
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

190

Parvinder S. Sandhu, Pavel Blecharz, and Hardeep Singh

Abstract—Quantitative Investigation of impact of the factors’

contribution towards measuring the reusability of software
components could be helpful in evaluating the quality of developed
or developing reusable software components and in identification of
reusable component from existing legacy systems; that can save cost
of developing the software from scratch. But the issue of the relative
significance of contributing factors has remained relatively
unexplored. In this paper, we have use the Taguchi’s approach in
analyzing the significance of different structural attributes or factors
in deciding the reusability level of a particular component. The
results obtained shows that the complexity is the most important
factor in deciding the better Reusability of a function oriented
Software. In case of Object Oriented Software, Coupling and
Complexity collectively play significant role in high reusability.

Keywords—Taguchi Approach, Reusability, Software

Components, Structural Attributes.

I. INTRODUCTION

HE demand for new software applications is currently
increasing at the exponential rate, as is the cost to develop

them. The numbers of qualified and experienced professionals
required for this extra work are not increasing commensurably
[1]. Software professionals have recognized reuse as a
powerful means of potentially overcoming the above said
software crisis [2], [3] and it promises significant
improvements in software productivity and quality [4], [5].
There are two approaches for reuse of code: develop the
reusable code from scratch or identify and extract the reusable
code from already developed code. The organization that has
experience in developing software, but not yet used the
software reuse concept, there exists extra cost to develop the
reusable components from scratch to build and strengthen
their reusable software reservoir [4]. The cost of developing
the software from scratch can be saved by identifying and
extracting the reusable components from already
developed and

The Manuscript was submitted for review on Sept. 27, 2006.
Parvinder S. Sandhu is Assistant Professor with Computer Science &

Engineering Department, Guru Nanak Dev Engineering College, Ludhiana
(Punjab)-141006, India (phone: +91-98555-32004; fax: +91161-2490339; e-
mail: parvinder.sandhu@gmail.com).

Dr. Pavel Blecharz, Ph.D.(Systems Engineering),Technical University of
Ostrava, Sokolská třída 33, Ostrava 1, 701 21, Office : A515 (phone : +420 -
59699 2233, e-mail: pavel.blecharz@vsb.cz).

Dr. Hardeep Singh is Professor and Head with Computer Science &
Engineering Department, Guru Nanak Dev University, Amritsar (Punjab),
India.

existing software systems or legacy systems [6]. But the issue
of how to identify reusable components from existing systems
has remained relatively unexplored as the contribution of
impact of factors responsible in deciding the reusability has
not studied quantitatively. In both the cases, whether we are
developing software from scratch or reusing code from
already developed projects, there is a need of evaluating the
quality of the potentially reusable software.

Tracz observed that for programmers to reuse software they
must first find it useful [7]. Experimental results confirm that
prediction of reusability is possible but it involves more than
the set of metrics that are being used [8]. The contribution of
metrics to the overall objective of the software quality is
understood and recognized [9]-[11]. But how these metrics
collectively determine reusability of a software component is
still at its naïve stage and the contribution of each factor
towards the reusability of the software components is still not
investigated quantitatively. The organization of the paper is as
follows:
 The second section discusses about Taguchi Approach .in
general. Third section given details of the methodology
followed. Third and fourth sections describe implementation
and results obtained. In Last section conclusion is made.

II. TAGUHI APPROACH

Design of Experiments (DOE) using Taguchi approach is a
standardized form of experimental design technique (referred
as classical DOE). DOE is an experimental strategy in which
effects of multiple factors are studied simultaneously by
running tests at various levels of the factors. But what is a
factor and its level? Factor (notation A, B…) is variable (also
called parameter) that have direct influence of the output
(quality characteristic). Levels (notation A1) are the
descriptions that define the condition of the factor held while
running the experiments. Quality characteristic (notation Y) is
then yardstick of output performance and we distinguish 3
types: B (bigger is better), S (smaller is better) and N (nominal
the best).

To study factor influence, we must carry out experiments at
least with two levels of the factors. When it is necessary to test
more factors (say 5, 10, 15 or more), number of all
combinations (full factorial design) is too big. 15 factors at 2
levels require 215 trials. To minimize number of trials, Taguchi
developed a set of special tables (called orthogonal arrays,
OA). Each orthogonal array involves only fraction of all
possible combinations. For example, 15 factors at 2 levels

A Taguchi Approach to Investigate Impact of
Factors for Reusability of Software Components

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

191

require only 16 runs. Notation of orthogonal array is “L-16”.
Letter “L” shows mathematical background (latin square),
while number “16” means number of trials.

Experiments are designed in accordance with appropriate
orthogonal array. Experiment results are then recorded into
orthogonal array (separate column in the right size). An
analysis then utilizes results and OA together.
 The analysis has standard steps:

 Average and main effect of factors,/interactions,
 ANOVA (Analysis of Variance),
 Optimum, Y at optimum condition.

More detailed description of Taguchi method is possible to
find for example in [12].

III. METHODOLOGY FOLLOWED

A two-tier approach is proposed for finding the significance
of the factors to evaluate the software component’s reusability
by analyzing structural properties of the component.

A. Structural Analysis
A framework of metrics is proposed for structural analysis

of procedure or function-oriented [13] and object-oriented [14]
query components separately. In [14], Selby has pointed the
major desirable attributes in reusable software components
and following suits of metrics are able to target those the
essential attributes, so we tried analyze, refine and use
following metrics of to explore different structural dimensions
of an OO component.

The proposed metrics for Function Oriented Paradigm are
as follows:

1) Cyclometric Complexity Using Mc Cabe’s Measure: If
the complexity is low then reuse of component will not repay
the cost. Otherwise high value of complexity indicates poor
quality, high development cost, low readability, poor
testability and prone to errors i.e. high rate of failure. Hence,
the value of Cyclometric Complexity of a software
component should be in between upper and lower bounds as
an contribution towards reusability [15] [16].

2) Regularity Metric: Regularity is the ratio of estimated
length to the actual length [6]. High value of Regularity
indicates the high readability, low modification cost and non-
redundancy of the component implementation [17]. Hence,
there should be some minimum level of Regularity of the
component to indicate the reusability of that component.

3) Halstead Software Science Indicator: If the volume is
high means that software component needs more maintenance
cost, correctness cost and modification cost [17]. On the other
hand, less volume increases the extraction cost, identification
cost from the repository and packaging cost of the component.
So the volume of the reusable component should be in
between the two extremes.

4) Reuse Frequency Metric: “Reuse frequency” is the
measure of function usefulness of a component [6]. Hence,
there should be some minimum value of “Reuse Frequency” to
make software component really reusable.

5) Coupling Metric: As coupling increases, there is decrease
in understandability and maintainability, so there should be

some maximum value of the coupling associated with a
software component, beyond which the component becomes
non-reusable [11] [15].

The metrics for Object Oriented Paradigm are as follows:
1) Tuned Weighted methods per class (TWMC): According

to Weighted methods per class (WMC) metric of CK metric
suit, if a Class C, has n methods and c1, c2 …cn be the
complexity of the methods, then WMC(C)= c1 + c2 +… + cn.
Mc Cabe’s complexity metric is chosen for calculating the
complexity values of the methods of a class, the value is
normalized so that nominal complexity for a method takes on
a value of 1.0 [18][19].

We have used “tuned WMC” (TWMC) measure for class
complexity by restricting the WMC value in between 0 and 1
with help of sigmoidal function as shown in (1).

e cxacaxf)(1

1),,(
−−+

= (1)

Where a=10 and c=0.5.
2) Lack of Tuned Depth of inheritance tree (LTDIT):

According to DIT metric Depth of inheritance of a class is
“the maximum length from the node to the root of the tree".
More is the depth of the inheritance tree greater the reusability
of the class corresponding to the root of that tree as the class
properties are shared by more derived classes under that class.
So there too much depth dilutes the abstraction. So there is a
need to set the minimum & maximum DIT value for a class as
an contribution towards the reusability [18][19].

We have used “lack of tuned degree of inheritance”
(LTDIT) measure as input in order to restrict the input value
between 0 and 1.

3) Lack of Tuned Number of Children (LTNOC): According
to NOC metric Number of children (NOC) of a class is the
number of immediate sub-classes subordinated to a class in the
class hierarchy. So greater is the value of NOC greater will be
the reusability of the parent class. Hence there should be some
minimum value of NOC for a parent class for its reusability
[18][19].

In order to restrict the input value between 0 and 1, we have
used “lack of tuned Number of Children” (LTNOC) measure
as input.

4) Lack of Coupling Between Object Classes (CBO):
According to CBO metric “Coupling Between Object Classes”
(CBO) for a class is a count of the number of other classes to
which it is coupled. Theoretical basis of CBO relates to the
notion that an object is coupled to another object if one of
them acts on the other, i.e. methods of one use methods or
instance variables of another. Here we are restricting the
unidirectional use of methods or instance variables of another
object by the object of the class whose reusability is to be
measured. As Coupling between Object classes increases,
reusability decreases and it becomes harder to modify and test
the software system. So there is the need to set some
maximum value of coupling level for its reusability & thief the
value if CBO for a class is beyond that maximum value then
the class is said to be non-reusable[17][18].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

192

In order to restrict the input value between 0 and 1, we have
used “lack of CBO” (LCBO) measure as input.

5) Lack of Cohesion in Methods (LCOM): Consider a Class
C1 with n methods M1 , M2 ..., Mn . Let {Ij } = set of instance
variables used by method Mi .There are n such sets {I1},{I2}...
{In}. Let P = { (Ii ,Ij) | Ii ∩ Ij = ∅ } and Q = { (Ii ,Ij) | Ii ∩ Ij ≠
∅ }. If all n sets {I1},{I2}... {In}. are ∅ then let P =
∅ [4]. Lack of Cohesion in Methods (LCOM) of a class can
be defined as:

LCOM = |P| - |Q|, if |P| > |Q|
 LCOM = 0 otherwise

The high value of LCOM indicates that the methods in the
class are not really related to each other and vice versa means
less reusability otherwise low value of LCOM depicts high
internal strength of the class which results into high
reusability. So there should be some maximum value of
LCOM after that class becomes non-reusable [18][19].

We have used “tuned LCOM” (LCOM) measure as input to
the neuro-fuzzy inference engine by restricting the LCOM
value in between 0 and 1 with help of sigmoidal function as
shown in (2).

e cxacaxf)(1

1),,(
−−+

= (2)

Where a=4 and c=1.5.
Values to the linguistic variables of all inputs are assigned

in terms of three linguistic variables “LOW”, “MEDIUM” and
“HIGH” in the range of 0 to 1 as discussed with the experts in
the domain.

Values to the linguistic variables of Reusability are assigned
in terms of “how reusable the software module is?” Reusability
is assigned six linguistic variables PERFECT, HIGH,
MEDIUM, LOW, VERY-LOW and NIL as constants in the
range of 0-1.

B. Taguchi Analysis
 As there are three levels for each factor, L-27 Orthogonal
Array was selected for the experimental design and Taguchi
analysis of the data collected from the last stage is performed.
The analysis is showed in the form of a software output of
Qualitek-4 Software for Automatic Design and Analysis of
Taguchi Experiments developed by R.K. Roy. Beyond this,
there are some notes and commentary to understand better
each software output (tables).

IV. EXPERIMENTATION AND RESULTS
Structural analysis of 109 function oriented software

components and 87 object oriented components is performed.
The meta information is extracted and metric values are
calculated.

A. Analysis of Function based Reusability Data
The Quality characteristic, Y, reusability is derived with

five Factors (inputs), that are designated as:
A: complexity
B: coupling
C: volume,

D: regularity
E: reuse frequency
As there is need of maximization of the Y so “bigger is

better” option is most suitable for the analysis. The steps
performed in the analysis are as under:

1) Average and Main effects: The average effect of the
factors is studied and Factor A has the strongest effect (0.323)
shown in Fig. 1.

Fig. 1 Average effect of factors

Fig. 2 Graph of Main effects of factors

We can see non linear effect of factors A (Complexity) and

C (Volume) in the Main effect analysis of factors as shown in
Fig. 2. If we wanted further improvement, follow-up
experiment for these 2 factors could find, if level 2 (Medium)
is real optimum.

Further, we can make test for presence of interactions as
shown in the interaction table shown in Fig. 3. Interactive
analysis can ensure qualitative analysis of any pair of factors.

It is clear from the interaction table that the strongest
interaction (severity index) is in between factor A
(Complexity and factor B (Coupling), then between factor C
(Volume) and factor E(Reuse Frequency) and so on.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

193

Fig. 3 Interaction table

2) ANOVA: ANOVA analysis of the function oriented

reusability data is performed as shown in Fig. 4. It is
interpreted from the obtained results that factor A
(Complexity) is extremely important (key factor, 63.9%).
Factors B (Coupling), C (Volume) and E (reuse Frequency)
have standard impact.

Fig. 4 ANOVA Analysis of Function Based Data

But now the question is - what about factor D? Generally,

factors with less than 5% influence we consider as non
significant. It means, is it really factorial effect or an error?
Should we pool this factor?

Fig. 5 Test of significance

As shown in Fig. 5, the confidence level is found equal to

99.4. So, test of significance says that factor D should not be
pooled. But anyhow, factor D (Regularity) does have very
poor effect to output.

3) Optimum conditions: In order to find the optimum
conditions of factors, “Bigger is Better” analysis is performs
as shown in Fig. 6.

Fig. 6 Bigger- the -Better Analysis

Optimum condition found is: A2 B1 C2 D2 E3
At this optimum conditions: YOPT = 0.998.

Fig. 7 Relative Influence of factors and interactions

The relative influence of factors and interactions is shown

in Fig. 7. Since experimental error is only 6% and it has been
reached significant improvement here, there is no need to
make additional experiments or look for better combination.
Although it is possible to carry out an L-9 experiments with
factors A and C and slightly increase optimization effect.

If validation test will confirm the results above, this factor
combination (optimum) could be used as a standard.

B. Analysis for Object Oriented Reusability Data
The Quality characteristic, Y, reusability is derived with

five Factors (inputs), that are designated as:
A: LCOM
B: TWCM
C: LTNOC
D: LTDIT
E: LCBO
The three steps of Taguchi analysis are performed as

follows:
1) Average and Main effects: The average effect of the

factors is studied and Factor E has the strongest effect (0.251)
shown in Fig. 8.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

194

Fig. 8 Average effect of factors of OO based Data

Fig. 9 Graph of Main effects of factors

We can see non-linear effect of factors B (TWMC) and C

(LTNOC) in the Main effect analysis of factors as shown in
Fig. 9. If we wanted further improvement, follow-up
experiment for these 2 factors could find, if level 2 (Medium)
is real optimum.

Further, we can make test for presence of interactions as
shown in the interaction table shown in Fig. 10. It is clear
from the interaction table that the strongest interaction
(severity index) is in between factor C (LTNOC) and factor D
(LTDIT).

Fig. 10 Interaction Table of Factors

2) ANOVA: The ANOVA analysis of Object Oriented

Reusability data is performed and the results are shown in Fig.
11. Since factor D has 0% influence, it should be pooled.

Fig. 11 ANOVA Analysis of OO Data

Fig. 12 ANOVA after Pooling

When ANOVA after Pooling is performed, the

Interpretation of results tells that factor E is extremely
important (key factor). Factor B is also important. As shown
in Fig. 12, factor B and C have together 70% impact to
quality!

Generally, factors with less than 5% influence we consider
as non significant. Should we pool factor C and then factor A?

Fig. 13 (a) Pooling of factor C

Fig. 13 (b) Pooling of factor A

The confidence level is 94.09 and 94.98 respectively. The

choice of 90% confidence level is enough. So test of
significance says – factor C and E should not be pooled. But
anyhow factors have quite poor effect to output.

3) Optimum conditions: In order to find the optimum

conditions of factors, “Bigger is Better” analysis is performs
as shown in Fig. 14.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

195

Fig. 14 Bigger- the- Better Analysis for OO Based Data

Fig. 15 Relative Influence of factors and interactions

Optimum condition obtained is: Optimum A1 B2 C2 E3
Based on factors effects, D has any chosen level (the most

cost effective). But in accordance with interaction table (the
strongest interactions CxD, AxD and BxD), level of factor D,
based on interactions, is always 2. At this optimum conditions:
YOPT = 0.876

Although we do not know if some of these interactions are
significant, we can recommend level 2 for factor D (namely if
confirmation tests will not be satisfactory).

Optimum: A1 B2 C2 D2 E3
This combination is in trial number 6. The result is 0.92.

The Error is 21%. We can rely on results, but confidence
interval for factor effects and Y at optimum will be broader.

VI. CONCLUSION

The above studies show well designed experiments. The
first study (C language) gives a little bit better results,
including small experimental error (5%). The second study
about the OO based software reusability, has bigger error
(21%), so there could be some other influences not involved in
the study. We can rely on results, but confidence interval for
factor effects and Y at optimum will be broader.

It is found that the complexity is the most important factor
in deciding the better Reusability of a function oriented
Software. In case of Object Oriented Software, Coupling and
Complexity collectively play significant role in high
reusability. The results are stimulating for telling the best
condition of all factors in obtaining high reusability index of a

software component and identification of the reusable
components from the legacy systems.

REFERENCES
[1] E. Smith, A. Al-Yasiri, and M. Merabti, “A Multi-Tiered Classification

Scheme For Component Retrieval,” Proc. Euromicro Conference, 1998,
24th Volume 2, 25-27 Aug. 1998, pp. 882 – 889.

[2] V.R. Basili, “Software Development: A Paradigm for the Future,” Proc.
COMPAC ‘89, Los Alamitos, Calif.: IEEE CS Press, 1989, pp. 471-
485.

[3] B.W. Boehm and R. Ross, “Theory-W Software Project Management:
Principles and Examples,” IEEE Trans. Software Eng., vol.15, no. 7,
1989, pp. 902.

[4] W. Lim, “Effects of Reuse on Quality, Productivity, and Economics,”
IEEE Software, vol. 11, no. 5, Oct. 1994, pp. 23-30.

[5] H. Mili, F. Mili and A. Mili, "Reusing Software: Issues And Research
Directions," IEEE Transactions on Software Engineering, Volume 21,
Issue 6, June 1995, pp. 528 - 562.

[6] G. Caldiera and V. R. Basili, “Identifying and Qualifying Reusable
Software Components”, IEEE Computer, February 1991, pp. 61-70.

[7] W. Tracz, “A Conceptual Model for Megaprogramming,” SIGSOFT
Software Engineering Notes, Vol. 16, No. 3, July 1991, pp. 36-45.

[8] Stephen R. Schach and X. Yang, "Metrics for targeting candidates for
reuse: an experimental approach," ACM, SAC 1995, pp. 379-383.

[9] W. Humphrey, Managing the Software Process, SEI Series in Software
Engineering, Addison-Wesley, 1989.

[10] L. Sommerville, Software Engineering, Addision-Wesley, 4th Edition,
1992.

[11] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill Publications, 5th edition, 2005.

[12] R.K. Roy, Design of Experiments Using the Taguchi Approach, John
Willey & Sons Inc., 2001.

[13] Parvinder Singh Sandhu and Hardeep Singh, "Automatic Quality
Appraisal of Domain-Specific Reusable Software Components", Journal
of Electronics & Computer Science, Vol. 8, No. 1, June 2006, pp. 1- 8.

[14] Parvinder Singh Sandhu and Hardeep Singh, "A Reusability Evaluation
Model for OO-Based Software Components", International Journal of
Computer Science, Volume 1, Number 4, 2006, pp. 259-264.

[15] Richard W. Selby, "Enabling Reuse-Based Software Development of
Large-Scale Systems", IEEE Trans. Software Engineering, VOL. 31,
NO. 6, June 2005, pp. 495-510.

[16] T. MaCabe, “A Software Complexity measure,” IEEE Trans. Software
Engineering, vol. SE-2, December 1976, pp. 308-320.

[17] Maurice H. Halstead, Elements of Software Science, Elsevier North-
Holland, New York, 1977.

[18] S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for Object
Oriented Design,” Proc. Conf. Object Oriented Programming Systems,
Languages, and Applications (OOPSLA’91), vol. 26, no. 11, pp. 197-
211, 1991.

[19] Chidamber, S.R. and Kemerer, C.F., “ A Metric Suite for Object
Oriented Design”, IEEE Trans. Software Engineering , Vol. 20, pp. 476-
493,1994.

