
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:8, 2007

418

 

 

  
Abstract—This paper presents a Reliability-Based Topology 

Optimization (RBTO) based on Evolutionary Structural Optimization 
(ESO). An actual design involves uncertain conditions such as 
material property, operational load and dimensional variation. 
Deterministic Topology Optimization (DTO) is obtained without 
considering of the uncertainties related to the uncertainty parameters. 
However, RBTO involves evaluation of probabilistic constraints, 
which can be done in two different ways, the reliability index 
approach (RIA) and the performance measure approach (PMA). Limit 
state function is approximated using Monte Carlo Simulation and 
Central Composite Design for reliability analysis. ESO, one of the 
topology optimization techniques, is adopted for topology 
optimization. Numerical examples are presented to compare the DTO 
with RBTO. 
 

Keywords—Evolutionary Structural Optimization, Performance 
Measure Approach, Reliability-Based Topology Optimization, 
Reliability Index Approach. 

I. INTRODUCTION 
UE to the inherent uncertainties such as external loading, 
material properties, and manufacturing quality, the 

prototypes or manufactured products may not satisfy the 
necessary performance requirements. To alleviate the possible 
degradation of performance in the production process, these 
uncertainties must be considered during the process of 
topology design optimization. 

In probabilistic optimization, cost minimization and bringing 
probabilistic constraints on target should be done 
simultaneously. The main difference between the deterministic 
optimization (DO) and reliability-based design optimization 
(RBDO) are their constraints, as RBDO has the same objective 
as DO. However, in RBDO, probabilistic constraints are 
formulated so as to construct approximated linear function to 
closely represent the nonlinear limit state function for the 
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reliability index calculation and optimization by using the 
appropriate transformations [1]-[8]. 

In order to determine whether or not the probabilistic 
constraint is satisfied, simulation technique and various 
approximation methods are developed. Simulation technique 
such as Monte Carlo simulation (MCS)[9] directly estimate the 
failure probability, and what is known as the moment methods 
such as reliability index approach (RIA) and performance 
measure approach (PMA) calculate the reliability index as a 
measure of the probabilistic structural safety. 

However, the simulation techniques sometimes require a 
prohibitively large amount of structural analyses in spite of 
their robustness. In addition, they do not produce any 
information regarding the sensitivity for more efficient search 
of the optimum structural design. 

For this reason, moment methods, RIA and PMA, are 
frequently used to estimate the probabilistic constraints with 
acceptable computations. Probabilistic constraints of RIA are 
formulated in terms of the reliability index. Reliability analysis 
in PMA can be formulated as the inverse of reliability analysis 
in RIA [4], [5]. 

In this study, the evolutionary structural optimization (ESO) 
method is considered as a topology optimization method. ESO 
was introduced by Y. M. Xie and G. P. Steven. ESO is based on 
the simple idea that the optimal structure (maximum stiffness, 
minimum weight) can be produced by gradually removing the 
ineffectively used material from the design domain. The design 
domain is constructed by the FE method, and furthermore, 
external loads and support conditions are applied to the element 
model. Considering the engineering aspects, ESO seems to 
have some attractive features: the ESO method is very simple to 
program via the FEA packages and requires a relatively small 
amount of FEA time. Additionally, the ESO topologies have 
been compared with analytical ones, e.g. Michell trusses, and 
so far the results are quite promising. The wide range of ESO 
applications have become proof of its versatility and its 
potential as a design tool [10], [11]. 

The two methods, RIA and PMA, are used in order to 
compute the probabilistic constraints, as they are both 
representative analysis methods of probabilistic constraints in 
reliability-based topology optimization (RBTO). The limit state 
function is approximate using MCS and central composite 
design (CCD) at each iteration in order to evaluate the 
probabilistic constraints. For the implementation, MATLAB is 
used as an optimizer and reliability analysis. For the finite 
element analysis, ANSYS is used. Numerical examples are 
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presented to compare the deterministic topology optimization 
(DTO) with RBTO. 

II. EVOLUTIONARY STRUCTURAL OPTIMIZATION 
Despite the significant effort directed towards structural 

optimization over the past four decades, most techniques 
developed so far are restricted to sizing optimization or shape 
optimization with fixed topology. The search for a general 
method capable of performing simultaneous shape and 
topology optimization has been a great challenge. An important 
recent development in this area was made by Bndsøe and 
Kikuchi who proposed the homogenization method, where the 
structure was represented by a model with microvoids and the 
objective was to seek the optimal porosity of the porous 
medium using an optimality criterion. 

Recently, a simple method for shape and layout 
optimization, called Evolutionary Structural Optimization 
(ESO), has been proposed by Xie and Steven, which is based 
on the concept of gradually removing redundant elements to 
achieve an optimal design. 

ESO can be easily implemented into any general purpose 
finite element analysis program. In contrast to most other 
methods, the ESO involves no mathematical programming 
techniques in the optimization process. 

Sensitivity number, which indicates the change in the overall 
stiffness or a specified displacement due to removal of an 
element, is formulated using results form a finite element 
analysis. Then a number of elements with the lowest sensitivity 
numbers will be eliminated from the structure. The optimal 
design of the structure will be obtained by repeating the cycle 
of finite element analysis, calculation of sensitivity numbers 
and element elimination until the overall stiffness or specified 
displacements reach their given limits. 

In the finite element method, the static behavior of a 
structure is represented by 
 

[ ]{ } { }K u P=                            (1) 
 
where [ ]K  is the global stiffness matrix, { }u  is the global 
nodal displacement vector and { }P  is the nodal load vector. 

The strain energy of the structure, which is defined as: 
 

1{ } { }
2

TC P u=                        (2) 

 
is commonly used as the inverse measure of the overall 
stiffness of the structure. It is obvious that maximizing the 
overall stiffness us equivalent to minimizing the strain energy. 

Consider the removal of the i th element from a structure 
comprising n finite elements. The stiffness matrix will change 
by [ ] [ *] [ ] [ ]iK K K kΔ = − = − , where [ *]K is the stiffness 
matrix of the resulting structure after removal of the i th 
element and [ ]ik  is the stiffness matrix of the i th element. It is 
assumed that the removal of the element has no effect on the 

load vector { }P . By ignoring a higher order term, we can find 
the change of the displacement vector from Eq. (1) as 
 

1{ } [ ] [ ]{ }u K K u−Δ = − Δ           (3) 
 
From Eqs. (2) and (3) we get 
 

11 1 1{ }{ } { } [ ] { } { }[ ]{ }
2 2 2

T i i iC P u P K u u K u−Δ = Δ = − Δ =    (4) 

 
where { }iu {} is the displacement vector of the i th element. 
We thus define 
 

1{ }[ ]{ }
2

i i i
i u K uα =           (5) 

 
as the sensitivity number for problems with an overall stiffness 
constraint, which indicates the change in the strain energy due 
to the removal of the i th element. It should be noted that iα  is 
the element strain energy. Both C  and iα  are always positive 
values. In general, when an element is removed, the stiffness of 
a structure reduces and correspondingly the strain energy 
increases. To achieve this objective through element removal, it 
is obviously most effective to remove the element which has 
the lowest value of iα  so that the increase in C  is minimum. 
The ESO procedure for optimization with overall stiffness or 
displacement constraints is as follows: 

Step1: Discrete the structure using a fine mesh of finite 
elements 

Step2: Analyze the structure for the given loads 
Step3: Calculate the sensitivity number for each element 
Step4: Remove elements which have the lowest sensitivity 

numbers 
Step5: Repeat Step 3 to Step 4 until one of the constraints 

reaches its limit. 
In Step 3 only one of the formulae form Eq. (5) is used 
depending on the type and the number of constraints involved. 
The number of elements to be removed at each iteration, in Step 
4, can be prescribed by its ratio to the total number of elements 
of the initial or the current FEA model [10], [11]. This ratio is 
called the removal ratio. For the purposes of this paper a 
removal ratio of 2% has been adopted. 

III. RELIABILITY-BASED DESIGN OPTIMIZATION 
In the system parameter design, the RBDO model [12]-[15] 

can be generally formulated as  
 

. ( )
. . [ ( , ) 0] ( 1, 2,..., )i i

Min f
S t P G P i p≤ ≤ =

d
d x

     (6) 

 
where d is the design variable vector, x  is the random 
variables vector and the probabilistic constraints are described 
by the limit state function ( , )iG d x  is the i th limit state 
equation. 

The statistical description of the failure of the limit state 
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function ( , )iG d x  is characterized by the cumulative 
distribution function ( )

jGF •  as 

 

10
(0) [ ( , ) 0] ... ( , ) ...

j
j

G i x nG
F P G f dx dx

≤
= ≤ = ∫ ∫d x d x     (7) 

 
In Eq. (7) ( , )xf d x  is the joint probability density function of 

all random variables. The evaluation of Eq. (7) requires 
reliability analysis where the multiple integration is involved as 
shown in Eq. (7). The evaluation of the integral in Eq. (7) is not 
easy, because it represents a very small quantity and all the 
necessary information for the joint density function are not 
available. For these reasons, the simulation technique or 
approximate reliability analysis methods. Simulation technique, 
MCS [4],[5], directly performs the reliability analysis. 
However, it sometimes requires a prohibitively large amount of 
structural analyses in spite of their robustness. In addition, they 
do not produce any information regarding the sensitivity for 
more efficient search of the optimum structural design. Thus 
approximate probability integration methods, such as the 
first-order reliability method (FORM), are widely used for 
RBDO applications.  

In FORM, the reliability analysis requires a transformation 
T  from the original random parameter X  to the independent 
and standard normal random parameter U . The limit state 
function ( , )G d x  in X-space can then be mapped onto 

( , ( )) ( )G G≡d T x U  in U-space. 
As described in Section I, the probabilistic constraint in Eq. 

(6) can be further expressed in two different ways through 
inverse transformations [7] as 
 

1
, target( (0))

ji G iFβ β−= −Φ ≥         (8) 
1

, target( ( ))
ji G iG F β−= Φ              (9) 

 
where iβ  and , targetiβ  are the reliability index at current design 
and the target reliability index of the i th probabilistic 
constraint, respectively. iG  is the probabilistic performance 
measure for i th the probabilistic constraint. Φ  is the 
cumulative distribution function in standard normal distribute 
space. Eq. (8) can be used to describe the probabilistic 
constraint in Eq. (6) using the reliability index, i.e., the RIA. 
Similarly, Eq. (9) can be used in Eq. (6) as the probabilistic 
constraint. 

The general form of RBTO for static problems is described 
[1] as follows 
 

.
. . [ 0] t

Min Volume
S t P G P≤ ≤

       (10) 

 
where target max 0G δ δ= − ≥  is the limit state function, 

[ 0]P G ≤  means the probability of failure at current design, tP  
is the target probability of failure.  

A. Reliability Index Approach (RIA) 
When probabilistic constraints are estimated in terms of the 

reliability index, the probability structural design optimization 
of Eq. (10) may be expressed as 
 

.
. .

Min Volume
S t β β≤ target

            (11) 

 
In order to evaluate the probabilistic constraint for RIA, 

nested optimization loop is necessary. The definition of 
reliability index is the minimum distance form origin to 
approximate limit state function. Therefore the first order 
reliability index ,s FORMβ  is formulated as an optimization 
problem with a equality constraint in U-space as follows 
 

.
. . ( ) 0

TMin
S t G

β = =

=

u u u
u

          (12) 

 
where the optimum point on the failure surface is called the 
most probable point (MPP) *

( ) 0G Uu = . Either an MPP search 
algorithm that is specifically developed for first-order 
reliability analysis or general optimization algorithms, SLP or 
SQP etc., can be used to solve this equation. In this paper, the 
advanced first order reliability method [16], [17] is employed to 
perform reliability analyses in RIA. 

B. Performance Measure Approach (PMA) 
Reliability analysis in PMA is formulated as the inverse of 

reliability analysis in RIA. The first-order probabilistic 
performance measure , targetpG  is obtained from a nonlinear 
optimization problem in U-space as 
 

target

. ( )

. . T

Min G

S t β= =

u

u u u
      (13) 

 
where the optimum point on the target reliability surface is 
identified as the MPP 

target

*uβ β=  with a prescribed reliability 

target 
target

*
t uβ ββ == . In iterative optimization process, unlike 

RIA, only the direction vector 
target target

* */u uβ β β β= =  needs to be 

determined by exploring the spherical equality constraint 
targetβ=u  in Eq. (13). Rather than a general optimization 

algorithm, the advanced mean value (AMV), conjugate mean 
value (CMV), and hybrid mean value (HMV) methods are 
commonly used to solve the problem in Eq. (13), since they do 
not require a line search [5], [8]. In this paper, the HMV method, 
which adaptively employs the AMV and CMV methods, is 
used to solve the inverse problem in PMA. 

IV. NUMERICAL EXAMPLES 
The cantilever beam shown in Fig. 1 is under plane stress 

conditions. The left-hand side of the beam is fixed and a  
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Fig. 1 2-D design domain 

 
 

 
 

Fig. 2 optimal topology of deterministic topology optimization 
 

vertical load of 3P kN=  is applied at the middle of the free 
end. The dimensions of the beam are 0.16L m= , 0.10h m=  
and the thickness 0.001t m= . The Young’s modulus 

207E GPa=  and Poisson’s ration 0.3v =  are assumed. The 
design domain is divided into 32 20×  quadrilateral elements. 
ESO is used as topology optimization technique and the 
removal ratio is 2% of the initial elements [10]. RIA and PMA 
are used in order to compute the probability constraints, as they 
are both representative analysis methods of probabilistic 
constraints in RBTO  

The uncertain variables have 10% standard deviation of the 
mean value and are assumed to be normally distributed. The 
target reliability index, βtarget , is 3. 

From the definition of given problem the RBTO problem 
formulated as follow 

target

.
. . [ 0] 0.135%

Min Volume
S t P G P≤ ≤ =

        (14) 

where limit state function is defined as max0.0075G δ= − . In 
probabilistic constraint, target 0.135%P =  mean the probability 
of failure at target 3β = , relation between the probability of 
failure and reliability index is represented as ( )fP β= Φ − . On 
the other word, the probability of safety must be larger than 
99.865%.  

The limit state function is approximate using Monte Carlo 
Simulation and Central Composite Design at each iteration in 
order to evaluate the probabilistic constraints. Fig. 2 shows the 
optimal topology using the DTO when removal ration is 2%.  

 
 

Fig. 3 RBTO with 1 random variable (RIA) 
 

 
 

Fig. 4 RBTO with 1 random variable (PMA) 
 

 
TABLE I 

COMPARISON BETWEEN DTO AND RBTO FOR 1 UNCERTAINTY  

 Volume (%) Deflection Reliability index 

DTO 37.18% 0.000752 0.0163 
RIA 51.5% 0.00054 2.9397 

PMA 51.87% 0.000539 3.0000 

 

A. RBTO with 0ne Uncertainty parameter 
The uncertainty variable is Young’s modulus. It has 10% 

standard deviation of the mean value and are assumed to be 
normally distributed. The optimal results of RIA and PMA are 
shown in Fig. 3 and Fig. 4 respectively. In Table 1, the 
optimization results obtained from each approach are 
summarized. The second column shows the objective function, 
i.e., total volume(%) and the last column the reliability index. 
The objective of the DTO is smaller than the results of RBTO. 
However, DTO has poor reliability index, 0.0163β = , which 
means that the optimum of DTO has about a 50% failure 
probability. When the reliability in considered into this design, 
the volume used is more than the DTO required to satisfy the 
probabilistic constraint. This is because the feasible region 
becomes smaller due to the distribution of the uncertain 
variable. RBTO results show that the proposed method 
achieves the target reliability index. 

B. RBTO with Three Uncertainty parameters 
This example has the same design domain as the first 

example. However, two more uncertain variables, external load 
and thickness, are considered as uncertain variables. Again, all  
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Fig. 5 RBTO with 3 random variables (RIA) 
 

TABLE II 
COMPARISON BETWEEN DTO AND RBTO FOR 3 UNCERTAINTIES  

 Volume (%) Deflection Reliability index 

DTO 37.18% 0.000752 0.0156 
RIA 60.6% 0.000464 2.9338 

PMA 60.6% 0.000464 3.0000 

 
uncertain variables have 10% standard deviation standard 
deviation of the mean value and are assumed to be normally 
distributed. The maximum allowable deflection is 0.00075m  
and the target reliability index, targetβ , 3.0. The formulation of 
RBTO is the same as in Eq. (14). The optimal results of RIA 
and PMA are shown in Fig. 5 and Fig. 6 respectively. In Table 
II, the optimization results obtained from each approach are 
summarized. The optimum topology shows in Fig. 5 and Fig. 6 
are different from previous results. Because of the increased 
number of uncertain variables, a more robust solution is 
obtained in order to satisfy the target reliability index. Also, the 
used volumes are much larger than in the one uncertain variable 
case. From Table II, we can find that the results of RBTO have 
a larger volume than DTO. A DTO model using more volume 
can be more reliable.  

V. CONCLUSION 
This paper performed the reliability-based topology 

optimization (RBTO) using evolutionary structural 
optimization (ESO). RBTO method is implemented by 
reliability index based approach (RIA) and performance based 
approach (PMA). To calculate the probability of constraints, 
the advanced first order reliability method (AFORM) is used. 
The limit state function is approximated using Monte Carlo 
simulation and central composite design.  

RBTO gave results that are more reliable with respect to 
uncertainties. In Table I and Table II, RBTO can give the 
requested solution under the condition of the second 
uncertainties. Due to the characteristic of ESO, difference of 
optimal topology between DTO and RBTO is only the volume. 
Their results of optimal topology are not different. 
In order to effectively apply RBTO to ESO, it is found that the 
evaluation of the sensitivity number in ESO, must be improved 
by a way to consider the uncertainties of random parameters. At 
present we are researching about the improvement of 
calculating the sensitivity number in ESO. 

 
Fig. 6 RBTO with 3 random variables (PMA) 
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