
evolution equation

F (u, ut, ux, uy, uxx, uyy, · · ·) = 0, (4)

where u = u(x, y, t) and F is a polynomial about u and its
derivatives.

By Painlevé analysis, a transformation is made

u = T (f), (5)

where f is a new unknown function. Then, the NLEE (4) is
reduced to Hirota’s bilinear equation

G(Dx, Dt, Dy; f, f) = 0, (6)

where the D-operator [6] is defined by

Dm
x D

n
t f(x, t) · g(x, t) =

(
∂

∂x
− ∂

∂x′ )
m(

∂

∂t
− ∂

∂t′
)n[f(x, t)g(x

′
, t′)]|x′=x,t′=t,

In this section, we shall seek the multi-wave solution for a
given partial differential equation in the following form:

f (x, y, t) = e−ξ1 + δ1 cos ξ2 + δ2 cosh ξ3 + δ3e
ξ1 , (7)
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where ξi = aix+ biy + cit ai, bi, ci, δi (i = 1, 2, 3) are some
constants to be determined later from the solution of (6).

Substituting Eq.(7) into Eq.(6) and setting the coefficients
of the same power of ej(ξ1), cos ξ2, sin ξ2, cosh ξ3, sinh ξ3)
(j = −1, 1) equal to zero, we obtain algebraic equations.
Solving the set of algebraic equations, we can find solutions
ai, bi, ci and δi(i = 1, 2, 3). Substituting solutions ai, bi, ci
and δi(i = 1, 2, 3) into Eq.(7) and Eq.(5) we can obtain exact
multi-wave solutions of Eq.(4).

III. APPLICATION TO THE THE (2+1)-DIMENSIONAL
EXTENSION OF THE KORTEWEG DE-VRIES EQUATION

By the dependent variable transformation

u = 2(lnf)xx, (8)

where the function f(x, y, t) is an unknown real function.
Eq. (1) is transformed into the bilinear differential equation

G(Dx, Dy, Dt)f · f = Dx(Dt +D2
xDy)f · f = 0, (9)

By using the simplest direct Ansäz method, we may choose
the solution of (9) in the form

f(x, y, t) = eξ1 + δ1 cos ξ2 + δ2 cosh ξ3 + δ3e
−ξ1 , (10)

where ξ1 = a1x + b1y + c1t, ξ2 = a2x + b2y + c2t, ξ3 =
a3x+b3y+c3t and ai, bi, ci, δi (i = 1, 2, 3) are some constants
to be determined later from the solution of (9).

Substituting Eq.(10) into Eq.(9), and setting the coefficients
of the same power of e±ξ1 , cos ξ2, sin ξ2, cosh ξ3, sinh ξ3 equal
to zero, we obtain algebraic equations about ai, bi, ci, δi (i =
1, 2, 3). Solving the set of algebraic equations, we can find
solution
Case 1.

a1 = 0, a2 = ia3, b2 = −ib3, c1 = −b1a32,
c2 = ib3a3

2, c3 = −b3a32, δ1 = δ2

under a transformation a3 → a3i, b3 → b3i in the above
relations, (10) can be represented by the following form

f(x, y, t) = eb1ξ + 2δ2 cos(a3x) cos(b3ξ) + δ3e
−b1ξ (11)

Where ξ = y + a3
2t.

Substituting Equation (11) into (8), then we obtain the x-
periodic breather type soliton solution for EKdV equation as
follows

u (x, y, t) =

− 2δ2a3
2 cos(b3ξ)(

√
δ3 cos(a3x) cosh(b1ξ+θ0)+δ2 cos(b3ξ))

(
√
δ3 cosh(b1ξ+θ0)+δ2 cos(a3x) cos(b3ξ))

2 ,
(12)

Where ξ = y + a3
2t, θ0 = ln

√
δ3 and δ2 �= 0, δ3 > 0.

Obviously, the solution (12) is a type of periodic breather
solitons which is a periodic standing wave in the propagating

direction x with period
2π

a3
, and at the same time is also a

breather solitary wave with ξ = y + a3
2t and exponentially

decay in y, so it is called the periodic breather-type soliton.
Note that the denominator of expression (12) is greater than
zero when ξ and x take arbitrarily values with

√
δ3 > δ2.

Therefore we see that (12) has no poles and should be well
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Fig. 1. (a)The breather behavior of solution (12) in y-
direction. (b) The periodic behavior of solution (12) in x-
direction.

behaved everywhere. So the solution is a nonsingular periodic
breather soliton solution. The periodic and breather behavior
of the solution (12) are shown in Figs. 1 (a)-(b).

Case 2.

a1 = a2 = c3 = b3 = 0, c1 = −a32b1, b2 = − c2
a32

. (13)

Substituting Equation (10) into (8) with (13), we get the
breather-type two-soliton solution of Equation (1) as follows:

u(x, y, t) =
2 δ2a3

2(δ1 cosh(a3x) cos(
c2
a3

2 ξ)+2
√
δ3 cosh(a3x) cosh(b1ξ−θ0)+δ2)

(δ1 cos(
c2
a3

2 ξ)+δ2 cosh(a3x)+2
√
δ3 cosh(b1ξ−θ0))2 ,

(14)
Where ξ = y − a3

2t, θ0 = ln
√
δ3, δ3 > 0 and δ2 �= 0.

The expression (14) is the breather-type two-soliton solution
of EKdV equation which is a breather solitary wave on the
y-axis, and meanwhile is a soliton on the x-axis. In fact,
the solution (14) reflects the interaction between two solitons.
There are three types of resonance interactions in two soliton
solutions, namely full resonance, partial resonance and non-
resonance interactions. The value of δ3 plays an important role
in determining the type of resonance interactions occurrence.
Resonance only occurs when the value of δ3 approaches 0.
Because when the value of δ3 approaches 0, then ln

√
δ3

approaches ∞. If δ3 = 0 or δ3 → 0, then the partial resonance



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:5, 2013

858

and full resonance interactions will occur. For the partial res-
onance interaction, the length of the resonant breather soliton
increases with δ3 → 0. If the value of δ3 is not equal to zero or
approaches 0, then the resonance interaction will be not exist.
Fig. 2 shows that the partial resonance interaction between two
soliton solutions. It is is not completely elastic. That is, when
two initial solitons come into interaction it will produce some
particularly high and steep wave humps in the vicinity of the
crossing point and later break up again two solitons which are
actually the original soliton respectively(see Figs. 2 (a)). These
particularly high and steep wave humps represent the localized
oscillation, namely, they express a breather soliton solution.
It is called the the resonance breather-soliton solution. The
resonance breather-soliton solution is converted into the line-
soliton solution accordingly as the value of |δ1| becomes small.
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Fig. 2. The partial resonance interaction of two-soliton solution (14)
and contourplot map of u in (x,y)-plane.

IV. CONCLUSION

In this letter, we have applied the direct Ansäz method to
obtain the exact multi-wave solutions of the (2+1)-dimensional
EKdV equation. The obtained solutions have very concise
and explicit forms. It is also shown that the simplest direct
Ansäz method is a direct, concise and effective method. The
properties of the obtained solutions are discussed and shown
in Figures 1 and 2. These obtained results enrich the variety of
the dynamics of higher-dimensional nonlinear wave field. The

direct Ansäz method can also be applied to solve other types
of higher dimensional integrable and non-integrable systems.
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